Alternatives to JAX

Compare JAX alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to JAX in 2025. Compare features, ratings, user reviews, pricing, and more from JAX competitors and alternatives in order to make an informed decision for your business.

  • 1
    Vertex AI
    Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
    Compare vs. JAX View Software
    Visit Website
  • 2
    CoreWeave

    CoreWeave

    CoreWeave

    CoreWeave is a cloud infrastructure provider specializing in GPU-based compute solutions tailored for AI workloads. The platform offers scalable, high-performance GPU clusters that optimize the training and inference of AI models, making it ideal for industries like machine learning, visual effects (VFX), and high-performance computing (HPC). CoreWeave provides flexible storage, networking, and managed services to support AI-driven businesses, with a focus on reliability, cost efficiency, and enterprise-grade security. The platform is used by AI labs, research organizations, and businesses to accelerate their AI innovations.
  • 3
    TensorFlow

    TensorFlow

    TensorFlow

    An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.
  • 4
    Apache Mahout

    Apache Mahout

    Apache Software Foundation

    Apache Mahout is a powerful, scalable, and versatile machine learning library designed for distributed data processing. It offers a comprehensive set of algorithms for various tasks, including classification, clustering, recommendation, and pattern mining. Built on top of the Apache Hadoop ecosystem, Mahout leverages MapReduce and Spark to enable data processing on large-scale datasets. Apache Mahout(TM) is a distributed linear algebra framework and mathematically expressive Scala DSL designed to let mathematicians, statisticians, and data scientists quickly implement their own algorithms. Apache Spark is the recommended out-of-the-box distributed back-end or can be extended to other distributed backends. Matrix computations are a fundamental part of many scientific and engineering applications, including machine learning, computer vision, and data analysis. Apache Mahout is designed to handle large-scale data processing by leveraging the power of Hadoop and Spark.
  • 5
    NumPy

    NumPy

    NumPy

    Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today. NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries. The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code. NumPy’s high level syntax makes it accessible and productive for programmers from any background or experience level. NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant.
    Starting Price: Free
  • 6
    DeepSpeed

    DeepSpeed

    Microsoft

    DeepSpeed is an open source deep learning optimization library for PyTorch. It's designed to reduce computing power and memory use, and to train large distributed models with better parallelism on existing computer hardware. DeepSpeed is optimized for low latency, high throughput training. DeepSpeed can train DL models with over a hundred billion parameters on the current generation of GPU clusters. It can also train up to 13 billion parameters in a single GPU. DeepSpeed is developed by Microsoft and aims to offer distributed training for large-scale models. It's built on top of PyTorch, which specializes in data parallelism.
    Starting Price: Free
  • 7
    Microsoft Cognitive Toolkit
    The Microsoft Cognitive Toolkit (CNTK) is an open-source toolkit for commercial-grade distributed deep learning. It describes neural networks as a series of computational steps via a directed graph. CNTK allows the user to easily realize and combine popular model types such as feed-forward DNNs, convolutional neural networks (CNNs) and recurrent neural networks (RNNs/LSTMs). CNTK implements stochastic gradient descent (SGD, error backpropagation) learning with automatic differentiation and parallelization across multiple GPUs and servers. CNTK can be included as a library in your Python, C#, or C++ programs, or used as a standalone machine-learning tool through its own model description language (BrainScript). In addition you can use the CNTK model evaluation functionality from your Java programs. CNTK supports 64-bit Linux or 64-bit Windows operating systems. To install you can either choose pre-compiled binary packages, or compile the toolkit from the source provided in GitHub.
  • 8
    Gensim

    Gensim

    Radim Řehůřek

    Gensim is a free, open source Python library designed for unsupervised topic modeling and natural language processing, focusing on large-scale semantic modeling. It enables the training of models like Word2Vec, FastText, Latent Semantic Analysis (LSA), and Latent Dirichlet Allocation (LDA), facilitating the representation of documents as semantic vectors and the discovery of semantically related documents. Gensim is optimized for performance with highly efficient implementations in Python and Cython, allowing it to process arbitrarily large corpora using data streaming and incremental algorithms without loading the entire dataset into RAM. It is platform-independent, running on Linux, Windows, and macOS, and is licensed under the GNU LGPL, promoting both personal and commercial use. The library is widely adopted, with thousands of companies utilizing it daily, over 2,600 academic citations, and more than 1 million downloads per week.
    Starting Price: Free
  • 9
    PyTorch

