12 Integrations with JAX
View a list of JAX integrations and software that integrates with JAX below. Compare the best JAX integrations as well as features, ratings, user reviews, and pricing of software that integrates with JAX. Here are the current JAX integrations in 2025:
-
1
TensorFlow
TensorFlow
An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.Starting Price: Free -
2
Python
Python
The core of extensible programming is defining functions. Python allows mandatory and optional arguments, keyword arguments, and even arbitrary argument lists. Whether you're new to programming or an experienced developer, it's easy to learn and use Python. Python can be easy to pick up whether you're a first-time programmer or you're experienced with other languages. The following pages are a useful first step to get on your way to writing programs with Python! The community hosts conferences and meetups to collaborate on code, and much more. Python's documentation will help you along the way, and the mailing lists will keep you in touch. The Python Package Index (PyPI) hosts thousands of third-party modules for Python. Both Python's standard library and the community-contributed modules allow for endless possibilities.Starting Price: Free -
3
Keras
Keras
Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages. It also has extensive documentation and developer guides. Keras is the most used deep learning framework among top-5 winning teams on Kaggle. Because Keras makes it easier to run new experiments, it empowers you to try more ideas than your competition, faster. And this is how you win. Built on top of TensorFlow 2.0, Keras is an industry-strength framework that can scale to large clusters of GPUs or an entire TPU pod. It's not only possible; it's easy. Take advantage of the full deployment capabilities of the TensorFlow platform. You can export Keras models to JavaScript to run directly in the browser, to TF Lite to run on iOS, Android, and embedded devices. It's also easy to serve Keras models as via a web API. -
4
Equinox
Equinox (a Questel brand)
Equinox is Questel's connected, AI-assisted intellectual property management system (IPMS). More than 1,000 law firms and corporations globally trust Equinox to efficiently and securely manage patents, trademarks, registered designs, and more. Equinox is the only IPMS to fully integrate with IP services, patent and trademark offices (PTOs), and your wider productivity tooling, making it the most powerful solution for streamlining your entire IP workflow. • EQ Law Firm: A robust, secure solution designed specifically for law firms, EQ Law Firm streamlines the management of client IP portfolios, helping you reduce administrative overhead, increase collaboration, and make smarter decisions faster. • EQ Corporate: Tailored for corporate IP teams, EQ Corporate enables you to manage and align your IP portfolios with your corporate strategy. It allows for centralised oversight of patents, trademarks, and designs, making it easier to monitor and protect innovations.Starting Price: Please contact us for a quote -
5
Grain
Grain
Trusted By 31,000+ Teams Grain automates note-taking so you can focus on the big picture. With meeting summaries, account insights, and coaching suggestions, Grain allows you to focus most on overviews and less on routine tasks. Over 31,000 teams trust Grain to help alignment and productivity with simple, all-in-one features. Everything Your Team Needs Grain has everything your team needs to get more out of every meeting. It’s free to use, simple to set up, and cost-effective for your entire company. Automated Tasks and AI CRM Updates will help you hit targets and boost productivity. You handle the meeting, Grain handles the note-taking Grain automatically generates meeting recordings and transcripts with precise, AI-powered notes. Tailor your meeting with custom or prebuilt AI templates, and use Live Notes to perfect your insights during the meeting. Never miss a follow-up with consistent, accurate next steps Help your team keep up the momentum with automaticallyStarting Price: Free -
6
Hugging Face
Hugging Face
Hugging Face is a leading platform for AI and machine learning, offering a vast hub for models, datasets, and tools for natural language processing (NLP) and beyond. The platform supports a wide range of applications, from text, image, and audio to 3D data analysis. Hugging Face fosters collaboration among researchers, developers, and companies by providing open-source tools like Transformers, Diffusers, and Tokenizers. It enables users to build, share, and access pre-trained models, accelerating AI development for a variety of industries.Starting Price: $9 per month -
7
NumPy
NumPy
Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today. NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries. The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code. NumPy’s high level syntax makes it accessible and productive for programmers from any background or experience level. NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant.Starting Price: Free -
8
Flower
Flower
Flower is an open source federated learning framework designed to simplify the development and deployment of machine learning models across decentralized data sources. It enables training on data located on devices or servers without transferring the data itself, thereby enhancing privacy and reducing bandwidth usage. Flower supports a wide range of machine learning frameworks, including PyTorch, TensorFlow, Hugging Face Transformers, scikit-learn, and XGBoost, and is compatible with various platforms and cloud services like AWS, GCP, and Azure. It offers flexibility through customizable strategies and supports both horizontal and vertical federated learning scenarios. Flower's architecture allows for scalable experiments, with the capability to handle workloads involving tens of millions of clients. It also provides built-in support for privacy-preserving techniques like differential privacy and secure aggregation.Starting Price: Free -
9
LiteRT
Google
LiteRT (Lite Runtime), formerly known as TensorFlow Lite, is Google's high-performance runtime for on-device AI. It enables developers to deploy machine learning models across various platforms and microcontrollers. LiteRT supports models from TensorFlow, PyTorch, and JAX, converting them into the efficient FlatBuffers format (.tflite) for optimized on-device inference. Key features include low latency, enhanced privacy by processing data locally, reduced model and binary sizes, and efficient power consumption. The runtime offers SDKs in multiple languages such as Java/Kotlin, Swift, Objective-C, C++, and Python, facilitating integration into diverse applications. Hardware acceleration is achieved through delegates like GPU and iOS Core ML, improving performance on supported devices. LiteRT Next, currently in alpha, introduces a new set of APIs that streamline on-device hardware acceleration.Starting Price: Free -
10
Gemma 3n
Google DeepMind
Gemma 3n is our state-of-the-art open multimodal model, engineered for on-device performance and efficiency. Made for responsive, low-footprint local inference, Gemma 3n empowers a new wave of intelligent, on-the-go applications. It analyzes and responds to combined images and text, with video and audio coming soon. Build intelligent, interactive features that put user privacy first and work reliably offline. Mobile-first architecture, with a significantly reduced memory footprint. Co-designed by Google's mobile hardware teams and industry leaders. 4B active memory footprint with the ability to create submodels for quality-latency tradeoffs. Gemma 3n is our first open model built on this groundbreaking, shared architecture, allowing developers to begin experimenting with this technology today in an early preview. -
11
IREN Cloud
IREN
IREN’s AI Cloud is a GPU-cloud platform built on NVIDIA reference architecture and non-blocking 3.2 TB/s InfiniBand networking, offering bare-metal GPU clusters designed for high-performance AI training and inference workloads. The service supports a range of NVIDIA GPU models with specifications such as large amounts of RAM, vCPUs, and NVMe storage. The cloud is fully integrated and vertically controlled by IREN, giving clients operational flexibility, reliability, and 24/7 in-house support. Users can monitor performance metrics, optimize GPU spend, and maintain secure, isolated environments with private networking and tenant separation. It allows deployment of users’ own data, models, frameworks (TensorFlow, PyTorch, JAX), and container technologies (Docker, Apptainer) with root access and no restrictions. It is optimized to scale for demanding applications, including fine-tuning large language models. -
12
AWS EC2 Trn3 Instances
Amazon
Amazon EC2 Trn3 UltraServers are AWS’s newest accelerated computing instances, powered by the in-house Trainium3 AI chips and engineered specifically for high-performance deep-learning training and inference workloads. These UltraServers are offered in two configurations, a “Gen1” with 64 Trainium3 chips and a “Gen2” with up to 144 Trainium3 chips per UltraServer. The Gen2 configuration delivers up to 362 petaFLOPS of dense MXFP8 compute, 20 TB of HBM memory, and a staggering 706 TB/s of aggregate memory bandwidth, making it one of the highest-throughput AI compute platforms available. Interconnects between chips are handled by a new “NeuronSwitch-v1” fabric to support all-to-all communication patterns, which are especially important for large models, mixture-of-experts architectures, or large-scale distributed training.
- Previous
- You're on page 1
- Next