Showing 88 open source projects for "python games code"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    AWS SDK for pandas

    AWS SDK for pandas

    Easy integration with Athena, Glue, Redshift, Timestream, Neptune

    aws-sdk-pandas (formerly AWS Data Wrangler) bridges pandas with the AWS analytics stack so DataFrames flow seamlessly to and from cloud services. With a few lines of code, you can read from and write to Amazon S3 in Parquet/CSV/JSON/ORC, register tables in the AWS Glue Data Catalog, and query with Amazon Athena directly into pandas. The library abstracts efficient patterns like partitioning, compression, and vectorized I/O so you get performant data lake operations without hand-rolling...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Covalent workflow

    Covalent workflow

    Pythonic tool for running machine-learning/high performance workflows

    Covalent is a Pythonic workflow tool for computational scientists, AI/ML software engineers, and anyone who needs to run experiments on limited or expensive computing resources including quantum computers, HPC clusters, GPU arrays, and cloud services. Covalent enables a researcher to run computation tasks on an advanced hardware platform – such as a quantum computer or serverless HPC cluster – using a single line of code. Covalent overcomes computational and operational challenges inherent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Tokenize.jl

    Tokenize.jl

    Tokenization for Julia source code

    Tokenize is a Julia package that serves a similar purpose and API as the tokenize module in Python but for Julia. This is to take a string or buffer containing Julia code, perform lexical analysis and return a stream of tokens.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    NVIDIA Merlin

    NVIDIA Merlin

    Library providing end-to-end GPU-accelerated recommender systems

    ... on the NVIDIA developer website. Transform data (ETL) for preprocessing and engineering features. Accelerate your existing training pipelines in TensorFlow, PyTorch, or FastAI by leveraging optimized, custom-built data loaders. Scale large deep learning recommender models by distributing large embedding tables that exceed available GPU and CPU memory. Deploy data transformations and trained models to production with only a few lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • 5
    Digital Earth Australia notebooks

    Digital Earth Australia notebooks

    Repository for Digital Earth Australia Jupyter Notebooks

    The knowledge hub brings together information about Digital Earth Australia’s products and services, allowing you to utilize our free and open-source satellite imagery archive. Browse our catalog of data products to find supporting information and ways to access the data. The Digital Earth Australia notebooks and tools repository (dea-notebooks) hosts Jupyter Notebooks, Python scripts and workflows for analyzing Digital Earth Australia (DEA) satellite data and derived products
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    dbt-re-data

    dbt-re-data

    re_data - fix data issues before your users & CEO would discover them

    re_data is an open-source data reliability framework for the modern data stack. Currently, re_data focuses on observing the dbt project (together with underlaying data warehouse - Postgres, BigQuery, Snowflake, Redshift). Data transformations in re_data are implemented and exposed as models & macros in this dbt package. Gather all relevant outputs about your data in one place using our cloud. Invite your team and debug it easily from there. Go back in time, and see your past metadata. Set up...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Dagster

    Dagster

    An orchestration platform for the development, production

    Dagster is an orchestration platform for the development, production, and observation of data assets. Dagster as a productivity platform: With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early. Dagster as a robust orchestration engine: Put your pipelines into production with a robust...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TensorBoardX

    TensorBoardX

    tensorboard for pytorch (and chainer, mxnet, numpy, etc.)

    ... of functionality on top of tensorboard such as dataset management, diffing experiments, seeing the code that generated the results and more. Create special chart by collecting charts tags in ‘scalars’. Note that this function can only be called once for each SummaryWriter() object. Because it only provides metadata to tensorboard, the function can be called before or after the training loop.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    NBInclude.jl

    NBInclude.jl

    import code from IJulia Jupyter notebooks into Julia programs

    NBInclude is a package for the Julia language that allows you to include and execute IJulia (Julia-language Jupyter) notebook files just as you would include an ordinary Julia file. The goal of this package is to make notebook files just as easy to incorporate into Julia programs as ordinary Julia (.jl) files, giving you the advantages of a notebook (integrated code, formatted text, equations, graphics, and other results) while retaining the modularity and re-usability of .jl files.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    CxxWrap

    CxxWrap

    Package to make C++ libraries available in Julia

    This package aims to provide a Boost. Python-like wrapping for C++ types and functions to Julia. The idea is to write the code for the Julia wrapper in C++, and then use a one-liner on the Julia side to make the wrapped C++ library available there. The mechanism behind this package is that functions and types are registered in C++ code that is compiled into a dynamic library. This dynamic library is then loaded into Julia, where the Julia part of this package uses the data provided through a C...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    libCEED

    libCEED

    CEED Library: Code for Efficient Extensible Discretizations

    libCEED provides fast algebra for element-based discretizations, designed for performance portability, run-time flexibility, and clean embedding in higher-level libraries and applications. It offers a C99 interface as well as bindings for Fortran, Python, Julia, and Rust. While our focus is on high-order finite elements, the approach is mostly algebraic and thus applicable to other discretizations in factored form, as explained in the user manual and API implementation portion
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    TensorFlow.NET

