
Clustered Vector Textures

PEIHAN TU, University of Maryland, College Park, United States

LI-YI WEI, Adobe Research, United States

MATTHIAS ZWICKER, University of Maryland, College Park, United States

(a) input (b) output from (a) (c) input (d) output from (c) (e) input (f) output from (e)

Fig. 1. Example inputs and outputs of our method. Given a small input exemplar, our algorithm can synthesize various types of structured vector patterns. All
images are shown in vector format; please zoom in for details. Copyrights: (a) Snejana Sityaeva (c) Eva Kali (e) mspoint (stock.adobe.com)

Repetitive vector patterns are common in a variety of applications but can
be challenging and tedious to create. Existing automatic synthesis methods
target relatively simple, unstructured patterns such as discrete elements and
continuous Bézier curves. This paper proposes an algorithm for generating
vector patterns with diverse shapes and structured local interactions via a
sample-based representation. Our main idea is adding explicit clustering as
part of neighborhood similarity and iterative sample optimization for more
robust sample synthesis and pattern reconstruction. The results indicate
that our method can outperform existing methods on synthesizing a variety
of structured vector textures. Our project page is available at https://phtu-cs.
github.io/cvt-sig22/.

CCS Concepts: • Computing methodologies → Texturing.

Additional KeyWords and Phrases: vector, pattern, texture, synthesis, cluster

ACM Reference Format:

Peihan Tu, Li-Yi Wei, and Matthias Zwicker. 2022. Clustered Vector Textures.
ACM Trans. Graph. 41, 4, Article 159 (July 2022), 23 pages. https://doi.org/10.
1145/3528223.3530062

1 INTRODUCTION
Vector patterns are common in design and engineering but can re-
quire high expertise and manual efforts to create. To address this
issue, significant research has been devoted to automate the synthe-
sis of vector patterns, either fully for batch generation or partially
for interactive editing [Ganin et al. 2021; Guerrero et al. 2016; Guo
et al. 2020; Hsu et al. 2020; Jacobs et al. 2018; Kazi et al. 2012; Kwan
et al. 2016; Landes et al. 2013; Loi et al. 2017; Ma et al. 2011; Roveri
et al. 2015; Santoni and Pellacini 2016; Tu et al. 2020; Wang et al.
2011; Zhou et al. 2014]. However, existing methods are more suit-
able for relatively simple patterns without diverse element shapes
or complex, structured interactions (Figure 1). Another approach
is to rasterize the vector pattern, apply image texture synthesis
[Barnes and Zhang 2017; Wei et al. 2009], and vectorize the raster
results. However, this process tends to lose the meaning of the orig-
inal design components such as integral elements and overlapping
shapes in different depth layers, often resulting in broken or merged
elements.

This paper proposes an algorithm for generating vector patterns
with diverse element shapes and structured local element interac-
tions with potential overlaps (Figure 1). Instead of post-vectorizing

Authors’ addresses: Peihan Tu, phtu@cs.umd.edu, University of Maryland, College
Park, United States; Li-Yi Wei, review@liyiwei.org, Adobe Research, United States;
Matthias Zwicker, zwicker@cs.umd.edu, University of Maryland, College Park, United
States.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3528223.3530062.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

https://phtu-cs.github.io/cvt-sig22/
https://phtu-cs.github.io/cvt-sig22/
https://doi.org/10.1145/3528223.3530062
https://doi.org/10.1145/3528223.3530062
https://doi.org/10.1145/3528223.3530062

159:2 • Peihan Tu, Li-Yi Wei, and Matthias Zwicker

(a) exemplar (b) elements (c) clusters (d) output clusters (e) reconstruction (f) reconstruction error (g) final output

Fig. 2. Pattern synthesis with clustered sample representation. Given a vector input exemplar (a) with elements visualized in different colors in (b), our method
first samples a clustered representation (c), synthesizes output sample clusters via optimization (d), reconstructs the output elements (e) from (d) with the
reconstruction error (f), and generates the final output pattern (g) by filtering out elements in (e) with high reconstruction error (f). Corresponding clusters
and elements are visualized in the same colors. In (f), red and blue indicate high and low reconstruction errors; yellow indicates filtered-out elements with
errors surpassing a threshold. Copyright: (a) orangemilk (stock.adobe.com)

a synthesized raster output [Favreau et al. 2017; Price and Barrett
2006], our method directly produces vector patterns by optimizing
a sample-based representation [Ma et al. 2011; Tu et al. 2020]. Our
main idea is to explicitly optimize clusters of samples during the
synthesis process. Similar to elements [Ma et al. 2011] and graphs
[Tu et al. 2020], our clusters help to identify distinguishable pattern
components that should remain integral (e.g., not merged, broken
apart, or deformed) during systhesis. However, unlike these prior
works that just copy element identifications [Ma et al. 2011] or com-
pute curve identifications (reconstruct curves) from synthesized
graphs as post-processing [Tu et al. 2020], our method optimizes
clusters of samples as variables along with other pattern attributes
such as sample positions, to facilitate robust optimization and recon-
struction of the output vector patterns. The extra optimization of
cluster configurations leads to better optimized patterns by expand-
ing the feasible region - the set of all possible outcomes of pattern
optimization.

Given a vector input exemplar (Figures 2a and 2b), our method
samples an intermediate clustered representation where each vector
element is represented as a cluster of samples (Figure 2c), synthesizes
the output sample clusters (Figure 2d) via optimization, and finally
reconstructs the output pattern (Figures 2e to 2g) from the output
clusters (Figure 2d). Our algorithm jointly optimizes the spatial
sample distributions and cluster configurations by adding a new
clustering step into conventional search-and-assign based pattern
synthesis [Ma et al. 2011; Tu et al. 2020]. We design an objective
function to measure the quality of clusters by taking into account
both input-output correspondences and cluster (element) shapes,
and an optimization scheme to minimize the clustering objective.

We analyze our algorithms via robustness and ablation studies and
comparisons with prior art, which show that our method is robust
and can significantly outperform existing methods on synthesizing
a variety of structured vector patterns.

2 RELATED WORK
Our work is mainly inspired by previous works on example-based
and procedural pattern synthesis and authoring. We summarize the
most related works below.

Example-based pattern synthesis approaches have been applied to
generate geometric patterns with optional control, such as discrete
elements [Barla et al. 2006; Hsu et al. 2018; Hurtut et al. 2009; Ijiri
et al. 2008; Landes et al. 2013; Ma et al. 2013, 2011; Zhou et al. 2006],
continuous structures [Roveri et al. 2015; Tu et al. 2020], and their
combinations [Ganin et al. 2021; Roveri et al. 2015; Tu et al. 2020].
Existing methods can well handle relatively simple patterns but
not complex ones with diverse element shapes and structured local
interactions, as compared in Figures 3 and 13. Our cluster-based
representation is inspired by Ma et al. [2011] where each vector ele-
ment is represented by a set of samples with associated “element ids”.
The multi-sample representation is later augmented with graph-
based representations [Hsu et al. 2020; Tu et al. 2020]. However,
the “element ids” in [Hsu et al. 2020; Ma et al. 2011] are pre-defined
and unoptimized; as each element is associated with a fixed set of
samples, these prior methods may not be able to handle complex,
structured patterns that require changing sample relationships dur-
ing synthesis (Figures 3c and 3d). Tu et al. [2020] synthesize graphs
and reconstruct curves from graphs by post-processing. However,
graphs could not be applied for representing complex shapes other
than curves, such as identifiable elements. Instead, our method ex-
plicitly optimizes sample clusters (e.g. their sizes and shapes), which
can represent diverse element shapes, and cluster configurations
(e.g. number of clusters and spatial distribution of clusters).

Procedural approaches can produce a variety of distributions and
patterns including point distributions [Guehl et al. 2020; Wei 2010],
packed elements [Hausner 2001; Hsu et al. 2020; Kwan et al. 2016;
Saputra et al. 2020; Zou et al. 2016] or structured patterns [Guo et al.
2020; Loi et al. 2017; Nazzaro et al. 2020, 2021; Pedersen and Singh
2006; Santoni and Pellacini 2016; Št’ava et al. 2010; Wong et al. 1998;
Yeh and Měch 2009]. One key advantage of procedural methods is
user control [Gieseke et al. 2021], even though the range of outputs
can be limited by the underlying grammars or procedures.

Components of these automatic methods have been integrated with
interactive interfaces to facilitate user control in the form of custom
brushes or widgets, via exemplars [Fish et al. 2020; Kazi et al. 2012;
Lu et al. 2013, 2014, 2012] or procedures [Jacobs et al. 2018]. However,
existing methods work best for patterns that can be easily supplied

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

Clustered Vector Textures • 159:3

(a) exemplar (b) samples (c) [Ma et al. 2011] (d) [Hsu et al. 2020] (e) [Tu et al. 2020] (f) our samples (g) our result

Fig. 3. Comparison with previous methods. Given an input exemplar (a), our method samples a clustered sample distribution (b), synthesizes clustered output
samples (f), and reconstructs the final patterns (g). Clusters are visualized in colors. We compare our method against prior vector pattern synthesis methods
[Ma et al. 2011] (c), [Hsu et al. 2020] (d), and [Tu et al. 2020] (e). As shown, while Ma et al. [2011] can generate broken structures and Hsu et al. [2020] can
only place elements uniformly, our method can preserve diverse structures from the exemplars. Since [Tu et al. 2020] can only handle Bézier curve patterns
via graph synthesis which could not be reconstructed as general shapes, we only show their sample synthesis results here. See Figures 13 and 24 for more
comparisons. (a) top ©photo-nuke, middle ©ELENA, bottom ©galyna_p (stock.adobe.com).

by users, and more complex ones still require significant manual
authoring. Our algorithm aims to narrow this gap with the ability
to generate a variety of structured vector patterns from exemplars,
as compared in Figure 3.

Our clustering idea also relates to the use of guidance/control maps
or channels in prior image texture synthesis methods [Fišer et al.
2016; Hertzmann et al. 2001; Kaspar et al. 2015; Lockerman et al.
2016; Rosenberger et al. 2009]. However, instead of providing coarse
user control, the clusters in our method aim to preserve detailed
vector structures. In addition, clustering constitutes a dedicated step
in our optimization algorithm.

Unlike raster texture synthesis [Barnes and Zhang 2017; Wei et al.
2009], the output of our method is in vector format and thus can
facilitate further editing (Figure 12).

3 OVERVIEW
Our method extends prior optimization-based pattern synthesis
methods [Ma et al. 2011; Tu et al. 2020] to represent vector patterns
via clusters of samples (Section 4 and Figure 2c). Analogous to ele-
ments in [Ma et al. 2011] and connected graph edges in [Tu et al.
2020], our clusters correspond to identifiable pattern components
that should remain integral during synthesis, such as avoiding merg-
ing, splitting, or deformation. However, our method treats clusters

as variables in our optimization, along with other attributes such
as sample positions as in [Ma et al. 2011; Tu et al. 2020]. We aims
to optimize the similarity between two patterns by maximizing the
similarity between local neighborhoods. In Sections 4 and 5, we
explicitly incorporate the cluster information into pattern neighbor-
hoods and their similarity (Equation (2)) by associating each sample
with a shape context feature [Belongie et al. 2001] computed using
its cluster. In Section 6, we define the pattern optimization objec-
tive which is the sum of pairwise nearest neighorhood similarity
(Section 6.1) and the optimization strategy including initialization
(Section 6.2) and iterative search (Section 6.3), assignment (Sec-
tion 6.4) and clustering (Section 6.5) steps. The search step finds
nearest neighborhoods and the assignment and clustering steps
update samples. The clustering step, which includes a clustering
objective (Section 6.5.1) and a greedy optimization-based clustering
algorithm (Section 6.5.2), is the key new component of our method
to better handle complex patterns.

