Skip to main content

Python framework for fast Vector Space Modelling

Project description

GA Wheel

Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community.

Features

  • All algorithms are memory-independent w.r.t. the corpus size (can process input larger than RAM, streamed, out-of-core)

  • Intuitive interfaces

    • easy to plug in your own input corpus/datastream (simple streaming API)

    • easy to extend with other Vector Space algorithms (simple transformation API)

  • Efficient multicore implementations of popular algorithms, such as online Latent Semantic Analysis (LSA/LSI/SVD), Latent Dirichlet Allocation (LDA), Random Projections (RP), Hierarchical Dirichlet Process (HDP) or word2vec deep learning.

  • Distributed computing: can run Latent Semantic Analysis and Latent Dirichlet Allocation on a cluster of computers.

  • Extensive documentation and Jupyter Notebook tutorials.

If this feature list left you scratching your head, you can first read more about the Vector Space Model and unsupervised document analysis on Wikipedia.

Installation

This software depends on NumPy and Scipy, two Python packages for scientific computing. You must have them installed prior to installing gensim.

It is also recommended you install a fast BLAS library before installing NumPy. This is optional, but using an optimized BLAS such as MKL, ATLAS or OpenBLAS is known to improve performance by as much as an order of magnitude. On OSX, NumPy picks up its vecLib BLAS automatically, so you don’t need to do anything special.

Install the latest version of gensim:

pip install --upgrade gensim

Or, if you have instead downloaded and unzipped the source tar.gz package:

python setup.py install

For alternative modes of installation, see the documentation.

Gensim is being continuously tested under all supported Python versions. Support for Python 2.7 was dropped in gensim 4.0.0 – install gensim 3.8.3 if you must use Python 2.7.

How come gensim is so fast and memory efficient? Isn’t it pure Python, and isn’t Python slow and greedy?

Many scientific algorithms can be expressed in terms of large matrix operations (see the BLAS note above). Gensim taps into these low-level BLAS libraries, by means of its dependency on NumPy. So while gensim-the-top-level-code is pure Python, it actually executes highly optimized Fortran/C under the hood, including multithreading (if your BLAS is so configured).

Memory-wise, gensim makes heavy use of Python’s built-in generators and iterators for streamed data processing. Memory efficiency was one of gensim’s design goals, and is a central feature of gensim, rather than something bolted on as an afterthought.

Documentation

Citing gensim

When citing gensim in academic papers and theses, please use this BibTeX entry:

@inproceedings{rehurek_lrec,
      title = {{Software Framework for Topic Modelling with Large Corpora}},
      author = {Radim {\v R}eh{\r u}{\v r}ek and Petr Sojka},
      booktitle = {{Proceedings of the LREC 2010 Workshop on New
           Challenges for NLP Frameworks}},
      pages = {45--50},
      year = 2010,
      month = May,
      day = 22,
      publisher = {ELRA},
      address = {Valletta, Malta},
      language={English}
}

Gensim is open source software released under the GNU LGPLv2.1 license. Copyright (c) 2009-now Radim Rehurek

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gensim-4.4.0.tar.gz (23.3 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

gensim-4.4.0-cp313-cp313-win_amd64.whl (24.4 MB view details)

Uploaded CPython 3.13Windows x86-64

gensim-4.4.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (27.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

gensim-4.4.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (27.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

gensim-4.4.0-cp313-cp313-macosx_11_0_arm64.whl (24.4 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

gensim-4.4.0-cp313-cp313-macosx_10_13_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

gensim-4.4.0-cp312-cp312-win_amd64.whl (24.4 MB view details)

Uploaded CPython 3.12Windows x86-64

gensim-4.4.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (27.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

gensim-4.4.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (27.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

gensim-4.4.0-cp312-cp312-macosx_11_0_arm64.whl (24.5 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

gensim-4.4.0-cp312-cp312-macosx_10_13_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

gensim-4.4.0-cp311-cp311-win_amd64.whl (24.4 MB view details)

Uploaded CPython 3.11Windows x86-64

gensim-4.4.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (27.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

gensim-4.4.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (27.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

gensim-4.4.0-cp311-cp311-macosx_11_0_arm64.whl (24.5 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

gensim-4.4.0-cp311-cp311-macosx_10_9_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

gensim-4.4.0-cp310-cp310-win_amd64.whl (24.4 MB view details)

Uploaded CPython 3.10Windows x86-64

gensim-4.4.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (27.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

gensim-4.4.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (27.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

gensim-4.4.0-cp310-cp310-macosx_11_0_arm64.whl (24.4 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

gensim-4.4.0-cp310-cp310-macosx_10_9_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

gensim-4.4.0-cp39-cp39-win_amd64.whl (24.4 MB view details)

Uploaded CPython 3.9Windows x86-64

gensim-4.4.0-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (27.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

gensim-4.4.0-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (27.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

gensim-4.4.0-cp39-cp39-macosx_11_0_arm64.whl (24.4 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

gensim-4.4.0-cp39-cp39-macosx_10_9_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file gensim-4.4.0.tar.gz.