    PyTorch

    PyTorch

    Transition seamlessly between eager and graph modes with TorchScript, and accelerate the path to production with TorchServe. Scalable distributed training and performance optimization in research and production is enabled by the torch-distributed backend. A rich ecosystem of tools and libraries extends PyTorch and supports development in computer vision, NLP and more. PyTorch is well supported on major cloud platforms, providing frictionless development and easy scaling. Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, 1.10 builds that are generated nightly. Please ensure that you have met the prerequisites (e.g., numpy), depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies.
  • 10
    Chainer

    Chainer

    Chainer

    A powerful, flexible, and intuitive framework for neural networks. Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort. Chainer supports various network architectures including feed-forward nets, convnets, recurrent nets and recursive nets. It also supports per-batch architectures. Forward computation can include any control flow statements of Python without lacking the ability of backpropagation. It makes code intuitive and easy to debug. Comes with ChainerRLA, a library that implements various state-of-the-art deep reinforcement algorithms. Also, with ChainerCVA, a collection of tools to train and run neural networks for computer vision tasks. Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort.
  • 11
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 12
    Amazon SageMaker HyperPod
    Amazon SageMaker HyperPod is a purpose-built, resilient compute infrastructure that simplifies and accelerates the development of large AI and machine-learning models by handling distributed training, fine-tuning, and inference across clusters with hundreds or thousands of accelerators, including GPUs and AWS Trainium chips. It removes the heavy lifting involved in building and managing ML infrastructure by providing persistent clusters that automatically detect and repair hardware failures, automatically resume workloads, and optimize checkpointing to minimize interruption risk, enabling months-long training jobs without disruption. HyperPod offers centralized resource governance; administrators can set priorities, quotas, and task-preemption rules so compute resources are allocated efficiently among tasks and teams, maximizing utilization and reducing idle time. It also supports “recipes” and pre-configured settings to quickly fine-tune or customize foundation models.
  • 13
    scikit-learn

    scikit-learn

    scikit-learn

    Scikit-learn provides simple and efficient tools for predictive data analysis. Scikit-learn is a robust, open source machine learning library for the Python programming language, designed to provide simple and efficient tools for data analysis and modeling. Built on the foundations of popular scientific libraries like NumPy, SciPy, and Matplotlib, scikit-learn offers a wide range of supervised and unsupervised learning algorithms, making it an essential toolkit for data scientists, machine learning engineers, and researchers. The library is organized into a consistent and flexible framework, where various components can be combined and customized to suit specific needs. This modularity makes it easy for users to build complex pipelines, automate repetitive tasks, and integrate scikit-learn into larger machine-learning workflows. Additionally, the library’s emphasis on interoperability ensures that it works seamlessly with other Python libraries, facilitating smooth data processing.
    Starting Price: Free
  • 14
    MXNet

    MXNet

    The Apache Software Foundation

    A hybrid front-end seamlessly transitions between Gluon eager imperative mode and symbolic mode to provide both flexibility and speed. Scalable distributed training and performance optimization in research and production is enabled by the dual parameter server and Horovod support. Deep integration into Python and support for Scala, Julia, Clojure, Java, C++, R and Perl. A thriving ecosystem of tools and libraries extends MXNet and enables use-cases in computer vision, NLP, time series and more. Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision-making process have stabilized in a manner consistent with other successful ASF projects. Join the MXNet scientific community to contribute, learn, and get answers to your questions.
  • 15
    Accord.NET Framework

    Accord.NET Framework

    Accord.NET Framework

    The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building production-grade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive documentation and wiki helps fill in the details.
  • 16
    IBM Watson Machine Learning Accelerator
    Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
  • 17
    MindSpore

    MindSpore

    MindSpore

    ​MindSpore is an open source deep learning framework developed by Huawei, designed to facilitate easy development, efficient execution, and deployment across cloud, edge, and device environments. It supports multiple programming paradigms, including both object-oriented and functional programming, allowing users to define AI networks using native Python syntax. MindSpore offers a unified programming experience that seamlessly integrates dynamic and static graphs, enhancing compatibility and performance. It is optimized for various hardware platforms, including CPUs, GPUs, and NPUs, and is particularly well-suited for Huawei's Ascend AI processors. MindSpore's architecture comprises four layers, the model layer, MindExpression (ME) for AI model development, MindCompiler for optimization, and the runtime layer supporting device-edge-cloud collaboration. Additionally, MindSpore provides a rich ecosystem of domain-specific toolkits and extension packages, such as MindSpore NLP.
    Starting Price: Free
  • 18
    Nebius

