Open Source Python Machine Learning Software

Python Machine Learning Software

View 441 business solutions

Browse free open source Python Machine Learning Software and projects below. Use the toggles on the left to filter open source Python Machine Learning Software by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Red Hat Enterprise Linux on Microsoft Azure Icon
    Red Hat Enterprise Linux on Microsoft Azure

    Deploy Red Hat Enterprise Linux on Microsoft Azure for a secure, reliable, and scalable cloud environment, fully integrated with Microsoft services.

    Red Hat Enterprise Linux (RHEL) on Microsoft Azure provides a secure, reliable, and flexible foundation for your cloud infrastructure. Red Hat Enterprise Linux on Microsoft Azure is ideal for enterprises seeking to enhance their cloud environment with seamless integration, consistent performance, and comprehensive support.
    Learn More
  • 1
    DeepFaceLive

    DeepFaceLive

    Real-time face swap for PC streaming or video calls

    You can swap your face from a webcam or the face in the video using trained face models. There is also a Face Animator module in DeepFaceLive app. You can control a static face picture using video or your own face from the camera. The quality is not the best, and requires fine face matching and tuning parameters for every face pair, but enough for funny videos and memes or real-time streaming at 25 fps using 35 TFLOPS GPU.
    Downloads: 1,021 This Week
    Last Update:
    See Project
  • 2
    YOLOv3

    YOLOv3

    Object detection architectures and models pretrained on the COCO data

    Fast, precise and easy to train, YOLOv5 has a long and successful history of real time object detection. Treat YOLOv5 as a university where you'll feed your model information for it to learn from and grow into one integrated tool. You can get started with less than 6 lines of code. with YOLOv5 and its Pytorch implementation. Have a go using our API by uploading your own image and watch as YOLOv5 identifies objects using our pretrained models. Start training your model without being an expert. Students love YOLOv5 for its simplicity and there are many quickstart examples for you to get started within seconds. Export and deploy your YOLOv5 model with just 1 line of code. There are also loads of quickstart guides and tutorials available to get your model where it needs to be. Create state of the art deep learning models with YOLOv5
    Downloads: 294 This Week
    Last Update:
    See Project
  • 3
    DeepMosaics

    DeepMosaics

    Automatically remove the mosaics in images and videos, or add mosaics

    Automatically remove the mosaics in images and videos, or add mosaics to them. This project is based on "semantic segmentation" and "Image-to-Image Translation". You can either run DeepMosaics via a pre-built binary package, or from source. Run time depends on the computer's performance (GPU version has better performance but requires CUDA to be installed). Different pre-trained models are suitable for different effects.[Introduction to pre-trained models].
    Downloads: 144 This Week
    Last Update:
    See Project
  • 4
    YOLOv5

    YOLOv5

    YOLOv5 is the world's most loved vision AI

    Introducing Ultralytics YOLOv8, the latest version of the acclaimed real-time object detection and image segmentation model. YOLOv8 is built on cutting-edge advancements in deep learning and computer vision, offering unparalleled performance in terms of speed and accuracy. Its streamlined design makes it suitable for various applications and easily adaptable to different hardware platforms, from edge devices to cloud APIs. Explore the YOLOv8 Docs, a comprehensive resource designed to help you understand and utilize its features and capabilities. Whether you are a seasoned machine learning practitioner or new to the field, this hub aims to maximize YOLOv8's potential in your projects.
    Downloads: 140 This Week
    Last Update:
    See Project
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 5
    GFPGAN

    GFPGAN

    GFPGAN aims at developing Practical Algorithms

    GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration. Colab Demo for GFPGAN; (Another Colab Demo for the original paper model) Online demo: Huggingface (return only the cropped face) Online demo: Replicate.ai (may need to sign in, return the whole image). Online demo: Baseten.co (backed by GPU, returns the whole image). We provide a clean version of GFPGAN, which can run without CUDA extensions. So that it can run in Windows or on CPU mode. GFPGAN aims at developing a Practical Algorithm for Real-world Face Restoration. It leverages rich and diverse priors encapsulated in a pretrained face GAN (e.g., StyleGAN2) for blind face restoration. Add V1.3 model, which produces more natural restoration results, and better results on very low-quality / high-quality inputs.
    Downloads: 74 This Week
    Last Update:
    See Project
  • 6
    Video-subtitle-extractor