    TensorFlow.NET

    .NET Standard bindings for Google's TensorFlow for developing models

    ... with a powerful Machine Learning tool set without reinventing the wheel. Since the APIs are kept as similar as possible you can immediately adapt any existing TensorFlow code in C# or F# with a zero learning curve. Take a look at a comparison picture and see how comfortably a TensorFlow/Python script translates into a C# program with TensorFlow.NET.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    dxf2gcode

    dxf2gcode

    DXF2GCODE: converting 2D dxf drawings to CNC machine compatible G-Code

    DXF2GCODE is a tool for converting 2D (dxf, pdf, ps) drawings to CNC machine compatible GCode. Windows, Linux, and Mac support by using python scripting language.
    Leader badge
    Downloads: 409 This Week
    Last Update:
    See Project
  • 16
    Swiple

    Swiple

    Swiple enables you to easily observe, understand, validate data

    Swiple is an automated data monitoring platform that helps analytics and data engineering teams seamlessly monitor the quality of their data. With automated data analysis and profiling, scheduling and alerting, teams can resolve data quality issues before they impact mission critical resources. Experience hassle-free integration with Swiple's zero-infrastructure and zero-code setup. Seamlessly incorporate data quality checks into your existing workflows without any coding or infrastructure...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Orchest

    Orchest

    Build data pipelines, the easy way

    Code, run and monitor your data pipelines all from your browser! From idea to scheduled pipeline in hours, not days. Interactively build your data science pipelines in our visual pipeline editor. Versioned as a JSON file. Run scripts or Jupyter notebooks as steps in a pipeline. Python, R, Julia, JavaScript, and Bash are supported. Parameterize your pipelines and run them periodically on a cron schedule. Easily install language or system packages. Built on top of regular Docker container images...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    sadsa

    sadsa

    SADSA (Software Application for Data Science and Analytics)

    SADSA (Software Application for Data Science and Analytics) is a Python-based desktop application designed to simplify statistical analysis, machine learning, and data visualization for students, researchers, and data professionals. Built using Python for the GUI, SADSA provides a menu-driven interface for handling datasets, applying transformations, running advanced statistical tests, machine learning algorithms, and generating insightful plots — all without writing code.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Spark.jl

    Spark.jl

    Julia binding for Apache Spark

    A Julia interface to Apache Spark. Spark.jl provides an interface to Apache Spark™ platform, including SQL / DataFrame and Structured Streaming. It closely follows the PySpark API, making it easy to translate existing Python code to Julia. Spark.jl supports multiple cluster types (in client mode), and can be considered as an analog to PySpark or RSpark within the Julia ecosystem. It supports running within on-premise installations, as well as hosted instances such as Amazon EMR and Azure...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Starlight.jl

    Starlight.jl

    A greedy game engine for greedy programmers

    Welcome to the documentation for Starlight.jl, a greedy application framework for greedy developers. Its primary use case is video games, but the power of Julia, SDL2, Vulkan, and the Bullet Physics SDK can be leveraged to make just about anything you want. With a focus on flexibility and code quality, Starlight aims to be such a framework. It includes a suite of components and integrations that make it particuarly well-suited for video games, so it is not a stretch to call it a "game engine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    TSNE-CUDA

    TSNE-CUDA

    GPU Accelerated t-SNE for CUDA with Python bindings

    This repo is an optimized CUDA version of FIt-SNE algorithm with associated python modules. We find that our implementation of t-SNE can be up to 1200x faster than Sklearn, or up to 50x faster than Multicore-TSNE when used with the right GPU. You can install binaries with anaconda for CUDA version 10.1 and 10.2 using conda install tsnecuda -c conda-forge. Tsnecuda supports CUDA versions 9.0 and later through source installation, check out the wiki for up to date installation instructions. Time...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 24
    Data Science Notes

    Data Science Notes

    Curated collection of data science learning materials

    Data Science Notes is a large, curated collection of data science learning materials, with explanations, code snippets, and structured notes across the typical end-to-end workflow. It spans foundational math and statistics through data wrangling, visualization, machine learning, and practical project organization. The content emphasizes hands-on understanding by pairing narrative notes with runnable examples, making it useful for both self-study and classroom settings. Because it aggregates...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 25
    Quan is designed to model physical quantities in C++ programs. Advantages include automated dimensional analysis checking, automatic unit conversions, self documentation of code.
    Downloads: 3 This Week
    Last Update:
    See Project