    Nebius

    Nebius

    Training-ready platform with NVIDIA® H100 Tensor Core GPUs. Competitive pricing. Dedicated support. Built for large-scale ML workloads: Get the most out of multihost training on thousands of H100 GPUs of full mesh connection with latest InfiniBand network up to 3.2Tb/s per host. Best value for money: Save at least 50% on your GPU compute compared to major public cloud providers*. Save even more with reserves and volumes of GPUs. Onboarding assistance: We guarantee a dedicated engineer support to ensure seamless platform adoption. Get your infrastructure optimized and k8s deployed. Fully managed Kubernetes: Simplify the deployment, scaling and management of ML frameworks on Kubernetes and use Managed Kubernetes for multi-node GPU training. Marketplace with ML frameworks: Explore our Marketplace with its ML-focused libraries, applications, frameworks and tools to streamline your model training. Easy to use. We provide all our new users with a 1-month trial period.
    Starting Price: $2.66/hour
  • 19
    Baidu AI Cloud Machine Learning (BML)
    Baidu AI Cloud Machine Learning (BML), an end-to-end machine learning platform designed for enterprises and AI developers, can accomplish one-stop data pre-processing, model training, and evaluation, and service deployments, among others. The Baidu AI Cloud AI development platform BML is an end-to-end AI development and deployment platform. Based on the BML, users can accomplish the one-stop data pre-processing, model training and evaluation, service deployment, and other works. The platform provides a high-performance cluster training environment, massive algorithm frameworks and model cases, as well as easy-to-operate prediction service tools. Thus, it allows users to focus on the model and algorithm and obtain excellent model and prediction results. The fully hosted interactive programming environment realizes the data processing and code debugging. The CPU instance supports users to install a third-party software library and customize the environment, ensuring flexibility.
  • 20
    ML Console

    ML Console

    ML Console

    ​ML Console is a web-based application that enables users to build powerful machine learning models without writing a single line of code. Designed for accessibility, it allows individuals from various backgrounds, including marketing professionals, e-commerce store owners, and larger enterprises, to create AI models in less than a minute. It operates entirely within the user's browser, ensuring that data remains local and secure. By leveraging modern web technologies like WebAssembly and WebGL, ML Console achieves training speeds comparable to traditional Python-based methods. Its user-friendly interface simplifies the machine learning process, making it approachable for users with no advanced AI expertise. Additionally, ML Console is free to use, eliminating barriers to entry for those interested in exploring machine learning solutions. ​
    Starting Price: Free
  • 21
    Amazon SageMaker Model Training
    Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
  • 22
    neptune.ai

    neptune.ai

    neptune.ai

    Neptune.ai is a machine learning operations (MLOps) platform designed to streamline the tracking, organizing, and sharing of experiments and model-building processes. It provides a comprehensive environment for data scientists and machine learning engineers to log, visualize, and compare model training runs, datasets, hyperparameters, and metrics in real-time. Neptune.ai integrates easily with popular machine learning libraries, enabling teams to efficiently manage both research and production workflows. With features that support collaboration, versioning, and experiment reproducibility, Neptune.ai enhances productivity and helps ensure that machine learning projects are transparent and well-documented across their lifecycle.
    Starting Price: $49 per month
  • 23
    Intel oneAPI HPC Toolkit
    High-performance computing (HPC) is at the core of AI, machine learning, and deep learning applications. The Intel® oneAPI HPC Toolkit (HPC Kit) delivers what developers need to build, analyze, optimize, and scale HPC applications with the latest techniques in vectorization, multithreading, multi-node parallelization, and memory optimization. This toolkit is an add-on to the Intel® oneAPI Base Toolkit, which is required for full functionality. It also includes access to the Intel® Distribution for Python*, the Intel® oneAPI DPC++/C++ C¿compiler, powerful data-centric libraries, and advanced analysis tools. Get what you need to build, test, and optimize your oneAPI projects for free. With an Intel® Developer Cloud account, you get 120 days of access to the latest Intel® hardware, CPUs, GPUs, FPGAs, and Intel oneAPI tools and frameworks. No software downloads. No configuration steps, and no installations.
  • 24
    CentML

