Alternatives to scikit-learn

Compare scikit-learn alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to scikit-learn in 2025. Compare features, ratings, user reviews, pricing, and more from scikit-learn competitors and alternatives in order to make an informed decision for your business.

  • 1
    TensorFlow

    TensorFlow

    TensorFlow

    An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.
  • 2
    Gensim

    Gensim

    Radim Řehůřek

    Gensim is a free, open source Python library designed for unsupervised topic modeling and natural language processing, focusing on large-scale semantic modeling. It enables the training of models like Word2Vec, FastText, Latent Semantic Analysis (LSA), and Latent Dirichlet Allocation (LDA), facilitating the representation of documents as semantic vectors and the discovery of semantically related documents. Gensim is optimized for performance with highly efficient implementations in Python and Cython, allowing it to process arbitrarily large corpora using data streaming and incremental algorithms without loading the entire dataset into RAM. It is platform-independent, running on Linux, Windows, and macOS, and is licensed under the GNU LGPL, promoting both personal and commercial use. The library is widely adopted, with thousands of companies utilizing it daily, over 2,600 academic citations, and more than 1 million downloads per week.
  • 3
    ML.NET

    ML.NET

    Microsoft

    ML.NET is a free, open source, and cross-platform machine learning framework designed for .NET developers to build custom machine learning models using C# or F# without leaving the .NET ecosystem. It supports various machine learning tasks, including classification, regression, clustering, anomaly detection, and recommendation systems. ML.NET integrates with other popular ML frameworks like TensorFlow and ONNX, enabling additional scenarios such as image classification and object detection. It offers tools like Model Builder and the ML.NET CLI, which utilize Automated Machine Learning (AutoML) to simplify the process of building, training, and deploying high-quality models. These tools automatically explore different algorithms and settings to find the best-performing model for a given scenario.
  • 4
    MLlib

    MLlib

    Apache Software Foundation

    ​Apache Spark's MLlib is a scalable machine learning library that integrates seamlessly with Spark's APIs, supporting Java, Scala, Python, and R. It offers a comprehensive suite of algorithms and utilities, including classification, regression, clustering, collaborative filtering, and tools for constructing machine learning pipelines. MLlib's high-quality algorithms leverage Spark's iterative computation capabilities, delivering performance up to 100 times faster than traditional MapReduce implementations. It is designed to operate across diverse environments, running on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or in the cloud, and accessing various data sources such as HDFS, HBase, and local files. This flexibility makes MLlib a robust solution for scalable and efficient machine learning tasks within the Apache Spark ecosystem. ​
  • 5
    Dask

    Dask

    Dask

    Dask is open source and freely available. It is developed in coordination with other community projects like NumPy, pandas, and scikit-learn. Dask uses existing Python APIs and data structures to make it easy to switch between NumPy, pandas, scikit-learn to their Dask-powered equivalents. Dask's schedulers scale to thousand-node clusters and its algorithms have been tested on some of the largest supercomputers in the world. But you don't need a massive cluster to get started. Dask ships with schedulers designed for use on personal machines. Many people use Dask today to scale computations on their laptop, using multiple cores for computation and their disk for excess storage. Dask exposes lower-level APIs letting you build custom systems for in-house applications. This helps open source leaders parallelize their own packages and helps business leaders scale custom business logic.
  • 6
    Keepsake