4 REPRESENTATION

4.1 Vector pattern
Our input vector pattern is in SVG format [W3 2020]. Vector ele-
ments are deduced from the SVG file, such as individual paths and

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

159:4 • Peihan Tu, Li-Yi Wei, and Matthias Zwicker

<g> tags that are used to group SVG elements [W3 2020]. Option-
ally, users can manually group or split some input paths to reflect
their design intentions. Intuitively, elements are repetitive spatial
geometric shapes.

4.2 Clustered pattern representation
For pattern synthesis, we use an intermediate clustered represen-
tation of vector patterns. We represent each element using a set
(cluster) {𝑠} of samples 𝑠 (Figures 2b and 2c). Specifically, we sample
interior regions uniformly using a Poisson disk distribution [Cook
1986] with disk diameter 𝛿 . A smaller 𝛿 means a denser sample
distribution that can capture more shape details. 𝛿 can be chosen
proportional to the size of patterns or element shapes.

Similarly to hierarchical image texture synthesis [Kwatra et al. 2005;
Lefebvre and Hoppe 2006], we further synthesize patterns with
hierarchical sampling [Kwatra et al. 2005; Tu et al. 2020]. Increasing
hierarchy levels use denser sample distributions (with decreasing
𝛿).

Each sample records the following information:

Spatial parameters S, which include sample position p ∈ R2,
cluster id i ∈ Z+, which indicates the cluster 𝐶 it belongs to,
confidence of sample existence 𝜉 ∈ [0 1], which enables the
optimization of the number of samples [Tu et al. 2020], z-index
𝑧 ∈ Z+, which defines the relative layer order of associated
elements appearing in the SVG file [W3 2020], and a feature
vector f ∈ R𝑁f (𝑁f is the feature length), which encodes its
relative position within its cluster 𝐶 ∋ 𝑠 . We use shape contexts
[Belongie et al. 2001], which can be applied to point-based ge-
ometry, to compute f using the cluster𝐶 of samples. The output
clusters are optimized automatically via our method, as detailed
in Section 6.5.

Appearance attributes A, such as color, opacity, and gradients.

Together, a sample is represented as

U(𝑠) = (S(𝑠),A(𝑠)) (1)

5 NEIGHBORHOOD AND SIMILARITY
Our synthesis method follows the sample-based neigborhood opti-
mization framework [Ma et al. 2011; Tu et al. 2020]. Therefore, one
of the core parts of our method is to define neighborhoods and their
pairwise similarity criterion.

We define n(𝑠), the neighborhood of 𝑠 , as a set of samples around
𝑠’s spatial vicinity within a certain radius 𝑟 , including 𝑠 itself. The
distance between an input n(𝑠𝑖) (centered at 𝑠𝑖) and an output
neighborhood n(𝑠𝑜) (centered at 𝑠𝑜) is defined by matching samples
𝑠′
𝑖
= 𝑚𝑠 (𝑠′𝑜) within the input and output neigborhoods 𝑠′

𝑖
∈ n(𝑠𝑖)

and 𝑠′𝑜 ∈ n(𝑠𝑜), where𝑚𝑠 is the one-to-one sample matching func-
tion (i.e. 𝑠′

𝑖
= 𝑚𝑠 (𝑠′𝑜) means that 𝑠′

𝑖
∈ n(𝑠𝑖) is the matched input

sample for output sample 𝑠′𝑜 ∈ n(𝑠𝑜)) defined between two neigh-
borhoods𝑚𝑠 : n(𝑠𝑜) → n(𝑠𝑖). The distance is written as

𝑑n (n(𝑠𝑜), n(𝑠𝑖)) = min
𝑚𝑠

s. t. 𝑠𝑖=𝑚𝑠 (𝑠𝑜)

∑︁
𝑠′𝑜 ∈n(𝑠𝑜)

𝑠′𝑖=𝑚𝑠 (𝑠′𝑜) ∈n(𝑠𝑖)

𝑑𝑠 (𝑠′𝑜 , 𝑠′𝑖),
(2)

where 𝑑𝑠 (𝑠′𝑜 , 𝑠′𝑖) is the sample similarity between 𝑠′𝑜 ∈ n(𝑠𝑜) and
𝑠′
𝑖
∈ n(𝑠𝑖). The distance in Equation (2) is defined as the minimum

over all possible sample matchings𝑚𝑠 . The optimal matching𝑚𝑠 is
computed using the Hungarian algorithm [Kuhn 1955], subject to
that centers 𝑠𝑖 and 𝑠𝑜 are always matched 𝑠𝑖 =𝑚𝑠 (𝑠𝑜).

The sample similarity 𝑑𝑠 (𝑠′𝑜 , 𝑠′𝑖) between 𝑠′𝑜 ∈ n(𝑠𝑜) and 𝑠′𝑖 ∈ n(𝑠𝑖)
is defined as the weighted sum of differences between sample prop-
erties U(𝑠′

𝑖
) and U(𝑠′𝑜) (as in Equation (1)):

𝑑𝑠 (𝑠′𝑜 , 𝑠′𝑖) = ∥p̂(𝑠′𝑜 , 𝑠𝑜) − p̂(𝑠′𝑖 , 𝑠𝑖)∥ +
𝑤f
2

𝑁f∑︁
𝑞=1

(
f𝑞 (𝑠′𝑜) − f𝑞 (𝑠′

𝑖
)
)2

f𝑞 (𝑠′𝑜) + f𝑞 (𝑠′
𝑖
)

(3)

The first term measures the difference on sample positions relative
to centers 𝑠𝑜 , 𝑠𝑖 ; p̂(𝑠′, 𝑠) = p(𝑠′) − p(𝑠). The second term, where
f𝑞 is the 𝑞th entry in f , measures the difference of shape context
features, defined using 𝜒2 test statistic as in [Belongie et al. 2001].
𝑤f = 10 is the weight for the second term. Since the shape context
feature is computed using clusters, the sample similarity effectively
compares both individual samples and their associated clusters.We
do not consider appearance attributes A in our experiments, as
different shapes often have unique colors and thus considering the
differences between spatial S information is sufficient to evaluate
the neighborhood similarity. One can define appearance similarity
as the weighted sum of differences between the appearance vector
A(𝑠′𝑜) and A(𝑠′

𝑖
) when necessary.

6 PATTERN SYNTHESIS

6.1 Optimization objective
We formulate the output pattern synthesis as an optimization prob-
lem [Kwatra et al. 2005; Ma et al. 2011; Tu et al. 2020] between input
I = {𝑠𝑖 } and output O = {𝑠𝑜 } sample sets:

O★ = argmin
O,𝜇𝑠

∑︁
𝑠𝑜 ∈O

𝑠𝑖=𝜇𝑠 (𝑠𝑜)

𝑑n (n(𝑠𝑜), n(𝑠𝑖)) (4)

The sum loops over all the local output neighborhoods over O.
𝑠𝑖 = 𝜇𝑠 (𝑠𝑜) indicates that n(𝑠𝑖) is the most similar input neighbor-
hood to n(𝑠𝑜). In other words, 𝜇𝑠 is the sample matching function
which defines the nearest-neighbor field [Barnes et al. 2009] between
input I and output O. Note 𝜇𝑠 is different from𝑚𝑠 in Equation (2),
which is the sample matching function within two neighborhoods.
Equation (4) is minimized by alternating the optimization over O
and 𝜇𝑠 through iterative search-assignment-clustering steps (Sec-
tions 6.3 to 6.5). Essentially, the search step minimizes Equation (4)
over 𝜇𝑠 by finding the most similar input neighborhood for each
output neighborhood. The assignment and clustering steps mini-
mize Equation (4) over O by modifying output sample parameters
U(𝑠𝑜) (𝑠𝑜 ∈ O) using 𝜇𝑠 computed during the search step in the
current iteration.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

Clustered Vector Textures • 159:5

6.2 Initialization
Similar to [Ma et al. 2011; Tu et al. 2020], we randomly copy input
patches into the output domain. A patch is a square block within a
pattern domain, which can consist of several clusters, and cluster
samples outside of a patch boundary are ignored. The patch size is
chosen as twice the neighborhood radius 2𝑟 . Our algorithm can also
generate similar results with random sample initialization, but patch-
based initialization can reach lower optimized objective values using
the same number of iterations [Ma et al. 2011]. Please see Figure 16.
All attributes U(𝑠𝑜) of an output sample 𝑠𝑜 are copied from the
corresponding input sample 𝑠𝑖 attributes U(𝑠𝑖) except for 1) the
position p(𝑠𝑜) which is shifted from p(𝑠𝑖) during patch copying,
2) the cluster id i(𝑠𝑜) for which i) samples within the same copied
patch will receive unique values different from those in other copied
patches and ii) samples in a copied patch will share the same i(𝑠𝑜) if
their source input ids i(𝑠𝑖) are the same, and 3) the sample feature f
which is recomputed for broken clusters on input patch boundaries.

6.3 Search step
In the search step, for each output sample, we find the input sample
with the most similar neighorhood evaluated by Equation (2), which
is accelerated with the patch match algorithm [Barnes et al. 2009;
Tu et al. 2020].

6.4 Assignment step
In the assignment step, we optimize the output sample parameters by
overlapping matched input neighborhoods over the output samples
[Ma et al. 2011; Tu et al. 2020]. For each output sample, there is a
set of input samples that are matched with it. For sample position
p, least squares is used to minimize the sum of differences between
distances and expected distances between pairs of output samples.
We also adaptively optimize the number of samples as in [Tu et al.
2020]. Please refer to Appendix A.2 for more details. The assignment
of cluster id i is a clustering problem, which is significantly different
from existing assignment algorithms [Ma et al. 2011; Tu et al. 2020].
Wewill discuss the id assignment as the clustering step in Section 6.5.
The sample feature f is assigned using updated cluster configuration
after the clustering step.

Depth 𝑧 assignment. Vector patterns may consist of overlapping
elements (e.g. Figure 5d), where one with a larger z-index 𝑧 can
cover another with a small z-index. To preserve layer relationship in
pattern synthesis, we optimize the layer depth 𝑧 of output samples
as follows.

Since the exact value of 𝑧 is not important but the ordering among
𝑧 of different samples, we first compute a probabilistic pairwise or-
dering function 𝑓𝑠 (𝑠𝑜 , 𝑠′𝑜) ∈ [0, 1]. The value of 𝑓𝑠 (𝑠𝑜 , 𝑠′𝑜) indicates
the probability of 𝑠𝑜 below 𝑠′𝑜 , which is computed from matched
input and output neighborhoods. Intuitively, in a pair of a matched
input n𝑖 and output neighborhood n𝑜 , 𝑧 (𝑚𝑠 (𝑠𝑜)) < 𝑧 (𝑚𝑠 (𝑠′𝑜)) sug-
gests 𝑧 (𝑠𝑜) < 𝑧 (𝑠′𝑜). Figure 4 illustrates the computation of 𝑓𝑠 (𝑠𝑜 , 𝑠′𝑜)
using a toy example.