    CentML

    CentML

    CentML accelerates Machine Learning workloads by optimizing models to utilize hardware accelerators, like GPUs or TPUs, more efficiently and without affecting model accuracy. Our technology boosts training and inference speed, lowers compute costs, increases your AI-powered product margins, and boosts your engineering team's productivity. Software is no better than the team who built it. Our team is stacked with world-class machine learning and system researchers and engineers. Focus on your AI products and let our technology take care of optimum performance and lower cost for you.
  • 25
    Tinker

    Tinker

    Thinking Machines Lab

    Tinker is a training API designed for researchers and developers that allows full control over model fine-tuning while abstracting away the infrastructure complexity. It supports primitives and enables users to build custom training loops, supervision logic, and reinforcement learning flows. It currently supports LoRA fine-tuning on open-weight models across both LLama and Qwen families, ranging from small models to large mixture-of-experts architectures. Users write Python code to handle data, loss functions, and algorithmic logic; Tinker handles scheduling, resource allocation, distributed training, and failure recovery behind the scenes. The service lets users download model weights at different checkpoints and doesn’t force them to manage the compute environment. Tinker is delivered as a managed offering; training jobs run on Thinking Machines’ internal GPU infrastructure, freeing users from cluster orchestration.
  • 26
    ML.NET

    ML.NET

    Microsoft

    ML.NET is a free, open source, and cross-platform machine learning framework designed for .NET developers to build custom machine learning models using C# or F# without leaving the .NET ecosystem. It supports various machine learning tasks, including classification, regression, clustering, anomaly detection, and recommendation systems. ML.NET integrates with other popular ML frameworks like TensorFlow and ONNX, enabling additional scenarios such as image classification and object detection. It offers tools like Model Builder and the ML.NET CLI, which utilize Automated Machine Learning (AutoML) to simplify the process of building, training, and deploying high-quality models. These tools automatically explore different algorithms and settings to find the best-performing model for a given scenario.
    Starting Price: Free
  • 27
    TensorWave

    TensorWave

    TensorWave

    TensorWave is an AI and high-performance computing (HPC) cloud platform purpose-built for performance, powered exclusively by AMD Instinct Series GPUs. It delivers high-bandwidth, memory-optimized infrastructure that scales with your most demanding models, training, or inference. TensorWave offers access to AMD’s top-tier GPUs within seconds, including the MI300X and MI325X accelerators, which feature industry-leading memory capacity and bandwidth, with up to 256GB of HBM3E supporting 6.0TB/s. TensorWave's architecture includes UEC-ready capabilities that optimize the next generation of Ethernet for AI and HPC networking, and direct liquid cooling that delivers exceptional total cost of ownership with up to 51% data center energy cost savings. TensorWave provides high-speed network storage, ensuring game-changing performance, security, and scalability for AI pipelines. It offers plug-and-play compatibility with a wide range of tools and platforms, supporting models, libraries, etc.
  • 28
    Perception Platform

    Perception Platform

    Intuition Machines

    The Perception Platform by Intuition Machines automates the entire lifecycle of machine learning models—from training to deployment and continuous improvement. Featuring advanced active learning, the platform enables models to evolve by learning from new data and human interaction, enhancing accuracy while reducing manual oversight. Robust APIs facilitate seamless integration with existing systems, making it scalable and easy to adopt across diverse AI/ML applications.
  • 29
    Torch

    Torch

    Torch

    Torch is a scientific computing framework with wide support for machine learning algorithms that puts GPUs first. It is easy to use and efficient, thanks to an easy and fast scripting language, LuaJIT, and an underlying C/CUDA implementation. The goal of Torch is to have maximum flexibility and speed in building your scientific algorithms while making the process extremely simple. Torch comes with a large ecosystem of community-driven packages in machine learning, computer vision, signal processing, parallel processing, image, video, audio and networking among others, and builds on top of the Lua community. At the heart of Torch are the popular neural network and optimization libraries which are simple to use, while having maximum flexibility in implementing complex neural network topologies. You can build arbitrary graphs of neural networks, and parallelize them over CPUs and GPUs in an efficient manner.
  • 30
    broot

    broot

    broot

    The ROOT data analysis framework is used much in High Energy Physics (HEP) and has its own output format (.root). ROOT can be easily interfaced with software written in C++. For software tools in Python there exists pyROOT. Unfortunately, pyROOT does not work well with python3.4. broot is a small library that converts data in python numpy ndarrays to ROOT files containing trees with a branch for each array. The goal of this library is to provide a generic way of writing python numpy datastructures to ROOT files. The library should be portable and supports both python2, python3, ROOT v5 and ROOT v6 (requiring no modifications on the ROOT part, just the default installation). Installation of the library should only require a user to compile to library once or install it as a python package.
    Starting Price: Free
  • 31
    OPAQUE

