Suggested Categories:

Data Science Software
Data science software is a collection of tools and platforms designed to facilitate the analysis, interpretation, and visualization of large datasets, helping data scientists derive insights and build predictive models. These tools support various data science processes, including data cleaning, statistical analysis, machine learning, deep learning, and data visualization. Common features of data science software include data manipulation, algorithm libraries, model training environments, and integration with big data solutions. Data science software is widely used across industries like finance, healthcare, marketing, and technology to improve decision-making, optimize processes, and predict trends.
Computer Vision Software
Computer vision software allows machines to interpret and analyze visual data from images or videos, enabling applications like object detection, image recognition, and video analysis. It utilizes advanced algorithms and deep learning techniques to understand and classify visual information, often mimicking human vision processes. These tools are essential in fields like autonomous vehicles, facial recognition, medical imaging, and augmented reality, where accurate interpretation of visual input is crucial. Computer vision software often includes features for image preprocessing, feature extraction, and model training to improve the accuracy of visual analysis. Overall, it enables machines to "see" and make informed decisions based on visual data, revolutionizing industries with automation and intelligence.
AI Coding Assistants
AI coding assistants are software tools that use artificial intelligence to help developers write, debug, and optimize code more efficiently. These assistants typically offer features like code auto-completion, error detection, suggestion of best practices, and code refactoring. AI coding assistants often integrate with integrated development environments (IDEs) and code editors to provide real-time feedback and recommendations based on the context of the code being written. By leveraging machine learning and natural language processing, these tools can help developers increase productivity, reduce errors, and learn new programming techniques.
Code Search Engines
Code search engines are specialized search tools that allow developers to search through codebases, repositories, or libraries to find specific functions, variables, classes, or code snippets. These tools are designed to help developers quickly locate relevant parts of code, analyze code quality, and identify reusable components. Code search engines often support various programming languages, providing search capabilities like syntax highlighting, filtering by file types or attributes, and even advanced search options using regular expressions. They are particularly useful for navigating large codebases, enhancing code reuse, and improving overall productivity in software development projects.
Artificial Intelligence Software
Artificial Intelligence (AI) software is computer technology designed to simulate human intelligence. It can be used to perform tasks that require cognitive abilities, such as problem-solving, data analysis, visual perception and language translation. AI applications range from voice recognition and virtual assistants to autonomous vehicles and medical diagnostics.
AI Infrastructure Platforms
An AI infrastructure platform is a system that provides infrastructure, compute, tools, and components for the development, training, testing, deployment, and maintenance of artificial intelligence models and applications. It usually features automated model building pipelines, support for large data sets, integration with popular software development environments, tools for distributed training stacks, and the ability to access cloud APIs. By leveraging such an infrastructure platform, developers can easily create end-to-end solutions where data can be collected efficiently and models can be quickly trained in parallel on distributed hardware. The use of such platforms enables a fast development cycle that helps companies get their products to market quickly.
View more categories (6) for "python prolog"
  • 1
    fal

    fal

    fal.ai

    ...Automatically scale up to hundreds of GPUs and scale down back to 0 GPUs when idle. Pay by the second only when your code is running. You can start using fal on any Python project by just importing fal and wrapping existing functions with the decorator.
    Starting Price: $0.00111 per second
  • 2
    NVIDIA RAPIDS
    ...Accelerate your Python data science toolchain with minimal code changes and no new tools to learn. Increase machine learning model accuracy by iterating on models faster and deploying them more frequently.
  • 3
    JarvisLabs.ai

    JarvisLabs.ai

    JarvisLabs.ai

    We have set up all the infrastructure, computing, and software (Cuda, Frameworks) required for you to train and deploy your favorite deep-learning models. You can spin up GPU/CPU-powered instances directly from your browser or automate it through our Python API.
    Starting Price: $1,440 per month
  • 4
    Anyscale

    Anyscale

    Anyscale

    Anyscale is a unified AI platform built around Ray, the world’s leading AI compute engine, designed to help teams build, deploy, and scale AI and Python applications efficiently. The platform offers RayTurbo, an optimized version of Ray that delivers up to 4.5x faster data workloads, 6.1x cost savings on large language model inference, and up to 90% lower costs through elastic training and spot instances. Anyscale provides a seamless developer experience with integrated tools like VSCode and Jupyter, automated dependency management, and expert-built app templates. ...
    Starting Price: $0.00006 per minute
  • 5
    NVIDIA Brev
    ...The platform also offers prebuilt Launchables featuring the latest AI frameworks, microservices, and NVIDIA Blueprints to jumpstart development. NVIDIA Brev provides a seamless GPU sandbox with support for CUDA, Python, and Jupyter Lab accessible via browser or CLI. This enables developers to fine-tune, train, and deploy AI models with minimal friction and maximum flexibility.
    Starting Price: $0.04 per hour
  • 6
    E2B

    E2B

    E2B

    ...It enables developers to integrate code interpretation capabilities into their AI applications and agents, facilitating the execution of dynamic code snippets in a controlled environment. The platform supports multiple programming languages, including Python and JavaScript, and offers SDKs for seamless integration. E2B utilizes Firecracker microVMs to ensure robust security and isolation for code execution. Developers can deploy E2B within their own infrastructure or utilize the provided cloud service. The platform is designed to be LLM-agnostic, allowing compatibility with various large language models such as OpenAI, Llama, Anthropic, and Mistral. ...
    Starting Price: Free
  • 7
    Azure Data Science Virtual Machines
    ...Examples, templates and sample notebooks built or tested by Microsoft are provided on the VMs to enable easy onboarding to the various tools and capabilities such as Neural Networks (PYTorch, Tensorflow, etc.), Data Wrangling, R, Python, Julia, and SQL Server.
    Starting Price: $0.005
  • 8
    Griptape

    Griptape

    Griptape AI

    ...Griptape gives developers everything they need to build, deploy, and scale retrieval-driven AI-powered applications, from the development framework to the execution runtime. 🎢 Griptape is a modular Python framework for building AI-powered applications that securely connect to your enterprise data and APIs. It offers developers the ability to maintain control and flexibility at every step. ☁️ Griptape Cloud is a one-stop shop to hosting your AI structures, whether they are built with Griptape, another framework, or call directly to the LLMs themselves. ...
    Starting Price: Free
  • 9
    Amazon SageMaker JumpStart
    ...SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis.
  • 10
    Azure Machine Learning
    ...Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
  • Previous
  • You're on page 1
  • Next