Based on the above intuition, we optimize depth as follows:

𝑓𝑠 (𝑠𝑜 , 𝑠′𝑜) =
{ |𝑁𝑧 (𝑠𝑜 ,𝑠′𝑜) |
|𝑁𝑛 (𝑠𝑜 ,𝑠′𝑜) | , ∥p(𝑠𝑜) − p(𝑠′𝑜)∥ < 2𝛿
undefined, ∥p(𝑠𝑜) − p(𝑠′𝑜)∥ ≥ 2𝛿

(5)

𝑁𝑛 (𝑠𝑜 , 𝑠′𝑜) = {(n𝑖 , n𝑜) | (n𝑖 , n𝑜) ∈ N , 𝑠𝑜 , 𝑠
′
𝑜 ∈ n𝑜 } (6)

𝑁𝑧 (𝑠𝑜 , 𝑠′𝑜) = {(n𝑖 , n𝑜) | (n𝑖 , n𝑜) ∈ 𝑁𝑛 (𝑠𝑜 , 𝑠′𝑜),𝑚𝑠 : n𝑜 → n𝑖 ,

𝑧 (𝑚𝑠 (𝑠𝑜)) < 𝑧
(
𝑚𝑠 (𝑠′𝑜)

)
}

(7)

where | · | is the size of a set ·. N = {(n(𝑠𝑖), n(𝑠𝑜)) |𝑠𝑜 ∈ O, 𝑠𝑖 =

𝜇𝑠 (𝑠𝑜)} is the set of matched input and output neighborhoods com-
puted in the search step (Section 6.3). 𝑁𝑛 (𝑠𝑜 , 𝑠′𝑜) is the set that
includes matched neighborhood pairs where the output neighbor-
hoods contain both 𝑠𝑜 and 𝑠′𝑜 .𝑁𝑧 (𝑠𝑜 , 𝑠′𝑜) is a subset of𝑁𝑛 (𝑠𝑜 , 𝑠′𝑜)where
the matched input samples𝑚𝑠 (𝑠𝑜) is below𝑚𝑠 (𝑠′𝑜) (𝑧 (𝑚𝑠 (𝑠𝑜)) <
𝑧
(
𝑚𝑠 (𝑠′𝑜)

)
). Since we are only interested in pairs of output samples

𝑠𝑜 and 𝑠′𝑜 that are sufficiently close for potential overlap, 𝑓𝑠 (𝑠𝑜 , 𝑠′𝑜)
is only defined when ∥p(𝑠𝑜) − p(𝑠′𝑜)∥ < 2𝛿 .

Since we order samples within the same clusters together instead of
individually, we compute a pairwise ordering function 𝑓𝐶 (𝐶𝑖 ,𝐶 𝑗)
between sample clusters 𝐶𝑖 ,𝐶 𝑗 :

𝑓𝐶 (𝐶𝑖 ,𝐶 𝑗) =
1
𝑍

∑︁
𝑠𝑜 ∈𝐶𝑖

∑︁
𝑠′𝑜 ∈𝐶 𝑗

∥p(𝑠𝑜)−p(𝑠′𝑜) ∥<2𝛿

𝑓𝑠 (𝑠𝑜 , 𝑠′𝑜) (8)

where𝑍 is the normalization factor that counts the number of entries
within the double summation. Given the pairwise ordering function
(Equation (8)), the depth order among clusters (or reconstructed
elements) is computed using the “Order-By-Preferences” algorithm
proposed in [Schapire and Singer 1998]. Figure 5 shows the effects
with and without the z-index assignment.

6.5 Clustering step
The clustering step updates sample cluster id i. We address this
clustering problem based on two observations:

Sample correlations In a pair ofmatched input and output neigh-
borhoods (n𝑖 , n𝑜), if there are input samples within the same in-
put cluster, their matched output samples should also be within
the same output cluster, and vice versa.

Cluster shape similarity In pattern synthesis, the output ele-
ment (and thus cluster) shape should be close to an input ele-
ment (cluster) shape.

These two observations are incorporated into the optimization-
based clustering step with objective 𝐸 (Equation (9)), as two different
energy terms: link energy 𝐸𝑙 and shape energy 𝐸𝑠 . We develop
a greedy optimization algorithm to optimize Equation (9) via an
iterative mechanism based on local operators including sample
switching (from one cluster to another), and cluster merge and
split (Section 6.5.2). While the sample switching gradually adjusts
clusters, cluster merge and split update the clusters more drastically
which not only optimizes the cluster shapes but also total number
of clusters. Details are as follows.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

159:6 • Peihan Tu, Li-Yi Wei, and Matthias Zwicker

z()<z()<z()
output input

(a) matched neighborhood pair 1

z()<z()<z()
output input

(b) matched neighborhood pair 2

z()<z()<z()
output input

(c) matched neighborhood pair 3

0 2/3 2/3

1/3 0 2/3

1/3 1/3 0

𝑠!
𝑠!"

(d) 𝑓𝑠 (𝑠𝑜 , 𝑠′𝑜)

Fig. 4. A toy example of computing the probabilistic pairwise ordering function 𝑓𝑠 (𝑠𝑜 , 𝑠′𝑜) . (a), (b) and (c) show three pairs of input and output neighborhoods
(|𝑁𝑛 (𝑠𝑜 , 𝑠′𝑜) | = 3) where the output neighorhoods are centered at different samples (in red) over the same set of output samples. The three input neighborhoods
exhibit different layering relationships among samples. Different samples are visualized in different shapes. For example, output samples in all three pairs of
neighborhoods are shown in the same shapes because they are the same set of samples. ⊘ indicates samples that are not used as examples in (d). Matched
input and output samples are visualized in the same colors. (d) shows the computed 𝑓𝑠 (𝑠𝑜 , 𝑠′𝑜) among three output samples (in solid shape). . For example,
𝑓𝑠 (•,■) is 2

3 because in the matched neighborhoods (a), (b) and (c) the matched input samples𝑚𝑠 (•) of • is below (<)𝑚𝑠 (■) in (a) and (b) but not in (c), so
that |𝑁𝑧 (𝑠𝑜 , 𝑠′𝑜) | = 2. Note that we only consider the limited three pairs of neighborhoods (where the output contains 𝑠𝑜 and 𝑠′𝑜) for illustration purposes.

exemplar no depth assignment with depth assignment

Fig. 5. Z-index (depth) assignment. In the input exemplars, the sky blue
petals are above other elements (top) and the branches are below the leaves
(bottom). Without depth assignment, this layer relationship is not preserved.
With depth assignment, the relationship is mostly preserved. Copyright:
exemplars from Eva Kali (top), Snejana Sityaeva (bottom) (stock.adobe.com).

6.5.1 Objective. Eventually, we hope to minimize the pattern syn-
thesis objective (Equation (4)). Instead of minimizing Equation (4)
with respect to cluster id i through brute-force search over all possi-
ble cluster configurations, we propose a separate objective defined
over output cluster set {𝐶𝑘

𝑜 } (𝑘 is the index of clusters), for which we
develop an efficient greedy optimization algorithm. The objective is
as follows.

𝐸 ({𝐶𝑘
𝑜 }) = 𝑤𝑙𝐸𝑙 ({𝐶𝑘

𝑜 }) +𝑤𝑠𝐸𝑠 ({𝐶𝑘
𝑜 }) (9)

where 𝐸𝑙 and 𝐸𝑠 are the link and shape energies defined over a
cluster configuration {𝐶𝑘

𝑜 }, respectively.𝑤𝑙 ,𝑤𝑠 are the weights for
𝐸𝑙 and 𝐸𝑠 .𝑤𝑙 = 1 and𝑤𝑠 = 4.

Link Energy. The link energy measures how compatible an output
cluster configuration is with respect to input clusters based on
sample correlations. Intuitively, in the set of matched pairs of input
and output neighborhoods N , if there are more pairs of output
samples which are 1) in the same output cluster and matched input
samples in the same input cluster or 2) in different output clusters
and matched input samples in different input clusters, 𝐸𝑙 ({𝐶𝑘

𝑜 })
should be lower and indicates higher compatibility between input
and output clusters. Before defining the link energy 𝐸𝑙 , we compute
the link confidence 𝑙 ∈ [0, 1] of two output samples belonging to
the same output cluster from N , which will be used to define 𝐸𝑙 , as
follows

𝑙 (𝑠𝑜 , 𝑠′𝑜) =
|𝑁𝑙 (𝑠𝑜 , 𝑠′𝑜) |
|𝑁𝑛 (𝑠𝑜 , 𝑠′𝑜) |

(10)

𝑁𝑙 (𝑠𝑜 , 𝑠′𝑜) = {(n𝑖 , n𝑜) | (n𝑖 , n𝑜) ∈ 𝑁𝑛 (𝑠𝑜 , 𝑠′𝑜),𝑚𝑠 : n𝑜 → n𝑖 ,

i(𝑚𝑠 (𝑠𝑜)) = i(𝑚𝑠 (𝑠′𝑜))}.
(11)

Intuitively, we compute the confidence 𝑙 of two output samples
𝑠𝑜 , 𝑠

′
𝑜 belonging to the same cluster based on the voting of all input

neighborhoods overlapping them. Figure 6 illustrate the compu-
tation of link confidence 𝑙 . 𝑁𝑛 (𝑠𝑜 , 𝑠′𝑜) is the set of matched input
and output neighborhoods where the output neighborhood contain
both of 𝑠𝑜 and 𝑠′𝑜 , as defined in Equation (6). 𝑁𝑙 (𝑠𝑜 , 𝑠′𝑜) is the subset
of 𝑁𝑛 (𝑠𝑜 , 𝑠′𝑜) where the matched input samples𝑚𝑠 (𝑠𝑜) and𝑚𝑠 (𝑠′𝑜)
have the same cluster id i(𝑚𝑠 (𝑠𝑜)) = i(𝑚𝑠 (𝑠′𝑜)). Note that 𝑙 (𝑠𝑜 , 𝑠′𝑜)
is undefined when |𝑁𝑛 (𝑠𝑜 , 𝑠′𝑜) | = 0. The larger 𝑙 (𝑠𝑜 , 𝑠′𝑜) is, the more
likely 𝑠𝑜 , 𝑠′𝑜 are within the same cluster.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

Clustered Vector Textures • 159:7

output input

(a) matched neighborhood pair 1

output input

(b) matched neighborhood pair 2

output input

(c) matched neighborhood pair 3

- 1/3 1 0

1/3 - 1/3 1/3

1 1/3 - 0

0 1/3 0 -

𝑙(𝑠! , 𝑠!")

𝑠!
𝑠!"