    OPAQUE

    OPAQUE Systems

    OPAQUE Systems offers a leading confidential AI platform that enables organizations to securely run AI, machine learning, and analytics workflows on sensitive data without compromising privacy or compliance. Their technology allows enterprises to unleash AI innovation risk-free by leveraging confidential computing and cryptographic verification, ensuring data sovereignty and regulatory adherence. OPAQUE integrates seamlessly into existing AI stacks via APIs, notebooks, and no-code solutions, eliminating the need for costly infrastructure changes. The platform provides verifiable audit trails and attestation for complete transparency and governance. Customers like Ant Financial have benefited by using previously inaccessible data to improve credit risk models. With OPAQUE, companies accelerate AI adoption while maintaining uncompromising security and control.
  • 32
    AWS Deep Learning AMIs
    AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data.
  • 33
    Neutone Morpho
    We’re pleased to present Neutone Morpho, a real-time tone morphing plugin. Our cutting-edge machine-learning technology can transform any sound into something new and inspiring. Neutone Morpho directly processes audio, capturing even the subtlest details from your input. With our pre-trained AI models, you can transform any incoming audio into the characteristics, or “style”, of the sounds that the model is based on. In real-time. Sometimes this leads to surprising outcomes. At the core of Neutone Morpho are the Morpho AI models, where the magic happens. You can interact with a loaded Morpho model in two modes to influence the tone-morphing process. We're giving you a fully working version for free to test out. There is no time limit, so feel free to play around with it as much as you want. If you enjoy it and want to use more models or try out custom model training, go ahead and upgrade to the full version.
    Starting Price: $99 one-time payment
  • 34
    Dask

    Dask

    Dask

    Dask is open source and freely available. It is developed in coordination with other community projects like NumPy, pandas, and scikit-learn. Dask uses existing Python APIs and data structures to make it easy to switch between NumPy, pandas, scikit-learn to their Dask-powered equivalents. Dask's schedulers scale to thousand-node clusters and its algorithms have been tested on some of the largest supercomputers in the world. But you don't need a massive cluster to get started. Dask ships with schedulers designed for use on personal machines. Many people use Dask today to scale computations on their laptop, using multiple cores for computation and their disk for excess storage. Dask exposes lower-level APIs letting you build custom systems for in-house applications. This helps open source leaders parallelize their own packages and helps business leaders scale custom business logic.
  • 35
    Alibaba Cloud Machine Learning Platform for AI
    An end-to-end platform that provides various machine learning algorithms to meet your data mining and analysis requirements. Machine Learning Platform for AI provides end-to-end machine learning services, including data processing, feature engineering, model training, model prediction, and model evaluation. Machine learning platform for AI combines all of these services to make AI more accessible than ever. Machine Learning Platform for AI provides a visualized web interface allowing you to create experiments by dragging and dropping different components to the canvas. Machine learning modeling is a simple, step-by-step procedure, improving efficiencies and reducing costs when creating an experiment. Machine Learning Platform for AI provides more than one hundred algorithm components, covering such scenarios as regression, classification, clustering, text analysis, finance, and time series.
    Starting Price: $1.872 per hour
  • 36
    Horovod

    Horovod

    Horovod

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve.
    Starting Price: Free
  • 37
    Tencent Cloud TI Platform
    Tencent Cloud TI Platform is a one-stop machine learning service platform designed for AI engineers. It empowers AI development throughout the entire process from data preprocessing to model building, model training, model evaluation, and model service. Preconfigured with diverse algorithm components, it supports multiple algorithm frameworks to adapt to different AI use cases. Tencent Cloud TI Platform delivers a one-stop machine learning experience that covers a complete and closed-loop workflow from data preprocessing to model building, model training, and model evaluation. With Tencent Cloud TI Platform, even AI beginners can have their models constructed automatically, making it much easier to complete the entire training process. Tencent Cloud TI Platform's auto-tuning tool can also further enhance the efficiency of parameter tuning. Tencent Cloud TI Platform allows CPU/GPU resources to elastically respond to different computing power needs with flexible billing modes.
  • 38
    Nendo