    Video-subtitle-extractor

    A GUI tool for extracting hard-coded subtitle (hardsub) from videos

    Video hard subtitle extraction, generate srt file. There is no need to apply for a third-party API, and text recognition can be implemented locally. A deep learning-based video subtitle extraction framework, including subtitle region detection and subtitle content extraction. A GUI tool for extracting hard-coded subtitles (hardsub) from videos and generating srt files. Use local OCR recognition, no need to set up and call any API, and do not need to access online OCR services such as Baidu and Ali to complete text recognition locally. Support GPU acceleration, after GPU acceleration, you can get higher accuracy and faster extraction speed. (CLI version) No need for users to manually set the subtitle area, the project automatically detects the subtitle area through the text detection model. Filter the text in the non-subtitle area and remove the watermark (station logo) text.
    Downloads: 44 This Week
    Last Update:
    See Project
  • 7
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    Originally developed by Google for internal use, TensorFlow is an open source platform for machine learning. Available across all common operating systems (desktop, server and mobile), TensorFlow provides stable APIs for Python and C as well as APIs that are not guaranteed to be backwards compatible or are 3rd party for a variety of other languages. The platform can be easily deployed on multiple CPUs, GPUs and Google's proprietary chip, the tensor processing unit (TPU). TensorFlow expresses its computations as dataflow graphs, with each node in the graph representing an operation. Nodes take tensors—multidimensional arrays—as input and produce tensors as output. The framework allows for these algorithms to be run in C++ for better performance, while the multiple levels of APIs let the user determine how high or low they wish the level of abstraction to be in the models produced. Tensorflow can also be used for research and production with TensorFlow Extended.
    Downloads: 40 This Week
    Last Update:
    See Project
  • 8
    EasyOCR

    EasyOCR

    Ready-to-use OCR with 80+ supported languages

    Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc. EasyOCR is a python module for extracting text from image. It is a general OCR that can read both natural scene text and dense text in document. We are currently supporting 80+ languages and expanding. Second-generation models: multiple times smaller size, multiple times faster inference, additional characters and comparable accuracy to the first generation models. EasyOCR will choose the latest model by default but you can also specify which model to use. Model weights for the chosen language will be automatically downloaded or you can download them manually from the model hub. The idea is to be able to plug-in any state-of-the-art model into EasyOCR. There are a lot of geniuses trying to make better detection/recognition models, but we are not trying to be geniuses here. We just want to make their works quickly accessible to the public.
    Downloads: 30 This Week
    Last Update:
    See Project
  • 9
    KoboldAI

    KoboldAI

    Your gateway to GPT writing

    This is a browser-based front-end for AI-assisted writing with multiple local & remote AI models. It offers the standard array of tools, including Memory, Author's Note, World Info, Save & Load, adjustable AI settings, formatting options, and the ability to import existing AI Dungeon adventures. You can also turn on Adventure mode and play the game like AI Dungeon Unleashed. Stories can be played like a Novel, a text adventure game or used as a chatbot with an easy toggles to change between the multiple gameplay styles. This makes KoboldAI both a writing assistant, a game and a platform for so much more. The way you play and how good the AI will be depends on the model or service you decide to use. No matter if you want to use the free, fast power of Google Colab, your own high end graphics card, an online service you have an API key for (Like OpenAI or Inferkit) or if you rather just run it slower on your CPU you will be able to find a way to use KoboldAI that works for you.
    Leader badge
    Downloads: 518 This Week
    Last Update:
    See Project
  • Turn Your Content into Interactive Magic - For Free Icon
    Turn Your Content into Interactive Magic - For Free

    From Canva to Slides, Desmos to YouTube, Lumio works with the tech tools you are already using.