(d) 𝑙 (𝑠𝑜 , 𝑠′𝑜)

Fig. 6. A toy example of link confidence computation. (a), (b) and (c) show three pairs of matched input and output neighborhoods (|𝑁𝑛 (𝑠𝑜 , 𝑠′𝑜) | = 3) where
the output neighborhoods are centered at different samples (shown in red). Matched samples are shown in the same colors. Clusters are shown in different
sample shapes. For example, output samples/clusters in all three pairs of neighborhoods are shown in the same shapes because they are the same set of
samples/clusters. Empty shapes indicate samples that are not used as examples in (d). The computed link confidences among four output samples (in solid
shape) from the three neighborhood pairs above are shown in (d). For example, samples • and • are matched to the same cluster in (a) but different clusters in
(b) and (c), thus |𝑁𝑙 (𝑠𝑜 , 𝑠′𝑜) | = 1 and the link 𝑙 (•, •) receive a 1/3 score. Note that we only consider the limited three pairs of neighborhoods (where the
output contains 𝑠𝑜 and 𝑠′𝑜) for illustration purposes.

The link energy 𝐸𝑙 ({𝐶𝑘
𝑜 }) is defined as

𝐸𝑙 ({𝐶𝑘
𝑜 }) =

∑︁
𝑠𝑜 ∈O

∑︁
𝑠′𝑜 ∈O

∥p(𝑠𝑜)−p(𝑠′𝑜) ∥<𝜆𝛿

𝐸′
𝑙
(𝑠𝑜 , 𝑠′𝑜) (12)

where

𝐸′
𝑙
(𝑠𝑜 , 𝑠′𝑜) =

{
1 − 2𝑙 (𝑠𝑜 , 𝑠′𝑜) if i(𝑠𝑜) = i(𝑠′𝑜)
2𝑙 (𝑠𝑜 , 𝑠′𝑜) − 1 if i(𝑠𝑜) ≠ i(𝑠′𝑜)

(13)

𝐸′
𝑙
(𝑠𝑜 , 𝑠′𝑜) ∈ [−1, 1] is defined over pairs of samples that are spa-

tially close (∥p(𝑠𝑜) − p(𝑠′𝑜)∥ < 𝜆𝛿 , 𝜆 is a hyperparameter) by two
cases based on whether 𝑠𝑜 and 𝑠′𝑜 are in the same (i(𝑠𝑜) = i(𝑠′𝑜))
or different (i(𝑠𝑜) ≠ i(𝑠′𝑜)) clusters. 𝑟 is the neighborhood radius
appearing in Section 5. By minimizing Equation (12) with respect
to {𝐶𝑘

𝑜 }, which is the sum of Equation (13) over pairs of output
samples, we encourage 𝑠𝑜 , 𝑠′𝑜 to be in the same cluster if the link
confidence 𝑙 (𝑠𝑜 , 𝑠′𝑜) is high and be in different clusters if 𝑙 (𝑠𝑜 , 𝑠′𝑜) is
low.

Shape Energy. 𝐸𝑠 ({𝐶𝑘
𝑜 }) is the sum of cluster shape energies 𝐸′𝑠 ,

which are defined on individual clusters, over all clusters

𝐸𝑠 ({𝐶𝑘
𝑜 }) =

∑︁
𝑘

𝐸′𝑠 (𝐶𝑘
𝑜) (14)

where 𝐸′𝑠 (𝐶𝑜) measures the differences between an output cluster
shape𝐶𝑜 and the corresponding input clusters {𝐶𝑖 }. A large 𝐸′𝑠 (𝐶𝑜)
indicates that the output cluster 𝐶𝑜 is dissimilar to the shape of the
corresponding input clusters {𝐶𝑖 }. As output elements should come
from the input, an output cluster is of good shape (low 𝐸′𝑠 (𝐶𝑜)) if it
is similar to the shape of one of the input clusters. The shape energy
𝐸′𝑠 (𝐶𝑜) is defined as

𝐸′𝑠 (𝐶𝑜) = min
𝐶𝑖 ∈ℭ𝑖

𝑑𝐶 (𝐶𝑖 ,𝐶𝑜), (15)

where ℭ𝑖 = {𝐶𝑖 |𝑠𝑖 ∈ 𝐶𝑖 , 𝑠𝑜 ∈ 𝐶𝑜 , 𝑠𝑖 = 𝜇𝑠 (𝑠𝑜)} is the set of candidate
input clusters that have their samples 𝑠𝑖 matched with the output
samples 𝑠𝑜 of the cluster 𝐶𝑜 in 𝜇𝑠 computed in the search step

(Section 6.3). 𝑑𝐶 (𝐶𝑖 ,𝐶𝑜) is the shape distance between an input
cluster 𝐶𝑖 and an output cluster 𝐶𝑜 , which is defined as
𝑑𝐶 (𝐶𝑖 ,𝐶𝑜) =

min
𝑚

1
𝜖

©­­­«
∑︁

𝑠𝑜 ∈𝐶𝑜

𝑠𝑖=𝑚 (𝑠𝑜) ∈𝐶𝑖

∥p(𝑠𝑜) − T𝑟 (p (𝑠𝑖),𝐶𝑖 ,𝐶𝑜) ∥ + 𝜖 · abs(|𝐶𝑜 | − |𝐶𝑖 |)
ª®®®¬

(16)

The first term computes the sum of distances between the trans-
lated input cluster samples 𝑠𝑖 ∈ 𝐶𝑖 by T𝑟 and output cluster samples
𝑠𝑜 ∈ 𝐶𝑜 . 𝜖 = 2𝛿 is the extra cost induced by the difference between
the numbers of input |𝐶𝑖 | and output cluster samples |𝐶𝑜 |. 𝑚 is
the sample matching function in computing shape distance (Equa-
tion (16)) between two clusters of samples. The whole equation is
normalized using 𝜖 = 2𝛿 to offset the scaling effect of 𝛿 (and thus
the size of input exemplar/shapes) on the shape distance. T𝑟 is used
to translate the input cluster samples 𝑠𝑖 ∈ 𝐶𝑖 to the position of the
output cluster samples 𝑠𝑜 ∈ 𝐶𝑜 so that we can evaluate the shape
similarity based on distances between samples, which is defined as

T𝑟 (p(𝑠𝑖),𝐶𝑖 ,𝐶𝑜) = p(𝑠𝑖) +
1

|S(𝐶𝑖 ,𝐶𝑜) |
∑︁

(𝑠′
𝑖
,𝑠′𝑜) ∈S(𝐶𝑖 ,𝐶𝑜)

(
p(𝑠′𝑜) − p(𝑠′𝑖)

)
,

(17)

where S(𝐶𝑖 ,𝐶𝑜) = {(𝑠𝑖 , 𝑠𝑜) |𝑠𝑖 ∈ 𝐶𝑖 , 𝑠𝑜 = 𝜇𝑠 (𝑠𝑖) ∈ 𝐶𝑜 } is a set
of matched sample pairs where the input and output samples are
associated with the input 𝐶𝑖 and output clusters 𝐶𝑜 respectively.
Intuitively, the translation is the average of all translations between
sample pairs within S. Figure 7 illustrates the computation of Equa-
tions (15) to (17).

6.5.2 Optimization. To optimize Equation (9) with respect to {𝐶𝑘
𝑜 },

inspired by previous image segmentation algorithms [Li et al. 2020;
Liu and Sclaroff 2001] we develop a greedy algorithm that efficiently
explores a large solution space via an iterative mechanism based on
local operators, as shown in Figure 9, which 1) switch samples from
one cluster to another nearby cluster, 2) split one cluster into two

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

159:8 • Peihan Tu, Li-Yi Wei, and Matthias Zwicker

Co ℭ# = {𝐶#$ 𝐶#% 𝐶#&}

(a) Output cluster𝐶𝑜 and its set of matched input clusters {𝐶𝑖 }

Co

𝒯' 𝐩 . , 𝐶#$, 𝐶! = 𝐩 . +
1
4 8

(!
", (#" ∈

(●,■)
(●,■)
(●,■)
(●,■)

𝐩 𝑠!" − 𝐩 𝑠#"

Co

Co

𝒯' 𝐩 . , 𝐶#%, 𝐶! = 𝐩 . +
1
2 8

(!
", (#" ∈ (●,▲)

(●,▲)

𝐩 𝑠!" − 𝐩 𝑠#"

𝒯' 𝐩 . , 𝐶#&, 𝐶! = 𝐩 . +
1
3 8

(!
", (#" ∈

(●,⬥)
(●,⬥)
(●,⬥)

𝐩 𝑠!" − 𝐩 𝑠#"

𝐶#$

𝐶#%

𝐶#&

(b) Computing the translation T𝑟 for each matched input cluster

𝑑-(𝐶! , 𝐶#%)𝑑-(𝐶! , 𝐶#$) 𝑑-(𝐶! , 𝐶#&)

𝐸′(𝐶! = min
-!∈ℭ!

𝑑- 𝐶! , 𝐶# = min{𝑑- 𝐶! , 𝐶#$, 𝑑- 𝐶! , 𝐶#% , 𝑑-(𝐶! , 𝐶#&)}

(c) Shape energy as min. over matched and translated input clusters

Fig. 7. Illustration of cluster shape energy computation. (a) shows an out-
put cluster 𝐶𝑜 and its corresponding input clusters ℭ𝑖 = {𝐶𝑖 }. Matched
samples visualized in the same colors are computed in the search step
(𝜇𝑠). Empty shapes indicate input samples from𝐶𝑖 not matched with any
samples from𝐶𝑜 . (b) shows the computation of T𝑟 (Equation (17)) which
will be used to translate and align input clusters𝐶𝑖 with the output clus-
ter𝐶𝑜 for computing the shape distance 𝑑𝐶 (𝐶𝑖 ,𝐶𝑜) between them. In (c),
𝑑𝐶 (𝐶𝑖 ,𝐶𝑜) between each pair of input and output clusters is computed
via Equation (16) using T𝑟 computed in (b). The shape energy 𝐸′

𝑠 (𝐶𝑜) is
defined as the minimum of shape distances between the output 𝐶𝑜 and
input {𝐶𝑖 } clusters (Equation (15)).

clusters, and 3) merge two clusters into one. The energy variations
induced by these operators are inserted and sorted into priority
queues, with the front operator reducing the energy (Equation (9))
most. Since we will use different weights in computing sample
switching and cluster operators, two queues 𝑃𝑠 , 𝑃𝐶 are used: 𝑃𝑠 is
for all sample switching operators and 𝑃𝐶 is for all cluster splitting
and merging operators. We first process the sample switching queue

objective

Fig. 8. Clustering objective (Equation (9)) with respect to number of iterations.
The left side of the vertical dashed line shows the objective optimized by
sample switch operators when processing 𝑃𝑠 , and the right side shows the
cluster split and merge when processing 𝑃𝐶 . The blue, dark orange and
yellow lines indicate link 𝐸𝑙 , shape 𝐸𝑠 and total energies 𝑤𝑙𝐸𝑙 + 𝑤𝑠𝐸𝑠 .

(a) sample switch: before (b) sample switch: after (c) cluster merge: before

(d) cluster merge: after (e) cluster split: before (f) cluster split: after

Fig. 9. Clustering operators. In each sub-figure, samples from the same
cluster are shown in the same color. (a) and (b) show the sample switching
operator where a sample in the green cluster is switched to the yellow
cluster. (c) and (d) show the cluster merging operator where two clusters
(green and yellow) are merged into one (orange). (e) and (f) show the cluster
merging operator where one cluster (orange) is splitted into two (green and
yellow).