    Keepsake

    Replicate

    Keepsake is an open-source Python library designed to provide version control for machine learning experiments and models. It enables users to automatically track code, hyperparameters, training data, model weights, metrics, and Python dependencies, ensuring that all aspects of the machine learning workflow are recorded and reproducible. Keepsake integrates seamlessly with existing workflows by requiring minimal code additions, allowing users to continue training as usual while Keepsake saves code and weights to Amazon S3 or Google Cloud Storage. This facilitates the retrieval of code and weights from any checkpoint, aiding in re-training or model deployment. Keepsake supports various machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, by saving files and dictionaries in a straightforward manner. It also offers features such as experiment comparison, enabling users to analyze differences in parameters, metrics, and dependencies across experiments.
  • 7
    Azure Databricks
    Unlock insights from all your data and build artificial intelligence (AI) solutions with Azure Databricks, set up your Apache Spark™ environment in minutes, autoscale, and collaborate on shared projects in an interactive workspace. Azure Databricks supports Python, Scala, R, Java, and SQL, as well as data science frameworks and libraries including TensorFlow, PyTorch, and scikit-learn. Azure Databricks provides the latest versions of Apache Spark and allows you to seamlessly integrate with open source libraries. Spin up clusters and build quickly in a fully managed Apache Spark environment with the global scale and availability of Azure. Clusters are set up, configured, and fine-tuned to ensure reliability and performance without the need for monitoring. Take advantage of autoscaling and auto-termination to improve total cost of ownership (TCO).
  • 8
    Lucidworks Fusion
    Fusion transforms your siloed data into personalized insights unique to each user. Lucidworks Fusion lets customers easily deploy AI-powered data discovery and search applications in a modern, containerized, cloud-native architecture. Data scientists interact with those applications by leveraging existing machine learning models and workflows. Or they can quickly create and deploy new models using popular tools like Python ML, TensorFlow, scikit-learn, and spaCy. Reduce the effort and risk of managing deployments of Fusion in the cloud. Lucidworks has modernized Fusion with a cloud-native microservices architecture orchestrated by Kubernetes. Fusion allows customers to dynamically manage application resources as utilization ebbs and flows, reduce the effort of deploying and upgrading Fusion, and avoid unscheduled downtime and performance degradation. Fusion includes native support for Python machine learning models. Plug your custom ML models into Fusion.
  • 9
    IntelliHub

    IntelliHub

    Spotflock

    We work closely with businesses to find out what are the common issues preventing companies from realising benefits. We design to open up opportunities that were previously not viable using conventional approaches Corporations -big and small, require an AI platform with complete empowerment and ownership. Tackle data privacy and adopt to AI platforms at a sustainable cost. Enhance the efficiency of businesses and augment the work humans do. We apply AI to gain control over repetitive or dangerous tasks and bypass human intervention, thereby expediting tasks with creativity and empathy. Machine Learning helps to give predictive capabilities to applications with ease. You can build classification and regression models. It can also do clustering and visualize different clusters. It supports multiple ML libraries like Weka, Scikit-Learn, H2O and Tensorflow. It includes around 22 different algorithms for building classification, regression and clustering models.
  • 10
    Bokeh

    Bokeh

    Bokeh

    Bokeh makes it simple to create common plots, but also can handle custom or specialized use-cases. Plots, dashboards, and apps can be published in web pages or Jupyter notebooks. Python has an incredible ecosystem of powerful analytics tools: NumPy, Scipy, Pandas, Dask, Scikit-Learn, OpenCV, and more. With a wide array of widgets, plot tools, and UI events that can trigger real Python callbacks, the Bokeh server is the bridge that lets you connect these tools to rich, interactive visualizations in the browser. Microscopium is a project maintained by researchers at Monash University. It allows researchers to discover new gene or drug functions by exploring large image datasets with Bokeh’s interactive tools. Panel is a tool for polished data presentation that utilizes the Bokeh server. It is created and supported by Anaconda. Panel makes it simple to create custom interactive web apps and dashboards by connecting user-defined widgets to plots, images, tables, or text.
  • 11
    Datatron

    Datatron

    Datatron

    Datatron offers tools and features built from scratch, specifically to make machine learning in production work for you. Most teams discover that there’s more to just deploying models, which is already a very manual and time-consuming task. Datatron offers single model governance and management platform for all of your ML, AI, and Data Science models in production. We help you automate, optimize, and accelerate your ML models to ensure that they are running smoothly and efficiently in production. Data Scientists use a variety of frameworks to build the best models. We support anything you’d build a model with ( e.g. TensorFlow, H2O, Scikit-Learn, and SAS ). Explore models built and uploaded by your data science team, all from one centralized repository. Create a scalable model deployment in just a few clicks. Deploy models built using any language or framework. Make better decisions based on your model performance.
  • 12
    Google Cloud Deep Learning VM Image
    Provision a VM quickly with everything you need to get your deep learning project started on Google Cloud. Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. Deep Learning VM Image delivers a seamless notebook experience with integrated support for JupyterLab.
  • 13
    IBM Watson Studio
    Build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio empowers you to operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. Unite teams, simplify AI lifecycle management and accelerate time to value with an open, flexible multicloud architecture. Automate AI lifecycles with ModelOps pipelines. Speed data science development with AutoAI. Prepare and build models visually and programmatically. Deploy and run models through one-click integration. Promote AI governance with fair, explainable AI. Drive better business outcomes by optimizing decisions. Use open source frameworks like PyTorch, TensorFlow and scikit-learn. Bring together the development tools including popular IDEs, Jupyter notebooks, JupterLab and CLIs — or languages such as Python, R and Scala. IBM Watson Studio helps you build and scale AI with trust and transparency by automating AI lifecycle management.
  • 14
    Flower