File metadata

  • Download URL: gensim-4.4.0.tar.gz
  • Upload date:
  • Size: 23.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.13

File hashes

Hashes for gensim-4.4.0.tar.gz
Algorithm Hash digest
SHA256 a3f5b626da5518e79a479140361c663089fe7998df8ba52d56e1ded71ac5bdf5
MD5 17bc0b1e2f4bd50aae7a657f0abbb7d9
BLAKE2b-256 1a80fe9d2e1ace968041814dbcfce4e8499a643a36c41267fa4b6c4f54cce420

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: gensim-4.4.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 24.4 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.13

File hashes

Hashes for gensim-4.4.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 6ecb7aed37fb92d24e15a6adbabe693074003263db0fd9ce97c9f4234a9edc1b
MD5 4c71ffb0d06782393d8770c0c30b0f9e
BLAKE2b-256 82f34f8f4d478ce69af812c6002b513c5ad3242976923d172dbe5814903be22f

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9033b18920b7774e68eafacdbd87252ffa29382ec465ddb88bd036e00fc86365
MD5 26bcfb62c0b92a5dce21d149b032a3d8
BLAKE2b-256 b3b9ee43ef9c391857232603a9ee281e9c5953f7922d70c98c2296a037d1c0b7

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3bec3e6a1ecaa6439b21a3e42ceb0ca67ffabc114b646f89b1aab5fe69a39ffc
MD5 2351a59c57876cd7bd6762056f14eec6
BLAKE2b-256 d9ef1675e1a3a04f7d0293a21082f57f4a6a8bf0a9e387da58b71db648b663de

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 59d0d29099a76dd97d4563e002f3488a43e51f99d46387025da38007ebfeeff9
MD5 e1af2755dceb1237b4f5b4af4ccf18e2
BLAKE2b-256 cc6a593107ee98331128ed20e5d074865587558a0766659be787a40550ab66df

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b8961b7a2bb5190b46bc6cd26c29d5bfea22f99123ed5f506ebd0aaf65996758
MD5 4010c520b934ba93dd3d8b6654899dca
BLAKE2b-256 806c4e522973e07ca491d33cc7829996b9e8c8663a16b3f87f580cbdc2732d97

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gensim-4.4.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 24.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.13

File hashes

Hashes for gensim-4.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b3a3f9bc8d4178b01d114e1c58c5ab2333f131c7415fb3d8ec8f1ecfe4c5b544
MD5 27911153bbf45bdd26f551e2f8e8db18
BLAKE2b-256 fdf29ec6863143888bf390cdc5261f6d9e71d79bc95d98fb815679dba478d5f6

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4b73ff30af6ddd0d2ddf9473b1eb44603cd79ec14c87d93b75291802b991916c
MD5 b91c61b682d582f4009ca45532185a88
BLAKE2b-256 972cc29701826c963b04a43d5d7b87573a74040387ab9219e65b10f377d22b5b

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 23a2a4260f01c8f71bae5dd0e8a01bb247a2c789480c033e0eaba100b0ad4239
MD5 f9f005d02184d9af7e740ce14f5c17b9
BLAKE2b-256 f0b89b0ba15756e41ccfdd852f9c65cd2b552f240c201dc3237ad8c178642e80

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1853fc5be730f692c444a826041fef9a2fc8d74c73bb59748904b2e3221daa86
MD5 473eeb68636cf08664b3e7f6a61d3aec
BLAKE2b-256 3259f0ea443cbfb3b06e1d2e060217bb91f954845f6df38cbc9c5468b6c9c638

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0845b2fa039dbea5667fb278b5414e70f6d48fd208ef51f33e84a78444288d8d
MD5 b214371f03937335233db31f14a3b927
BLAKE2b-256 4f65d5285865ca54b93d41ccd8683c2d79952434957c76b411283c7a6c66ca69

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gensim-4.4.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 24.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.13

File hashes

Hashes for gensim-4.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5e2c1d584d1c7d16b2a0fe7d2f6f59a451422df7b5edb7e3ca46c8e462782127
MD5 c8bcb9060f5b6a31accf41ac43bf42ff
BLAKE2b-256 10c37e22d6f7d88c4ea6a3a84481f00538252659d285713c3b7e2e1537b0e7e1