𝑃𝑠 and then cluster operator queue 𝑃𝐶 . Given a priority queue 𝑃 of
operators, we update the cluster configurations {𝐶𝑘

𝑜 } with the front
operator, update queues by removing the current operator and other
affected operators, and insert new operators due to the update of
{𝐶𝑘

𝑜 }. This process iterates until a stopping criterion is met. Figure 8
shows an example of the objective function (Equation (9)) during
optimization using the clustering operators.

Sample switching. Only boundary samples 𝑠𝑜 of an output cluster
can switch to its adjacent clusters A𝐶 (𝑠𝑜) (Figures 9a and 9b). We
extract the boundary samples of a cluster using the concave hull. A
cluster 𝐶𝑜 is adjacent to a sample 𝑠𝑜 (𝐶𝑜 ∈ A𝐶 (𝑠𝑜)) if there is any
samples in the cluster𝐶𝑜 that has distance to 𝑠𝑜 less than 2𝛿 . All the

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

Clustered Vector Textures • 159:9

(a) exemplar (b) initial step (c) first level (d) second level (e) third level (f)

Fig. 10. Evolution of patterns in the optimization. In this example, three hierarchies are used. We show the optimized patterns after the very first optimization
step (initial step) and the last steps in each hierarchy. The energy plot is shown in the last column where red stars denote the start of each optimization
hierarchy. Energies are normalized using the number of samples within an output neighborhood and the total number of matched neigborhood pairs. See
Figures 17 to 20 in Appendix A as well as the supplementary video for more visualizations of pattern optimization. Copyright: (a) Meganathan (stock.adobe.com)

possible sample switching operators are collected and added into
𝑃𝑠 .

Since there are a lot more candidate sample switches than cluster
splits and merges (Table 1 in Appendix A), for which the shape
energy 𝐸𝑠 is expensive to compute, we only use the link energy 𝐸𝑙 for
computing the induced energy variation during sample switching.

Cluster merging. Similarly, for a pair of clusters 𝐶𝑖
𝑜 ,𝐶

𝑗
𝑜 , if there is

any pair of samples from the two clusters that are adjacent with
distance less than 2𝛿 , then𝐶 𝑗

𝑜 ∈ A𝐶 (𝐶𝑖
𝑜) (𝐶𝑖

𝑜 ∈ A𝐶 (𝐶 𝑗
𝑜)). For a pair

of adjacent clusters, we merge them into one cluster (Figures 9c
and 9d) and collect such operators in the priority queue 𝑃𝐶 .

Cluster splitting. For each cluster, we split it into two clusters (Fig-
ures 9e and 9f) using normalized cuts [Shi and Malik 2000], where
the graph weights are the link confidence 𝑙 . These operators are
collected and added into 𝑃𝐶 .

Update priority queue. After the cluster configuration {𝐶𝑘
𝑜 } is modi-

fied with an operator, we first remove the current operator and the
affected operators related to the modified clusters from the prior-
ity queue. Then we add new operators related to new clusters and
insert them into the corresponding sorted priority queue. Since all
operations are local, the update of 𝑃 is relatively efficient.

Stopping criterion. Once the front operator in 𝑃 does not reduce
the energy (Equation (9)) or the number of iterations reaches a
pre-specified threshold 𝑖max (which equals the number of output
samples for 𝑃𝑠 or initial number of clusters for 𝑃𝐶), the iteration is
stopped.

6.6 Reconstruction
For each cluster, we reconstruct the final shape by translating the
associated element of the candidate input cluster 𝐶𝑖 that minimizes
the shape energy in Equation (15). In addition, we filter out elements
with high shape energy (error) (𝐸𝑠 (𝐶𝑜) > |𝐶𝑜 |).

6.7 Hierarchical optimization
At each hierarchy level, the optimization iterates the search, as-
signment and clustering steps. The next level is initialized with
samples from the optimized pattern from the previous level. With
increasing hierarchy levels we use denser sample distributions with

decreasing Poisson disk diameter 𝛿 . Hierarchical optimization al-
lows the optimization to use less samples and larger neighborhood
size, which can capture larger spatial structure with less computa-
tion. Figure 10 visualizes a hierarchical optimization process. See
Figures 17 to 20 in Appendix A as well as the supplementary video
for more visualizations of pattern optimization.

7 RESULTS
Our method can automatically synthesize satisfactory results for a
variety of vector patterns, as exemplified in Figures 1, 3, 11 and 14.
Since our synthesis outputs are in vector format, users can edit them
in any vector graphics editor for further quality improvement and
customization, as demonstrated in Figure 12.

7.1 Ablation studies
We analyze the components of our method via ablation studies.
Without the clustering step (Section 6.5), the generated samples
resemble these by [Tu et al. 2020] in Figure 3, which cannot robustly
reconstruct shapes from unclustered samples. Without using cluster
information in the search step (i.e., only the first term in Equation (3)
is used), the result patterns tend to be more random as shown in the
second column in Figure 14. Without the link/shape energy 𝐸𝑙 /𝐸𝑠
in the clustering objective (Equation (9)), the results tend to have
empty and broken regions as shown in the third/forth column in
Figure 14. Our full results are shown in the last column in Figure 14.
We include ablation studies on the clustering operators in Figure 23.

7.2 Comparison to previous methods
We compare our method against prior methods in vector element
synthesis [Hsu et al. 2020; Ma et al. 2011] (Figure 3) and vector curve
synthesis [Tu et al. 2020]. Tu et al. [2020] can generate Bézier curve
patterns by reconstructing curves from graphs, which cannot be
applied to the varied structured input patterns that have elements
other than open Bézier curves. In order to compare with [Tu et al.
2020] in reconstructed patterns instead of just samples as in Figure 3,
we add a basic clustering step [Von Luxburg 2007] to each iteration
in the optimization process of [Tu et al. 2020]. We use spectral
clustering [Von Luxburg 2007] as the basic clustering algorithm;
each input element is represented as a fully connected graph, and the
output edge confidences in [Tu et al. 2020] are used as theweights for

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

159:10 • Peihan Tu, Li-Yi Wei, and Matthias Zwicker

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 11. Automatic synthesis results with a variety of exemplar patterns. Within each group, the input is on the left and our result is on the right. Copyrights: (a)
galyna_p (b) leavector (c) Alona Khadzhyoglo (d) olga_milagros (e) galyna_p (f) hoverfly (g) Olgastocker (h) hoverfly (i) hoverfly (j) Meganathan (l) natalyon
(stock.adobe.com), and (k) keeeny.am (vecteezy.com)

the weighted similarity graphs in [Von Luxburg 2007]; the number
of output clusters is estimated as the product of the ratio between
numbers of output and input samples and the number of input
clusters (elements) | O |

|I | · |{𝐶𝑖 }|, while our method can automatically
determine the number of output clusters. In addition, the cluster
informaton is used in the neighborhood similarity, as in Equations (2)
and (3). The final shapes are reconstructed as described in Section 6.6.

As shown in Figures 3 and 13, our method can produce better results
for a wider range of patterns than these existing methods. More
comparisons are shown in Figure 24.

7.3 Parameters
Our method is robust to chosen parameters and initial conditions.
Please see Appendix A.1 for a robustness analysis of our algorithm.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

Clustered Vector Textures • 159:11

4 + 2 + 10

exemplar auto synthesis user 1 + 18 + 4 edited

Fig. 12. Automatic synthesis with user-editing. Since the automatic synthesis
results are in vector format, users can add (blue), modify (orange), or remove
(red) elements from the output patterns. The user editing column also indi-
cates the number of user operations for addition, modification, and removal.
Top left ©Frogella.stock, bottom left ©Oleksandra (stock.adobe.com).

We use two or three levels of hierarchies. In each hierarchy, we use
7 iterations of search-assign-clustering steps. The neighborhood
radius 𝑟 is 1

6 ,
1
8 ,

1
12 of the exemplar size (mean of width and height).

The sampling distances 𝛿 are 1
20 ,

1
30 ,

1
40 of the exemplar size. 𝜆 = 4

(in Equation (12) and 𝜆𝛿 ≈ 𝑟). All results shown in this paper are
produced under a single parameter setting, except for Figure 1c,
which uses 𝜆 = 2, Figure 11 (row 3, col 1), which uses one hierarchy
(𝑟 , 𝛿 are 1

12 and 1
40 of the exemplar size), and Figure 2 where samples

are denser for illustration purpose.

8 CONCLUSIONS, LIMITATIONS AND FUTURE WORK
This paper proposes a clustering method to synthesize vector pat-
terns with complex structures that have yet to be well handled by
existing techniques, as demonstrated in our results and analysis.

Vector patterns with regular or non-local structures or insufficient
repetitions might not be well handled by our method (Figure 15)
due to the inherent limitation of the neighborhood-based measures
and local neighborhood optimization. Machine learning along with
hierarchical synthesis or differentiability could be applied to address
these issues [Liu et al. 2020; Mardani et al. 2020; Reddy et al. 2021;
Zhou et al. 2018]. The proposed pattern optimization framework
could incorporate further improvement developed in prior texture
optimization literatures, such as bidirectional similarity [Simakov
et al. 2008; Wei et al. 2008], spatial uniformality, or advanced ini-
tialization [Kaspar et al. 2015], for more robust pattern synthesis.
For patterns with very elongated elements (e.g. the first pattern in
Figure 12), our method may produce undesirable overlaps. A possi-
ble solution is to represent each elongated element using samples
with central skeletal path, and synthesize them together like [Tu
et al. 2020] followed by reconstruction guided by the synthesized
skeletons [Hsu and Lee 1994]. We leave this as a future work.

exemplar improved [Tu et al. 2020] ours

Fig. 13. Comparisons against improved [Tu et al. 2020] with baseline clustering.
The improved version of [Tu et al. 2020] uses spectral clustering [Von Luxburg
2007] as the basic clustering algorithm; each input element is represented as
a fully connected graph, and the output edge confidences in [Tu et al. 2020]
are used as the weights for the weighted similarity graphs in [Von Luxburg
2007]. In addition, clusters are used during neighborhood search, as in
Equations (2) and (3). The final shapes are reconstructed as described in
Section 6.6.

The core of our proposed framework is explicit clustering, which
is general and could be improved with more advanced clustering
methods [Gan et al. 2020].

Our current method can be extended for pattern interpolation, ani-
mated patterns [Saputra et al. 2020], and 3D volumes [Takayama
et al. 2010; Wang et al. 2011], as well as integrated with more user
control [Kazi et al. 2012; Lu et al. 2014], such as synthesis over
user-specified (irregular) domain and optional toroidal boundary
condition (Figure 15e). Our unoptimized implementation is slow
and only suitable for off-line synthesis. Please see the supplemen-
tary materiel for the running time of each algorithm component.
Theoretically, the major computational bottleneck is in the search
step (that computes nearest neighbor fields), which could be readily
parallelized on a GPU [Huang et al. 2007]. For complexity analysis
of the search step, please see [Tu et al. 2020]. We plan to further
accelerate it to achieve interactive speed in the future, for example,
by GPU parallelization, or by improving the sampling method [Wei
et al. 2020] to reduce the number of required samples.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

159:12 • Peihan Tu, Li-Yi Wei, and Matthias Zwicker

input without cluster search (𝑤f = 0) without 𝐸𝑙 (𝑤𝑙 = 0) without 𝐸𝑠 (𝑤𝑠 = 0) full result

Fig. 14. Ablation study.Without using sample features which contain cluster information (𝑤f = 0) in the search step, the synthesis would generate results that
tend to be more random. Without link/shape energy 𝐸𝑙 /𝐸𝑠 in the clustering objective (Equation (9)), the results tend to have empty and broken regions as
shown in the third/forth column. Our full results are shown in the last column.