    Nendo

    Nendo

    Nendo is the AI audio tool suite that allows you to effortlessly develop & use audio apps that amplify efficiency & creativity across all aspects of audio production. Time-consuming issues with machine learning and audio processing code are a thing of the past. AI is a transformative leap for audio production, amplifying efficiency and creativity in industries where audio is key. But building custom AI Audio solutions and operating them at scale is challenging. Nendo cloud empowers developers and businesses to seamlessly deploy Nendo applications, utilize premium AI audio models through APIs, and efficiently manage workloads at scale. From batch processing, model training, and inference to library management, and beyond - Nendo cloud is your solution.
  • 39
    Intel Tiber AI Cloud
    Intel® Tiber™ AI Cloud is a powerful platform designed to scale AI workloads with advanced computing resources. It offers specialized AI processors, such as the Intel Gaudi AI Processor and Max Series GPUs, to accelerate model training, inference, and deployment. Optimized for enterprise-level AI use cases, this cloud solution enables developers to build and fine-tune models with support for popular libraries like PyTorch. With flexible deployment options, secure private cloud solutions, and expert support, Intel Tiber™ ensures seamless integration, fast deployment, and enhanced model performance.
    Starting Price: Free
  • 40
    NVIDIA RAPIDS
    The RAPIDS suite of software libraries, built on CUDA-X AI, gives you the freedom to execute end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level compute optimization, but exposes that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces. RAPIDS also focuses on common data preparation tasks for analytics and data science. This includes a familiar DataFrame API that integrates with a variety of machine learning algorithms for end-to-end pipeline accelerations without paying typical serialization costs. RAPIDS also includes support for multi-node, multi-GPU deployments, enabling vastly accelerated processing and training on much larger dataset sizes. Accelerate your Python data science toolchain with minimal code changes and no new tools to learn. Increase machine learning model accuracy by iterating on models faster and deploying them more frequently.
  • 41
    Compute with Hivenet
    Compute with Hivenet is the world's first truly distributed cloud computing platform, providing reliable and affordable on-demand computing power from a certified network of contributors. Designed for AI model training, inference, and other compute-intensive tasks, it provides secure, scalable, and on-demand GPU resources at up to 70% cost savings compared to traditional cloud providers. Powered by RTX 4090 GPUs, Compute rivals top-tier platforms, offering affordable, transparent pricing with no hidden fees. Compute is part of the Hivenet ecosystem, a comprehensive suite of distributed cloud solutions that prioritizes sustainability, security, and affordability. Through Hivenet, users can leverage their underutilized hardware to contribute to a powerful, distributed cloud infrastructure.
    Starting Price: $0.10/hour
  • 42
    Milvus

    Milvus

    Zilliz

    Vector database built for scalable similarity search. Open-source, highly scalable, and blazing fast. Store, index, and manage massive embedding vectors generated by deep neural networks and other machine learning (ML) models. With Milvus vector database, you can create a large-scale similarity search service in less than a minute. Simple and intuitive SDKs are also available for a variety of different languages. Milvus is hardware efficient and provides advanced indexing algorithms, achieving a 10x performance boost in retrieval speed. Milvus vector database has been battle-tested by over a thousand enterprise users in a variety of use cases. With extensive isolation of individual system components, Milvus is highly resilient and reliable. The distributed and high-throughput nature of Milvus makes it a natural fit for serving large-scale vector data. Milvus vector database adopts a systemic approach to cloud-nativity, separating compute from storage.
    Starting Price: Free
  • 43
    Huawei Cloud ModelArts
    ​ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration.
  • 44
    NVIDIA TensorRT
    NVIDIA TensorRT is an ecosystem of APIs for high-performance deep learning inference, encompassing an inference runtime and model optimizations that deliver low latency and high throughput for production applications. Built on the CUDA parallel programming model, TensorRT optimizes neural network models trained on all major frameworks, calibrating them for lower precision with high accuracy, and deploying them across hyperscale data centers, workstations, laptops, and edge devices. It employs techniques such as quantization, layer and tensor fusion, and kernel tuning on all types of NVIDIA GPUs, from edge devices to PCs to data centers. The ecosystem includes TensorRT-LLM, an open source library that accelerates and optimizes inference performance of recent large language models on the NVIDIA AI platform, enabling developers to experiment with new LLMs for high performance and quick customization through a simplified Python API.
    Starting Price: Free
  • 45
    Ray