    Flower

    Flower

    Flower is an open source federated learning framework designed to simplify the development and deployment of machine learning models across decentralized data sources. It enables training on data located on devices or servers without transferring the data itself, thereby enhancing privacy and reducing bandwidth usage. Flower supports a wide range of machine learning frameworks, including PyTorch, TensorFlow, Hugging Face Transformers, scikit-learn, and XGBoost, and is compatible with various platforms and cloud services like AWS, GCP, and Azure. It offers flexibility through customizable strategies and supports both horizontal and vertical federated learning scenarios. Flower's architecture allows for scalable experiments, with the capability to handle workloads involving tens of millions of clients. It also provides built-in support for privacy-preserving techniques like differential privacy and secure aggregation.
  • 15
    scikit-image

    scikit-image

    scikit-image

    scikit-image is a collection of algorithms for image processing. It is available free of charge and free of restriction. We pride ourselves on high-quality, peer-reviewed code, written by an active community of volunteers. scikit-image provides a versatile set of image processing routines in Python. This library is developed by its community, and contributions are most welcome! scikit-image aims to be the reference library for scientific image analysis in Python. We accomplish this by being easy to use and install. We are careful in taking on new dependencies, and sometimes cull existing ones, or make them optional. All functions in our API have thorough docstrings clarifying expected inputs and outputs. Conceptually identical arguments have the same name and position in a function signature. Test coverage is close to 100% and code is reviewed by at least two core developers before being included in the library.
  • 16
    Metaflow

    Metaflow

    Metaflow

    Successful data science projects are delivered by data scientists who can build, improve, and operate end-to-end workflows independently, focusing more on data science, less on engineering. Use Metaflow with your favorite data science libraries, such as Tensorflow or SciKit Learn, and write your models in idiomatic Python code with not much new to learn. Metaflow also supports the R language. Metaflow helps you design your workflow, run it at scale, and deploy it to production. It versions and tracks all your experiments and data automatically. It allows you to inspect results easily in notebooks. Metaflow comes packaged with the tutorials, so getting started is easy. You can make copies of all the tutorials in your current directory using the metaflow command line interface.
  • 17
    Aider

    Aider

    Aider AI

    Aider lets you pair program with LLMs, to edit code in your local git repository. Start a new project or work with an existing git repo. Aider works best with GPT-4o & Claude 3.5 Sonnet and can connect to almost any LLM. Aider has one of the top scores on SWE Bench. SWE Bench is a challenging software engineering benchmark where aider solved real GitHub issues from popular open source projects like django, scikitlearn, matplotlib, etc.
  • 18
    JAX

    JAX

    JAX

    ​JAX is a Python library designed for high-performance numerical computing and machine learning research. It offers a NumPy-like API, facilitating seamless adoption for those familiar with NumPy. Key features of JAX include automatic differentiation, just-in-time compilation, vectorization, and parallelization, all optimized for execution on CPUs, GPUs, and TPUs. These capabilities enable efficient computation for complex mathematical functions and large-scale machine-learning models. JAX also integrates with various libraries within its ecosystem, such as Flax for neural networks and Optax for optimization tasks. Comprehensive documentation, including tutorials and user guides, is available to assist users in leveraging JAX's full potential. ​
  • 19
    Ray

    Ray

    Anyscale

    Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.
  • 20
    Paradise

    Paradise

    Geophysical Insights

    Paradise uses robust, unsupervised machine learning and supervised deep learning technologies to accelerate interpretation and generate greater insights from the data. Generate attributes to extract meaningful geological information and as input into machine learning analysis. Identify attributes having the highest variance and contribution among a set of attributes in a geologic setting, Display the neural classes (topology) and their associated colors resulting from Stratigraphic Analysis that indicate the distribution of facies. Detect faults automatically with deep learning and machine learning processes. Compare machine learning classification results and other seismic attributes to traditional good logs. Generate geometric and spectral decomposition attributes on a cluster of compute nodes in a fraction of the time on a single machine.
  • 21
    neptune.ai