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 91a7fa5e814e7b1bad4b2dffa8d62c1e55410d5cbdf930714c1997ffb4404db8
MD5 3837f1a564c35624d7eb23de3c99cc41
BLAKE2b-256 d9fa85531b39c1beb5a4203929ba83d94d886cec40d0fb0bef8ca05fd1cc7a38

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7e110e2d3533f5b35239850a96cb2016a586ecd85671d655079b3048332b7169
MD5 e720035c225092c7280a63e95460ca07
BLAKE2b-256 68886bd6919d31bdd473472ce1c18c24fcab5869b8b15166a424d11ce33a5eab

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 05a027238b5eb544a17afe73ec227d6a7e0c6b4e2108b1131c0b8f291a0e0e2e
MD5 0109a3626dfc98e04d63c2053b4d99f4
BLAKE2b-256 387c18d40f341276a7461962512ca1fb716d5982db57615dfa272f651ecb96d7

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7590e7313848ca8f3ff064898bcd6ecf6ec71c752cf4d3ec83f7ac992bc7c088
MD5 b401f2ab45245294aa536b76d202b604
BLAKE2b-256 527b81b6c74b32700ee63f6720a60ca0c89ab59b12933257b47572c8af017658

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gensim-4.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 24.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.13

File hashes

Hashes for gensim-4.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 724b93c9b6e92cd15837048c71b7fdd38059276c85dd1f9c0375576f0aea153f
MD5 ada41205b53771783383093ca454c4b6
BLAKE2b-256 53fee483909cfbfa8cc4bfd30aa9fb5170c04316cc22f23c9906529f08fb9095

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d56613fcb77d4068c1be845843508dcd9d384ede34700a61bbeac32b947d1fc3
MD5 70b0930da00ca47e2b0a10f51cd1e86e
BLAKE2b-256 7a6e9b835483f776ad0ab6fd1197441000c4005b0a3219d456b25296966f0107

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f0977e5e5df03f829f322662e37ac973b93272c526f1432f865d214c0b573f98
MD5 bea4b45506ab2a42be336cc7b8f9e63b
BLAKE2b-256 a3d8ea8f98e198d8682c0d82cba04303d26f646ef2592a558739d812bfe02a3f

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5c4d8f2a5e69bc246931dfd8e03d0ce3f3bcf82adbbdbcf20dfc35c43b8e1035
MD5 368f7b21c045d257e4f2f48f32e201c6
BLAKE2b-256 ab2f46a661db005730de7455090cb980b70147f04a3d162b49171582987d634e

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e29a2109819fdf5ff59bef670c8c22c1690d52239fe172b43e408908871de5f6
MD5 d93fd1f12e8ae57aae409d3d82f23446
BLAKE2b-256 08881e7c7abf79cf88faca3d713fbb7068f58c9f44c77a3e72031cb3e40e43c3

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gensim-4.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 24.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.13

File hashes

Hashes for gensim-4.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 06704acd354728262f9f32a9435c70945930f8d11b58531b3cb5c699f4757ad4
MD5 17eef1a73fc8a9666f45a5577d3696a4
BLAKE2b-256 f189f9d895ce5773f467a9174ac5e4f0da20efa74a4b732626b5018f679e07bd

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 120d58351f67ef38f3b102a724fb2ece298b20a06fbeae02797f18c1087591ca
MD5 95654e9273ffc89f3d4dab8af52586d8
BLAKE2b-256 46bb00d474f93413ad96600bf3aa26fd8a0b9b37f93de04d30997129ff573a54

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 484286ff973c77d262776e44e0bc3b958331b7b0f5d61f83014f6cc12f1a814f
MD5 1c356d5ca106b817dc2d6e46078c75a9
BLAKE2b-256 cc3f8f93f37b3e784a4b3d9fd544ea1783afb5e2effeffb744b5566d0434bd6e

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54a32a196502bf0e376cd7ef935be97f7ca96cc0f90ee9514d48406b7bd21bad
MD5 9bc6aad225c1a61ff5b5f51fafc87bad
BLAKE2b-256 f02a4f564aab5b032078f66e9a109495825d67d06b6a5617269194c109ec634d

See more details on using hashes here.

File details

Details for the file gensim-4.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gensim-4.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 de863f72b97ee142e7ce1c28da8f8e5473b76064ecbfe139da62127f46ab5c07
MD5 5a7d212b675f5bd54bfecbff07003134
BLAKE2b-256 84ea656913d4ea4fd775e420c8c1fbc501d8cffbd070656dcdd70bcfba3e6805

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page