(a) input (b) output (c) input (d) output (e) input (f) output

Fig. 15. Limitations. Our method is unable to handle patterns with (a) regular or (c) non-local structures due to the inherent limitations of patch-based
synthesis method. Our method requires the input to contain sufficient spatial repetitions and could not handle small tiles with little spatial repetitions (e). Our
current implementation has yet to consider toroidal boundary conditions and thus the outputs will not tile seamlessly. Copyrights: (c) Eva Kali, (e) Dariia
(stock.adobe.com).

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

Clustered Vector Textures • 159:13

With the development of vector pattern synthesis algorithm which
can generate more diverse patterns, it is desirable to use quantitative
metrics to evaluate the synthesis quality in the future.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable
feedback, and Shally Kumar for reproducing Figure 3d. This work
has been partially supported by an Adobe gift funding.

REFERENCES
Pascal Barla, Simon Breslav, Joëlle Thollot, François Sillion, and Lee Markosian. 2006.

Stroke pattern analysis and synthesis. In Computer Graphics Forum, Vol. 25. Wiley
Online Library, 663–671.

Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. 2009. Patch-
Match: A Randomized Correspondence Algorithm for Structural Image Editing.
ACM Trans. Graph. 28, 3, Article 24 (July 2009), 11 pages. https://doi.org/10.1145/
1531326.1531330

Connelly Barnes and Fang-Lue Zhang. 2017. A survey of the state-of-the-art in patch-
based synthesis. Computational Visual Media 3, 1 (2017), 3–20.

Serge Belongie, Jitendra Malik, and Jan Puzicha. 2001. Shape context: A new descrip-
tor for shape matching and object recognition. In Advances in neural information
processing systems. 831–837.

Robert L Cook. 1986. Stochastic sampling in computer graphics. ACM Transactions on
Graphics (TOG) 5, 1 (1986), 51–72.

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2017. Photo2clipart:
Image Abstraction and Vectorization Using Layered Linear Gradients. ACM Trans.
Graph. 36, 6, Article 180 (Nov. 2017), 11 pages. https://doi.org/10.1145/3130800.
3130888

Noa Fish, Lilach Perry, Amit Bermano, and Daniel Cohen-Or. 2020. SketchPatch: Sketch
Stylization via Seamless Patch-level Synthesis. ACM Trans. Graph. 39, 6, Article 227
(12 2020). https://doi.org/10.1145/3414685.3417816

Jakub Fišer, Ondřej Jamriška, Michal Lukáč, Eli Shechtman, Paul Asente, Jingwan Lu,
and Daniel Sýkora. 2016. StyLit: Illumination-Guided Example-Based Stylization of
3D Renderings. ACM Trans. Graph. 35, 4, Article 92 (July 2016), 11 pages. https:
//doi.org/10.1145/2897824.2925948

Guojun Gan, Chaoqun Ma, and Jianhong Wu. 2020. Data clustering: theory, algorithms,
and applications. SIAM.

Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti. 2021.
Computer-Aided Design as Language. arXiv:cs.CV/2105.02769

Lena Gieseke, Paul Asente, Radomir Mech, Bedrich Benes, and Martin Fuchs. 2021. A
Survey of Control Mechanisms for Creative Pattern Generation. Computer Graphics
Forum (2021). https://doi.org/10.1111/cgf.142658

Pascal Guehl, Rémi Allegre, J-M Dischler, Bedrich Benes, and Eric Galin. 2020. Semi-
Procedural Textures Using Point Process Texture Basis Functions. In Computer
Graphics Forum, Vol. 39. Wiley Online Library, 159–171.

Paul Guerrero, Gilbert Bernstein, Wilmot Li, and Niloy J. Mitra. 2016. PATEX: Exploring
Pattern Variations. ACM Trans. Graph. 35, 4, Article 48 (July 2016), 13 pages. https:
//doi.org/10.1145/2897824.2925950

Jianwei Guo, Haiyong Jiang, Bedrich Benes, Oliver Deussen, Xiaopeng Zhang, Dani
Lischinski, and Hui Huang. 2020. Inverse Procedural Modeling of Branching Struc-
tures by Inferring L-Systems. ACM Trans. Graph. 39, 5, Article 155 (June 2020),
13 pages. https://doi.org/10.1145/3394105

Alejo Hausner. 2001. Simulating Decorative Mosaics. In SIGGRAPH ’01. 573–580.
https://doi.org/10.1145/383259.383327

Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Salesin.
2001. Image Analogies. In SIGGRAPH ’01. Association for Computing Machinery,
New York, NY, USA, 327–340. https://doi.org/10.1145/383259.383295

Chen-Yuan Hsu, Li-Yi Wei, Lihua You, and Jian Jun Zhang. 2018. Brushing Element
Fields. In SIGGRAPH Asia 2018 Technical Briefs (SA ’18). Article 6, 4 pages. https:
//doi.org/10.1145/3283254.3283274

Chen-Yuan Hsu, Li-Yi Wei, Lihua You, and Jian Jun Zhang. 2020. Autocomplete Element
Fields. In CHI ’20. 1–13. https://doi.org/10.1145/3313831.3376248

Siu Chi Hsu and Irene H. H. Lee. 1994. Drawing and Animation Using Skeletal Strokes.
In SIGGRAPH ’94. 109–118. https://doi.org/10.1145/192161.192186

Hao-Da Huang, Xin Tong, and Wen-Cheng Wang. 2007. Accelerated parallel texture
optimization. Journal of Computer Science and Technology 22, 5 (2007), 761–769.

T. Hurtut, P.-E. Landes, J. Thollot, Y. Gousseau, R. Drouillhet, and J.-F. Coeurjolly. 2009.
Appearance-guided Synthesis of Element Arrangements by Example. In NPAR ’09.
51–60. https://doi.org/10.1145/1572614.1572623

Takashi Ijiri, Radomír Mech, Takeo Igarashi, and Gavin Miller. 2008. An Example-based
Procedural System for Element Arrangement. In Computer Graphics Forum, Vol. 27.
Wiley Online Library, 429–436.

Jennifer Jacobs, Joel Brandt, Radomír Mech, and Mitchel Resnick. 2018. Extending
Manual Drawing Practices with Artist-Centric Programming Tools. In Proceedings

of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). ACM,
New York, NY, USA, Article 590, 13 pages. https://doi.org/10.1145/3173574.3174164

Alexandre Kaspar, Boris Neubert, Dani Lischinski, Mark Pauly, and Johannes Kopf.
2015. Self Tuning Texture Optimization. Comput. Graph. Forum 34, 2 (May 2015),
349–359. https://doi.org/10.1111/cgf.12565

Rubaiat Habib Kazi, Takeo Igarashi, Shengdong Zhao, and Richard Davis. 2012. Vignette:
Interactive Texture Design and Manipulation with Freeform Gestures for Pen-and-
ink Illustration. In CHI ’12. 1727–1736. https://doi.org/10.1145/2207676.2208302

Harold W Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

Kin Chung Kwan, Lok Tsun Sinn, Chu Han, Tien-Tsin Wong, and Chi-Wing Fu. 2016.
Pyramid of Arclength Descriptor for Generating Collage of Shapes. ACM Trans.
Graph. 35, 6, Article 229 (Nov. 2016), 12 pages. https://doi.org/10.1145/2980179.
2980234

Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. 2005. Texture Optimization
for Example-based Synthesis. ACM Trans. Graph. 24, 3 (July 2005), 795–802. https:
//doi.org/10.1145/1073204.1073263

Pierre-Edouard Landes, Bruno Galerne, and Thomas Hurtut. 2013. A Shape-Aware
Model for Discrete Texture Synthesis. Computer Graphics Forum 32, 4 (2013), 67–76.

Sylvain Lefebvre and Hugues Hoppe. 2006. Appearance-space Texture Synthesis. In
ACM SIGGRAPH 2006 Papers (SIGGRAPH ’06). ACM, New York, NY, USA, 541–548.
https://doi.org/10.1145/1179352.1141921

Muxingzi Li, Florent Lafarge, and Renaud Marlet. 2020. Approximating shapes in
images with low-complexity polygons. In The IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Guilin Liu, Rohan Taori, Ting-Chun Wang, Zhiding Yu, Shiqiu Liu, Fitsum A. Reda,
Karan Sapra, Andrew Tao, and Bryan Catanzaro. 2020. Transposer: Univer-
sal Texture Synthesis Using Feature Maps as Transposed Convolution Filter.
arXiv:cs.CV/2007.07243

Lifeng Liu and Stan Sclaroff. 2001. Region segmentation via deformable model-guided
split and merge. In Proceedings Eighth IEEE International Conference on Computer
Vision. ICCV 2001, Vol. 1. IEEE, 98–104.

Yitzchak David Lockerman, Basile Sauvage, Rémi Allègre, Jean-Michel Dischler, Julie
Dorsey, and Holly Rushmeier. 2016. Multi-scale Label-map Extraction for Texture
Synthesis. ACM Trans. Graph. 35, 4, Article 140 (July 2016), 12 pages. https:
//doi.org/10.1145/2897824.2925964

Hugo Loi, Thomas Hurtut, Romain Vergne, and Joelle Thollot. 2017. Programmable 2D
Arrangements for Element Texture Design. ACM Trans. Graph. 36, 4, Article 105a
(May 2017). https://doi.org/10.1145/3072959.2983617

Jingwan Lu, Connelly Barnes, Stephen DiVerdi, and Adam Finkelstein. 2013. RealBrush:
Painting with Examples of Physical Media. ACM Trans. Graph. 32, 4, Article 117
(July 2013), 12 pages. https://doi.org/10.1145/2461912.2461998

Jingwan Lu, Connelly Barnes, Connie Wan, Paul Asente, Radomir Mech, and Adam
Finkelstein. 2014. DecoBrush: Drawing Structured Decorative Patterns by Example.
ACM Trans. Graph. 33, 4, Article 90 (July 2014), 9 pages. https://doi.org/10.1145/
2601097.2601190

Jingwan Lu, Fisher Yu, Adam Finkelstein, and Stephen DiVerdi. 2012. HelpingHand:
Example-based Stroke Stylization. ACM Trans. Graph. 31, 4, Article 46 (July 2012),
10 pages. https://doi.org/10.1145/2185520.2185542

Chongyang Ma, Li-Yi Wei, Sylvain Lefebvre, and Xin Tong. 2013. Dynamic Element
Textures. ACM Trans. Graph. 32, 4, Article 90 (July 2013), 10 pages. https://doi.org/
10.1145/2461912.2461921

Chongyang Ma, Li-Yi Wei, and Xin Tong. 2011. Discrete Element Textures. ACM
Trans. Graph. 30, 4, Article 62 (July 2011), 10 pages. https://doi.org/10.1145/2010324.
1964957

Morteza Mardani, Guilin Liu, Aysegul Dundar, Shiqiu Liu, Andrew Tao, and Bryan
Catanzaro. 2020. Neural FFTs for Universal Texture Image Synthesis. In NeurIPS
’20.