    neptune.ai

    neptune.ai

    Neptune.ai is a machine learning operations (MLOps) platform designed to streamline the tracking, organizing, and sharing of experiments and model-building processes. It provides a comprehensive environment for data scientists and machine learning engineers to log, visualize, and compare model training runs, datasets, hyperparameters, and metrics in real-time. Neptune.ai integrates easily with popular machine learning libraries, enabling teams to efficiently manage both research and production workflows. With features that support collaboration, versioning, and experiment reproducibility, Neptune.ai enhances productivity and helps ensure that machine learning projects are transparent and well-documented across their lifecycle.
    Starting Price: $49 per month
  • 22
    Apache Mahout

    Apache Mahout

    Apache Software Foundation

    Apache Mahout is a powerful, scalable, and versatile machine learning library designed for distributed data processing. It offers a comprehensive set of algorithms for various tasks, including classification, clustering, recommendation, and pattern mining. Built on top of the Apache Hadoop ecosystem, Mahout leverages MapReduce and Spark to enable data processing on large-scale datasets. Apache Mahout(TM) is a distributed linear algebra framework and mathematically expressive Scala DSL designed to let mathematicians, statisticians, and data scientists quickly implement their own algorithms. Apache Spark is the recommended out-of-the-box distributed back-end or can be extended to other distributed backends. Matrix computations are a fundamental part of many scientific and engineering applications, including machine learning, computer vision, and data analysis. Apache Mahout is designed to handle large-scale data processing by leveraging the power of Hadoop and Spark.
  • 23
    BigML

    BigML

    BigML

    Machine Learning made beautifully simple for everyone. Take your business to the next level with the leading Machine Learning platform. Start making data-driven decisions today! No more wildly expensive or cumbersome solutions. Machine Learning that simply works. BigML provides a selection of robustly-engineered Machine Learning algorithms proven to solve real world problems by applying a single, standardized framework across your company. Avoid dependencies on many disparate libraries that increase complexity, maintenance costs, and technical debt in your projects. BigML facilitates unlimited predictive applications across industries including aerospace, automotive, energy, entertainment, financial services, food, healthcare, IoT, pharmaceutical, transportation, telecommunications, and more. Supervised Learning: classification and regression (trees, ensembles, linear regressions, logistic regressions, deepnets), and time series forecasting.
    Starting Price: $30 per user per month
  • 24
    broot

    broot

    broot

    The ROOT data analysis framework is used much in High Energy Physics (HEP) and has its own output format (.root). ROOT can be easily interfaced with software written in C++. For software tools in Python there exists pyROOT. Unfortunately, pyROOT does not work well with python3.4. broot is a small library that converts data in python numpy ndarrays to ROOT files containing trees with a branch for each array. The goal of this library is to provide a generic way of writing python numpy datastructures to ROOT files. The library should be portable and supports both python2, python3, ROOT v5 and ROOT v6 (requiring no modifications on the ROOT part, just the default installation). Installation of the library should only require a user to compile to library once or install it as a python package.
  • 25
    Matplotlib

    Matplotlib

    Matplotlib

    Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib makes easy things easy and hard things possible. A large number of third party packages extend and build on Matplotlib functionality, including several higher-level plotting interfaces (seaborn, HoloViews, ggplot, ...), and a projection and mapping toolkit (Cartopy).
  • 26
    MLBox

    MLBox

    Axel ARONIO DE ROMBLAY

    MLBox is a powerful Automated Machine Learning python library. It provides the following features fast reading and distributed data preprocessing/cleaning/formatting, highly robust feature selection and leak detection, accurate hyper-parameter optimization in high-dimensional space, state-of-the art predictive models for classification and regression (Deep Learning, Stacking, LightGBM), and prediction with models interpretation. MLBox main package contains 3 sub-packages: preprocessing, optimization and prediction. Each one of them are respectively aimed at reading and preprocessing data, testing or optimizing a wide range of learners and predicting the target on a test dataset.
  • 27
    Apache PredictionIO
    Apache PredictionIO® is an open-source machine learning server built on top of a state-of-the-art open-source stack for developers and data scientists to create predictive engines for any machine learning task. It lets you quickly build and deploy an engine as a web service on production with customizable templates. Respond to dynamic queries in real-time once deployed as a web service, evaluate and tune multiple engine variants systematically, and unify data from multiple platforms in batch or in real-time for comprehensive predictive analytics. Speed up machine learning modeling with systematic processes and pre-built evaluation measures, support machine learning and data processing libraries such as Spark MLLib and OpenNLP. Implement your own machine learning models and seamlessly incorporate them into your engine. Simplify data infrastructure management. Apache PredictionIO® can be installed as a full machine learning stack, bundled with Apache Spark, MLlib, HBase, Akka HTTP, etc.
  • 28
    Torch