    Transform anything you share into an engaging digital experience - for free. Instantly convert your PDFs, slides, and files into dynamic, interactive sessions with built-in collaboration tools, activities, and real-time assessment. From teaching to training to team building, make every presentation unforgettable. Used by millions for education, business, and professional development.
    Start Free Forever
  • 10
    Label Studio

    Label Studio

    Label Studio is a multi-type data labeling and annotation tool

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Detect objects on image, bboxes, polygons, circular, and keypoints supported. Partition image into multiple segments. Use ML models to pre-label and optimize the process. Label Studio is an open-source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can be used to prepare raw data or improve existing training data to get more accurate ML models. The frontend part of Label Studio app lies in the frontend/ folder and written in React JSX. Multi-user labeling sign up and login, when you create an annotation it's tied to your account. Configurable label formats let you customize the visual interface to meet your specific labeling needs. Support for multiple data types including images, audio, text, HTML, time-series, and video.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 11
    RAGFlow

    RAGFlow

    RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine

    RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 12
    Basic Pitch

    Basic Pitch

    A lightweight audio-to-MIDI converter with pitch bend detection

    Basic Pitch is a Python library for Automatic Music Transcription (AMT), using lightweight neural network developed by Spotify's Audio Intelligence Lab. It's small, easy-to-use, pip install-able and npm install-able via its sibling repo. Basic Pitch may be simple, but it's is far from "basic"! basic-pitch is efficient and easy to use, and its multi pitch support, its ability to generalize across instruments, and its note accuracy compete with much larger and more resource-hungry AMT systems. Provide a compatible audio file and a basic-pitch will generate a MIDI file, complete with pitch bends. The basic pitch is instrument-agnostic and supports polyphonic instruments, so you can freely enjoy transcription of all your favorite music, no matter what instrument is used. Basic pitch works best on one instrument at a time.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 13
    Rasa

    Rasa

    Open source machine learning framework to automate text conversations

    Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual assistants on Facebook Messenger, Slack, Google Hangouts, Webex Teams, Microsoft Bot Framework, Rocket.Chat, Mattermost, Telegram, and Twilio or on your own custom conversational channels. Rasa helps you build contextual assistants capable of having layered conversations with lots of back-and-forths. In order for a human to have a meaningful exchange with a contextual assistant, the assistant needs to be able to use context to build on things that were previously discussed. Rasa enables you to build assistants that can do this in a scalable way. Rasa uses Poetry for packaging and dependency management. If you want to build it from the source, you have to install Poetry first. By default, Poetry will try to use the currently activated Python version to create the virtual environment for the current project automatically.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 14
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on images such as edge detection and color clustering have also been added. GIMP-ML relies on standard Python packages such as numpy, scikit-image, pillow, pytorch, open-cv, scipy. In addition, GIMP-ML also aims to bring the benefits of using deep learning networks used for computer vision tasks to routine image processing workflows.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 15
    Gradio

    Gradio

    Create UIs for your machine learning model in Python in 3 minutes

    Gradio is the fastest way to demo your machine learning model with a friendly web interface so that anyone can use it, anywhere! Gradio can be installed with pip. Creating a Gradio interface only requires adding a couple lines of code to your project. You can choose from a variety of interface types to interface your function. Gradio can be embedded in Python notebooks or presented as a webpage. A Gradio interface can automatically generate a public link you can share with colleagues that lets them interact with the model on your computer remotely from their own devices. Once you've created an interface, you can permanently host it on Hugging Face. Hugging Face Spaces will host the interface on its servers and provide you with a link you can share. One of the best ways to share your machine learning model, API, or data science workflow with others is to create an interactive demo that allows your users or colleagues to try out the demo in their browsers.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 16
    spaCy models

    spaCy models

    Models for the spaCy Natural Language Processing (NLP) library

    spaCy is designed to help you do real work, to build real products, or gather real insights. The library respects your time, and tries to avoid wasting it. It's easy to install, and its API is simple and productive. spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. If your application needs to process entire web dumps, spaCy is the library you want to be using. Since its release in 2015, spaCy has become an industry standard with a huge ecosystem. Choose from a variety of plugins, integrate with your machine learning stack and build custom components and workflows.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 17
    ChatterBot