Giacomo Nazzaro, Enrico Puppo, and Fabio Pellacini. 2020. DecoSurf: Recursive Geo-
desic Patterns on Triangle Meshes. arXiv:cs.GR/2007.10918

Giacomo Nazzaro, Enrico Puppo, and Fabio Pellacini. 2021. GeoTangle: Interactive
Design of Geodesic Tangle Patterns on Surfaces. ACM Trans. Graph. 41, 2, Article
12 (nov 2021), 17 pages. https://doi.org/10.1145/3487909

Hans Pedersen and Karan Singh. 2006. Organic Labyrinths and Mazes. In NPAR ’06.
79–86. https://doi.org/10.1145/1124728.1124742

Brian Price and William Barrett. 2006. Object-based vectorization for interactive image
editing. The Visual Computer 22, 9 (2006), 661–670.

Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J Mitra. 2021. Im2vec:
Synthesizing vector graphics without vector supervision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7342–7351.

Amir Rosenberger, Daniel Cohen-Or, and Dani Lischinski. 2009. Layered Shape Syn-
thesis: Automatic Generation of Control Maps for Non-Stationary Textures. ACM
Trans. Graph. 28, 5 (Dec. 2009), 1–9. https://doi.org/10.1145/1618452.1618453

Riccardo Roveri, A Cengiz Öztireli, Sebastian Martin, Barbara Solenthaler, and Markus
Gross. 2015. Example based repetitive structure synthesis. Computer Graphics Forum
34, 5 (2015), 39–52.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

https://doi.org/10.1145/1531326.1531330
https://doi.org/10.1145/1531326.1531330
https://doi.org/10.1145/3130800.3130888
https://doi.org/10.1145/3130800.3130888
https://doi.org/10.1145/3414685.3417816
https://doi.org/10.1145/2897824.2925948
https://doi.org/10.1145/2897824.2925948
http://arxiv.org/abs/cs.CV/2105.02769
https://doi.org/10.1111/cgf.142658
https://doi.org/10.1145/2897824.2925950
https://doi.org/10.1145/2897824.2925950
https://doi.org/10.1145/3394105
https://doi.org/10.1145/383259.383327
https://doi.org/10.1145/383259.383295
https://doi.org/10.1145/3283254.3283274
https://doi.org/10.1145/3283254.3283274
https://doi.org/10.1145/3313831.3376248
https://doi.org/10.1145/192161.192186
https://doi.org/10.1145/1572614.1572623
https://doi.org/10.1145/3173574.3174164
https://doi.org/10.1111/cgf.12565
https://doi.org/10.1145/2207676.2208302
https://doi.org/10.1145/2980179.2980234
https://doi.org/10.1145/2980179.2980234
https://doi.org/10.1145/1073204.1073263
https://doi.org/10.1145/1073204.1073263
https://doi.org/10.1145/1179352.1141921
http://arxiv.org/abs/cs.CV/2007.07243
https://doi.org/10.1145/2897824.2925964
https://doi.org/10.1145/2897824.2925964
https://doi.org/10.1145/3072959.2983617
https://doi.org/10.1145/2461912.2461998
https://doi.org/10.1145/2601097.2601190
https://doi.org/10.1145/2601097.2601190
https://doi.org/10.1145/2185520.2185542
https://doi.org/10.1145/2461912.2461921
https://doi.org/10.1145/2461912.2461921
https://doi.org/10.1145/2010324.1964957
https://doi.org/10.1145/2010324.1964957
http://arxiv.org/abs/cs.GR/2007.10918
https://doi.org/10.1145/3487909
https://doi.org/10.1145/1124728.1124742
https://doi.org/10.1145/1618452.1618453

159:14 • Peihan Tu, Li-Yi Wei, and Matthias Zwicker

Christian Santoni and Fabio Pellacini. 2016. gTangle: A Grammar for the Procedural
Generation of Tangle Patterns. ACM Trans. Graph. 35, 6, Article 182 (Nov. 2016),
11 pages. https://doi.org/10.1145/2980179.2982417

Reza Adhitya Saputra, Craig S. Kaplan, and Paul Asente. 2020. AnimationPak: Packing
Elements with Scripted Animations. In Graphics Interface ’20. https://openreview.
net/forum?id=sr89orrDo-o.

WWCRE Schapire and Yoram Singer. 1998. Learning to order things. Advances in
Neural Information Processing Systems 10 (1998), 451.

Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation. IEEE
Transactions on pattern analysis and machine intelligence 22, 8 (2000), 888–905.

Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal Irani. 2008. Summarizing
visual data using bidirectional similarity. In CVPR 2008. 1–8. https://doi.org/10.1109/
CVPR.2008.4587842

Ondrej Št’ava, Bedrich Beneš, Radomir Měch, Daniel G Aliaga, and Peter Krištof. 2010.
Inverse procedural modeling by automatic generation of L-systems. In Computer
Graphics Forum, Vol. 29. Wiley Online Library, 665–674.

Kenshi Takayama, Olga Sorkine, Andrew Nealen, and Takeo Igarashi. 2010. Volumetric
Modelingwith Diffusion Surfaces. In SIGGRAPHASIA ’10. Article Article 180, 8 pages.
https://doi.org/10.1145/1866158.1866202

Peihan Tu, Li-Yi Wei, Koji Yatani, Takeo Igarashi, and Matthias Zwicker. 2020. Con-
tinuous Curve Textures. ACM Trans. Graph. 39, 6, Article 168 (12 2020). https:
//doi.org/10.1145/3414685.3417780

Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and computing
17, 4 (2007), 395–416.

W3. 2020. SVG Rendering Model. https://www.w3.org/TR/SVG/render.html.
Lvdi Wang, Yizhou Yu, Kun Zhou, and Baining Guo. 2011. Multiscale vector volumes.

ACM Transactions on Graphics (TOG) 30, 6 (2011), 1–8.
Li-Yi Wei. 2010. Multi-class Blue Noise Sampling. ACM Trans. Graph. 29, 4, Article 79

(July 2010), 8 pages. https://doi.org/10.1145/1778765.1778816

Li-Yi Wei, Arjun V Anand, Shally Kumar, and Tarun Beri. 2020. Simple Methods to
Represent Shapes with Sample Spheres. In SA ’20 Technical Communications. Article
3, 4 pages. https://doi.org/10.1145/3410700.3425424

Li-Yi Wei, Jianwei Han, Kun Zhou, Hujun Bao, Baining Guo, and Heung-Yeung Shum.
2008. Inverse Texture Synthesis. ACM Trans. Graph. 27, 3, Article 52 (Aug. 2008),
9 pages. https://doi.org/10.1145/1360612.1360651

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. 2009. State of the Art
in Example-based Texture Synthesis. In Eurographics 2009, State of the Art Report,
EG-STAR. Eurographics Association. http://www-sop.inria.fr/reves/Basilic/2009/
WLKT09

Michael T Wong, Douglas E Zongker, and David H Salesin. 1998. Computer-generated
floral ornament. In SIGGRAPH ’98. 423–434.

Yi-Ting Yeh and Radomír Měch. 2009. Detecting symmetries and curvilinear arrange-
ments in vector art. In Computer Graphics Forum, Vol. 28. Wiley Online Library,
707–716.

Kun Zhou, Xin Huang, Xi Wang, Yiying Tong, Mathieu Desbrun, Baining Guo, and
Heung-Yeung Shum. 2006. Mesh Quilting for Geometric Texture Synthesis. ACM
Trans. Graph. 25, 3 (July 2006), 690–697. https://doi.org/10.1145/1141911.1141942

Shizhe Zhou, Changyun Jiang, and Sylvain Lefebvre. 2014. Topology-constrained
Synthesis of Vector Patterns. ACM Trans. Graph. 33, 6, Article 215 (Nov. 2014),
11 pages. https://doi.org/10.1145/2661229.2661238

Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.
2018. Non-Stationary Texture Synthesis by Adversarial Expansion. ACM Trans.
Graph. 37, 4, Article 49 (July 2018), 13 pages. https://doi.org/10.1145/3197517.
3201285

Changqing Zou, Junjie Cao, Warunika Ranaweera, Ibraheem Alhashim, Ping Tan, Alla
Sheffer, and Hao Zhang. 2016. Legible Compact Calligrams. ACM Trans. Graph. 35,
4, Article 122 (July 2016), 12 pages. https://doi.org/10.1145/2897824.2925887

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

https://doi.org/10.1145/2980179.2982417
https://openreview.net/forum?id=sr89orrDo-o
https://openreview.net/forum?id=sr89orrDo-o
https://doi.org/10.1109/CVPR.2008.4587842
https://doi.org/10.1109/CVPR.2008.4587842
https://doi.org/10.1145/1866158.1866202
https://doi.org/10.1145/3414685.3417780
https://doi.org/10.1145/3414685.3417780
https://www.w3.org/TR/SVG/render.html
https://doi.org/10.1145/1778765.1778816
https://doi.org/10.1145/3410700.3425424
https://doi.org/10.1145/1360612.1360651
http://www-sop.inria.fr/reves/Basilic/2009/WLKT09
http://www-sop.inria.fr/reves/Basilic/2009/WLKT09
https://doi.org/10.1145/1141911.1141942
https://doi.org/10.1145/2661229.2661238
https://doi.org/10.1145/3197517.3201285
https://doi.org/10.1145/3197517.3201285
https://doi.org/10.1145/2897824.2925887

Clustered Vector Textures • 159:15

A APPENDIX

A.1 Robustness analysis

first level second level third level
level

4

6

8

10

12

en
er

gy

patch-based init

random sample init

Fig. 16. Energy plots. We visualize all energy plots in a single figure for
direct visual comparison. Energies are normalized using the number of
samples within an output neighborhood and the total number of matched
neigborhood pairs. Solid and dashed curves represent plots produced with
random sample and patch-based initializations, respectively. Corresponding
exemplars and energy curves are shown in the same colors, except for the
colorful pattern (shown on the top left) which corresponds to the black
curves. Vertical dashed lines indicate the start of each optimization hierar-
chy.

Table 1. Ratios between numbers of clustering operations and samples/clusters
in each hierarchy. For sample switch, the ratio is computed between the num-
bers of sample switches and the numbers of samples. For cluster merge/split,
the ratios are computed between the numbers of cluster merges/splits and
the numbers of clusters. Since a cluster usually contain many samples, there
are many more sample switches than cluster splits/merges.

Ratios
Exemplar Levels Switch Merge Split

1 0.1420 0.1047 0.0793
2 0.1197 0.0526 0.0788
3 0.0756 0.0323 0.0532
1 0.1030 0.0782 0.0556
2 0.0664 0.0384 0.0549
3 0.0417 0.0319 0.0486
1 0.1048 0.0994 0.0525
2 0.0939 0.0358 0.0612
3 0.0383 0.0095 0.0215

A.1.1 Initial conditions and optimization. Figures 16 to 20 analyze
the robustness of our method with different initial conditions and
visualize the optimization process. Side-by-side comparisons of pat-
tern optimization process using patch-based and random sample
initialization are shown in the supplementary video.

