Skip to main content

OpenInference OpenAI Instrumentation

Project description

OpenInference OpenAI Instrumentation

pypi

Python auto-instrumentation library for OpenAI's python SDK.

The traces emitted by this instrumentation are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix

Installation

pip install openinference-instrumentation-openai

Quickstart

In this example we will instrument a small program that uses OpenAI and observe the traces via arize-phoenix.

Install packages.

pip install openinference-instrumentation-openai "openai>=1.26" arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the phoenix server so that it is ready to collect traces. The Phoenix server runs entirely on your machine and does not send data over the internet.

python -m phoenix.server.main serve

In a python file, setup the OpenAIInstrumentor and configure the tracer to send traces to Phoenix.

import openai
from openinference.instrumentation.openai import OpenAIInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
# Optionally, you can also print the spans to the console.
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))

OpenAIInstrumentor().instrument(tracer_provider=tracer_provider)


if __name__ == "__main__":
    client = openai.OpenAI()
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": "Write a haiku."}],
        max_tokens=20,
        stream=True,
        stream_options={"include_usage": True},
    )
    for chunk in response:
        if chunk.choices and (content := chunk.choices[0].delta.content):
            print(content, end="")

Since we are using OpenAI, we must set the OPENAI_API_KEY environment variable to authenticate with the OpenAI API.

export OPENAI_API_KEY=your-api-key

Now simply run the python file and observe the traces in Phoenix.

python your_file.py

FAQ

Q: How to get token counts when streaming?

A: To get token counts when streaming, install openai>=1.26 and set stream_options={"include_usage": True} when calling create. See the example shown above. For more info, see here.

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_openai-0.1.27.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_openai-0.1.27.tar.gz
Algorithm Hash digest
SHA256 26a4036bbe4745f90b3eab6a596c361301d86b98a01fb13f9f7f1883404a4856
MD5 139582b085d47e1235058c09dd784f12
BLAKE2b-256 fa3b1fb2ad6c9317fd72bccb1e1c2dff1d26abaa6ebdb6fcf63cba9b1d5db7a5

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_openai-0.1.27-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_openai-0.1.27-py3-none-any.whl
Algorithm Hash digest
SHA256 1486a3db22b0ccb31216725baf65a8f2c913da138dd8e3ac3683132bfe55529d
MD5 bcce98caf69f3273d99609fb1a371f49
BLAKE2b-256 2b82c232040d7fa6d6d60ebd4adffc120e76a3a65706dd704eca5eca07e13975

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page