    ChatterBot

    Machine learning, conversational dialog engine for creating chat bots

    ChatterBot is a Python library that makes it easy to generate automated responses to a user’s input. ChatterBot uses a selection of machine learning algorithms to produce different types of responses. This makes it easy for developers to create chat bots and automate conversations with users. For more details about the ideas and concepts behind ChatterBot see the process flow diagram. The language independent design of ChatterBot allows it to be trained to speak any language. Additionally, the machine-learning nature of ChatterBot allows an agent instance to improve it’s own knowledge of possible responses as it interacts with humans and other sources of informative data. An untrained instance of ChatterBot starts off with no knowledge of how to communicate. Each time a user enters a statement, the library saves the text that they entered and the text that the statement was in response to. As ChatterBot receives more input the number of responses that it can reply increase.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 18

    Face Recognition

    World's simplest facial recognition api for Python & the command line

    Face Recognition is the world's simplest face recognition library. It allows you to recognize and manipulate faces from Python or from the command line using dlib's (a C++ toolkit containing machine learning algorithms and tools) state-of-the-art face recognition built with deep learning. Face Recognition is highly accurate and is able to do a number of things. It can find faces in pictures, manipulate facial features in pictures, identify faces in pictures, and do face recognition on a folder of images from the command line. It could even do real-time face recognition and blur faces on videos when used with other Python libraries.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 19
    Keras

    Keras

    Python-based neural networks API

    Python Deep Learning library
    Downloads: 8 This Week
    Last Update:
    See Project
  • 20
    deepface

    deepface

    A Lightweight Face Recognition and Facial Attribute Analysis

    DeepFace is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, FaceNet, OpenFace, DeepFace, DeepID, ArcFace, Dlib, SFace and GhostFaceNet. Experiments show that human beings have 97.53% accuracy on facial recognition tasks whereas those models already reached and passed that accuracy level.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 21
    tsai

    tsai

    Time series Timeseries Deep Learning Machine Learning Pytorch fastai

    tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series tasks like classification, regression, forecasting, and imputation. Starting with tsai 0.3.0 tsai will only install hard dependencies. Other soft dependencies (which are only required for selected tasks) will not be installed by default (this is the recommended approach. If you require any of the dependencies that is not installed, tsai will ask you to install it when necessary) We've also added a new PredictionDynamics callback that will display the predictions during training. This is the type of output you would get in a classification task. New tutorial notebook on how to train your model with larger-than-memory datasets in less time achieving up to 100% GPU usage! See our new tutorial notebook on how to track your experiments with Weights & Biases
    Downloads: 8 This Week
    Last Update:
    See Project
  • 22
    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras.

    keras-rl implements some state-of-the-art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course, you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. Documentation is available online.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 23
    DeepLabCut

    DeepLabCut

    Implementation of DeepLabCut

    DeepLabCut™ is an efficient method for 2D and 3D markerless pose estimation based on transfer learning with deep neural networks that achieves excellent results (i.e. you can match human labeling accuracy) with minimal training data (typically 50-200 frames). We demonstrate the versatility of this framework by tracking various body parts in multiple species across a broad collection of behaviors. The package is open source, fast, robust, and can be used to compute 3D pose estimates or for multi-animals. Please see the original paper and the latest work below! This package is collaboratively developed by the Mathis Group & Mathis Lab at EPFL (releases prior to 2.1.9 were developed at Harvard University). The code is freely available and easy to install in a few clicks with Anaconda (and pypi). DeepLabCut is an open-source Python package for animal pose estimation.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 24
    Paperless-ngx

    Paperless-ngx

    A community-supported supercharged version of paperless

    Paperless-ngx is a community-supported open-source document management system that transforms your physical documents into a searchable online archive so you can keep, well, less paper.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 25
    MLflow

    MLflow

    Open source platform for the machine learning lifecycle

    MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).
    Downloads: 5 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.