    Ray

    Anyscale

    Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.
    Starting Price: Free
  • 46
    PyQtGraph

    PyQtGraph

    PyQtGraph

    PyQtGraph is a pure-python graphics and GUI library built on PyQt/PySide and NumPy. It is intended for use in mathematics/scientific/engineering applications. Despite being written entirely in python, the library is very fast due to its heavy leverage of NumPy for number crunching and Qt's GraphicsView framework for fast display. PyQtGraph is distributed under the MIT open-source license. Basic 2D plotting in interactive view boxes. Line and scatter plots. Data can be panned/scaled by mouse. Fast drawing for real-time data display and interaction. Displays most data types (int or float; any bit depth; RGB, RGBA, or luminance). Functions for slicing multidimensional images at arbitrary angles (great for MRI data). Rapid update for video display or real-time interaction. Image display with interactive lookup tables and level control. Mesh rendering with isosurface generation. Interactive viewports rotate/zoom with mouse. Basic 3D scenegraph for easier programming.
    Starting Price: Free
  • 47
    V7 Darwin
    V7 Darwin is a powerful AI-driven platform for labeling and training data that streamlines the process of annotating images, videos, and other data types. By using AI-assisted tools, V7 Darwin enables faster, more accurate labeling for a variety of use cases such as machine learning model training, object detection, and medical imaging. The platform supports multiple types of annotations, including keypoints, bounding boxes, and segmentation masks. It integrates with various workflows through APIs, SDKs, and custom integrations, making it an ideal solution for businesses seeking high-quality data for their AI projects.
    Starting Price: $150
  • 48
    Flyte

    Flyte

    Union.ai

    The workflow automation platform for complex, mission-critical data and ML processes at scale. Flyte makes it easy to create concurrent, scalable, and maintainable workflows for machine learning and data processing. Flyte is used in production at Lyft, Spotify, Freenome, and others. At Lyft, Flyte has been serving production model training and data processing for over four years, becoming the de-facto platform for teams like pricing, locations, ETA, mapping, autonomous, and more. In fact, Flyte manages over 10,000 unique workflows at Lyft, totaling over 1,000,000 executions every month, 20 million tasks, and 40 million containers. Flyte has been battle-tested at Lyft, Spotify, Freenome, and others. It is entirely open-source with an Apache 2.0 license under the Linux Foundation with a cross-industry overseeing committee. Configuring machine learning and data workflows can get complex and error-prone with YAML.
    Starting Price: Free
  • 49
    SHARK

    SHARK

    SHARK

    SHARK is a fast, modular, feature-rich open-source C++ machine learning library. It provides methods for linear and nonlinear optimization, kernel-based learning algorithms, neural networks, and various other machine learning techniques. It serves as a powerful toolbox for real-world applications as well as research. Shark depends on Boost and CMake. It is compatible with Windows, Solaris, MacOS X, and Linux. Shark is licensed under the permissive GNU Lesser General Public License. Shark provides an excellent trade-off between flexibility and ease-of-use on the one hand, and computational efficiency on the other. Shark offers numerous algorithms from various machine learning and computational intelligence domains in a way that they can be easily combined and extended. Shark comes with a lot of powerful algorithms that are to our best knowledge not implemented in any other library.
  • 50
    Kraken

    Kraken

    Big Squid

    Kraken is for everyone from analysts to data scientists. Built to be the easiest-to-use, no-code automated machine learning platform. The Kraken no-code automated machine learning (AutoML) platform simplifies and automates data science tasks like data prep, data cleaning, algorithm selection, model training, and model deployment. Kraken was built with analysts and engineers in mind. If you've done data analysis before, you're ready! Kraken's no-code, easy-to-use interface and integrated SONAR© training make it easy to become a citizen data scientist. Advanced features allow data scientists to work faster and more efficiently. Whether you use Excel or flat files for day-to-day reporting or just ad-hoc analysis and exports, drag-and-drop CSV upload and the Amazon S3 connector in Kraken make it easy to start building models with a few clicks. Data Connectors in Kraken allow you to connect to your favorite data warehouse, business intelligence tools, and cloud storage.
    Starting Price: $100 per month