A.1.2 Hyperparameters. We also show the influence of hyperpa-
rameters𝑤f (in Equation (3)) and𝑤𝑠 (in Equation (9)) on the syn-
thesis results. It is shown that our method is robust to moderate
parameter variations.

A.1.3 Clustering operators. We study the effects of operators in
the clustering step (Section 6.5.2). Figure 23 shows the effects of
using different combinations of clustering operators. Table 1 shows
the ratios between the numbers of sample switch operations and
samples as well as the ratios between the numbers of cluster merge
and split operations and clusters.

A.1.4 More Comparisons with prior art. We show more compar-
isons with prior methods in Figure 24.

A.1.5 A large synthesis result. We enlarge the exemplar (Figure 11j)
4 × 4 times, and the result is shown in Figure 25.

A.2 Implementation details
A.2.1 Representation. To compute the shape context feature vector
f , we use default hyperparameters (5 bins for logarithmic distances
and 12 bins for angles) provided in [Belongie et al. 2001].

A.2.2 Assignment step.

Position assignment. The sample position is computed using least
squares [Ma et al. 2011; Tu et al. 2020]

argmin
{p(𝑠𝑜) }

∑︁
𝑠𝑜 ∈O

𝑠𝑖=𝜇𝑠 (𝑠𝑜)

∑︁
𝑚𝑠 :n(𝑠𝑜)→n(𝑠𝑖)

𝑠′𝑜 ∈n(𝑠𝑜)
𝑠′𝑖=𝑚𝑠 (𝑠′𝑜)

p̂(𝑠𝑜 , 𝑠′𝑜) − (
p(𝑠𝑖) − p(𝑠′𝑖)

)

2
(18)

Sample existence assignment. We follow [Tu et al. 2020] on sample
existence assignment, which adaptively adjust the number of total
samples by adding or removing samples based on confidence of
existence 𝜉 . Since the element filtering in Section 6.6 plays similar
role to sample removal in getting rid of redundant elements (and thus
redundant samples), which is complemented with sample addition,
we only add samples during existence assignment.

A.3 Performance
Our implementation has not yet been optimized for interactive ap-
plications. Our algorithm is run on a workstation with AMD Ryzen 9
3950X 16-Core 3.49 GHz CPU and 32 GB RAM. The algorithm is run
on a single thread, except that the patch match algorithm [Barnes
et al. 2009] in the search step is parallelized using four threads on
the CPU. We show the running time for each algorithm component
in Table 2. The major computational bottleneck is in the search step.
Our method can be accelerated by further parallelizing the nearest
neighborhood search, assignment step with voting scheme and the
queue updates of clustering operators with hardware acceleration;
faster linear assignment problems (LAP) for the computation of
neighborhood metric and shape energy; and sparser sampling of
patterns while maintaining representative quality.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

159:16 • Peihan Tu, Li-Yi Wei, and Matthias Zwicker

Table 2. Running time of each algorithm component at different hierarchy (unit: second). Note there are seven search/assignment/clustering steps in a hierarchy,
and what we show is the total time consumed by the seven steps. Since we adapt number of samples (# samples) during optimization, # samples is the average
number of samples in a hierarchy of optimization.

Assignment Clustering
Exemplar Level # Samples Initialization Search Position Attribute Switch Merge&Split Recon Total

1 1816 1.1 254.5 0.8 24.8 4.1 4.8 25.7 315.6
1002.12 3032 5.2 291.4 1.4 36.9 19.9 5.7 37.3 397.8

3 4591 6.1 144.6 2.5 32.6 44.9 7.7 50.4 288.7
1 2845 2.4 1603.6 2.1 89.6 30.2 17.9 53.8 1799.5

5513.52 4751 10.3 1829.4 4.4 134 98.5 25 77.7 2179.2
3 7370 12.3 913.6 9.5 189 237.6 44.3 128.5 1534.8
1 2388 3.1 814.4 1.4 57.2 12.0 6.1 22.3 916.5

5036.52 4629 10.5 1706.8 3.8 145.2 101.1 16.9 37.2 2021.5
3 7626 13 1482.7 9.7 280.5 227.2 30.3 55.1 2098.5
1 1641 2.6 317.6 0.9 24.1 15.1 5.1 7.4 372.8

1290.12 3057 4.9 460.5 1.8 57.9 37.4 6.8 11.7 581
3 4510 5.9 149.5 2.8 72 80.0 8.7 17.4 336.3
1 1200 0.6 61.7 0.4 7.2 2.7 1.3 3.4 77.2

320.52 2104 2.6 84.3 0.7 11.1 6.1 2.3 4.5 111.7
3 3357 3.0 87.1 1.6 17.1 12.5 3.6 6.6 131.6
1 1309 0.7 75.3 0.5 9.4 3.1 2.3 2.4 93.6

508.82 2417 2.7 134.5 0.9 18.6 9.9 3.5 3.6 173.8
3 3888 3.3 174.7 1.9 33.6 18.7 4.6 4.8 241.5
1 1900 1.3 350.2 0.9 29.4 11.3 4.6 16.2 413.9

3592.12 3879 4.6 849.3 2.8 79.2 76.6 12.4 24.9 1049.8
3 6965 6.1 1589 9.1 196.1 264.5 27.8 35.8 2128.4
1 573 4.5 5.8 0.1 1.1 4.5 0.4 1.6 18.1

182.02 913 19.7 6.5 0.3 3.2 26.2 0.3 2.5 58.7
3 1505 22.1 22 0.7 12.2 45.3 0.4 2.5 105.2
1 1707 4.7 269.1 1 22.9 11.4 3.7 12 324.9

1060.92 2953 6.8 361.9 1.7 47.6 29.1 7.7 16.5 471.4
3 4688 7.4 80.5 2.6 62.1 72.6 11.8 27.7 264.6
1 2075 4.1 531.6 1.1 38 9.4 5.6 27.1 617

1615.52 3311 7.1 472.2 1.9 58.9 31.1 8.9 38.8 618.9
3 5259 8.3 147.9 3.7 84.6 68.6 15.2 51.3 379.6

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

Clustered Vector Textures • 159:17

patch-based
initialization

sa
m
pl
es

energy plot

re
co
n

re
co
n
er
ro
r

exemplar

fil
te
re
d
re
co
n

patch-based
initialization

sa
m
pl
es

energy plot

re
co
n

re
co
n
er
ro
r

exemplar initial step 1st level 2nd level 3rd level (final output)

fil
te
re
d
re
co
n

Fig. 17. Optimization process with patch-based initialization. We show the intermediate samples (first/fifth rows, where the first column shows initialization),
reconstructed patterns (second/sixth rows), reconstruction errors (third/seventh rows) and filtered reconstructions (forth/eighth rows) after the very first
optimization step (initial step) and the last steps in each hierarchical levels. The energy plots are shown in the first column where red stars annotate the start
of each optimization hierarchy. Corresponding clusters and elements are visualized in the same colors. In third/seventh rows, red and blue indicate high and
low reconstruction errors; yellow indicates filtered-out elements with errors surpassing a threshold.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

159:18 • Peihan Tu, Li-Yi Wei, and Matthias Zwicker

patch-based
initialization

sa
m
pl
es

energy plot

re
co
n

re
co
n
er
ro
r

exemplar

fil
te
re
d
re
co
n

patch-based
initialization

sa
m
pl
es

energy plot

re
co
n

re
co
n
er
ro
r

exemplar initial step 1st level 2nd level 3rd level (final
output)

fil
te
re
d
re
co
n

Fig. 18. Continuation from Figure 17.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

Clustered Vector Textures • 159:19

random sample
initialization

sa
m
pl
es

energy plot

re
co
n

re
co
n
er
ro
r

exemplar

fil
te
re
d
re
co
n

random sample
initialization

sa
m
pl
es

energy plot

re
co
n

re
co
n
er
ro
r

exemplar initial step 1st level 2nd level 3rd level (final output)

fil
te
re
d
re
co
n

Fig. 19. Optimization process with random sample initialization.We show the intermediate samples (first/fifth rows, where the first column shows initialization),
reconstructed patterns (second/sixth rows), reconstruction errors (third/seventh rows) and filtered reconstructions (forth/eighth rows) after the very first
optimization step (initial step) and the last steps in each hierarchical levels. The energy plots are shown in the first column where red stars annotate the start
of each optimization hierarchy. Corresponding clusters and elements are visualized in the same colors. In third/seventh rows, red and blue indicate high and
low reconstruction errors; yellow indicates filtered-out elements with errors surpassing a threshold.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

159:20 • Peihan Tu, Li-Yi Wei, and Matthias Zwicker

random sample
initialization

sa
m
pl
es

energy plot

re
co
n

re
co
n
er
ro
r

exemplar

fil
te
re
d
re
co
n

random sample
initialization

sa
m
pl
es

energy plot

re
co
n

re
co
n
er
ro
r

exemplar initial step 1st level 2nd level 3rd level (final
output)

fil
te
re
d
re
co
n

Fig. 20. Continuation from Figure 19.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

Clustered Vector Textures • 159:21

exemplar 𝑤f = 1 𝑤f = 5 𝑤f = 10 𝑤f = 20 𝑤f = 100

Fig. 21. Synthesis results using different hyperparameters 𝑤f . 𝑤f = 10 is the chosen parameter.

exemplar 𝑤𝑠 = 0.4 𝑤𝑠 = 2 𝑤𝑠 = 4 𝑤𝑠 = 8 𝑤𝑠 = 40

Fig. 22. Synthesis results using different hyperparameters 𝑤𝑠 . 𝑤𝑠 = 4 is the chosen parameter.
ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

159:22 • Peihan Tu, Li-Yi Wei, and Matthias Zwicker

exemplar without switch without merge without split without merge and split full

Fig. 23. Synthesis results using different combinations of clustering operators. Our method tend to produce empty or broken regions without these clustering
operators.

(a) exemplar (b) samples (c) [Ma et al. 2011] (d) [Hsu et al. 2020] (e) [Tu et al. 2020] (f) improved
[Tu et al. 2020]

(g) our samples (h) our result

Fig. 24. More comparisons with previous methods. Please see Figures 3 and 13 for detailed descriptions.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

Clustered Vector Textures • 159:23

Fig. 25. A large synthesis result. This result is generated by enlarging the exemplar (Figure 11j) 4 × 4 times.

ACM Trans. Graph., Vol. 41, No. 4, Article 159. Publication date: July 2022.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Representation
	4.1 Vector pattern
	4.2 Clustered pattern representation

	5 Neighborhood and Similarity
	6 Pattern Synthesis
	6.1 Optimization objective
	6.2 Initialization
	6.3 Search step
	6.4 Assignment step
	6.5 Clustering step
	6.6 Reconstruction
	6.7 Hierarchical optimization

	7 Results
	7.1 Ablation studies
	7.2 Comparison to previous methods
	7.3 Parameters

	8 Conclusions, Limitations and Future Work
	Acknowledgments
	References
	A Appendix
	A.1 Robustness analysis
	A.2 Implementation details
	A.3 Performance