    Torch

    Torch

    Torch is a scientific computing framework with wide support for machine learning algorithms that puts GPUs first. It is easy to use and efficient, thanks to an easy and fast scripting language, LuaJIT, and an underlying C/CUDA implementation. The goal of Torch is to have maximum flexibility and speed in building your scientific algorithms while making the process extremely simple. Torch comes with a large ecosystem of community-driven packages in machine learning, computer vision, signal processing, parallel processing, image, video, audio and networking among others, and builds on top of the Lua community. At the heart of Torch are the popular neural network and optimization libraries which are simple to use, while having maximum flexibility in implementing complex neural network topologies. You can build arbitrary graphs of neural networks, and parallelize them over CPUs and GPUs in an efficient manner.
  • 29
    Oracle Machine Learning
    Machine learning uncovers hidden patterns and insights in enterprise data, generating new value for the business. Oracle Machine Learning accelerates the creation and deployment of machine learning models for data scientists using reduced data movement, AutoML technology, and simplified deployment. Increase data scientist and developer productivity and reduce their learning curve with familiar open source-based Apache Zeppelin notebook technology. Notebooks support SQL, PL/SQL, Python, and markdown interpreters for Oracle Autonomous Database so users can work with their language of choice when developing models. A no-code user interface supporting AutoML on Autonomous Database to improve both data scientist productivity and non-expert user access to powerful in-database algorithms for classification and regression. Data scientists gain integrated model deployment from the Oracle Machine Learning AutoML User Interface.
  • 30
    SHARK

    SHARK

    SHARK

    SHARK is a fast, modular, feature-rich open-source C++ machine learning library. It provides methods for linear and nonlinear optimization, kernel-based learning algorithms, neural networks, and various other machine learning techniques. It serves as a powerful toolbox for real-world applications as well as research. Shark depends on Boost and CMake. It is compatible with Windows, Solaris, MacOS X, and Linux. Shark is licensed under the permissive GNU Lesser General Public License. Shark provides an excellent trade-off between flexibility and ease-of-use on the one hand, and computational efficiency on the other. Shark offers numerous algorithms from various machine learning and computational intelligence domains in a way that they can be easily combined and extended. Shark comes with a lot of powerful algorithms that are to our best knowledge not implemented in any other library.
  • 31
    NumPy

    NumPy

    NumPy

    Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today. NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries. The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code. NumPy’s high level syntax makes it accessible and productive for programmers from any background or experience level. NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant.
  • 32
    Cloudera Data Science Workbench
    Accelerate machine learning from research to production with a consistent experience built for your traditional platform. With Python, R, and Scala directly in the web browser, Cloudera Data Science Workbench (CDSW) delivers a self-service experience data scientists will love. Download and experiment with the latest libraries and frameworks in customizable project environments that work just like your laptop. Cloudera Data Science Workbench provides connectivity not only to CDH and HDP but also to the systems your data science teams rely on for analysis. Cloudera Data Science Workbench lets data scientists manage their own analytics pipelines, including built-in scheduling, monitoring, and email alerting. Quickly develop and prototype new machine learning projects and easily deploy them to production.
  • 33
    Fido

    Fido

    Fido

    Fido is a light-weight, open-source, and highly modular C++ machine learning library. The library is targeted towards embedded electronics and robotics. Fido includes implementations of trainable neural networks, reinforcement learning methods, genetic algorithms, and a full-fledged robotic simulator. Fido also comes packaged with a human-trainable robot control system as described in Truell and Gruenstein. While the simulator is not in the most recent release, it can be found for experimentation on the simulator branch.
  • 34
    Datoin

    Datoin

    Datoin

    Datoin removes the barrier to entry into Machine Learning using Graphical Interface and No-Code approach. It is designed to rapidly translate your vision into reality. The best way to cut the cost is to re-use over and over again. The Datoin’s Block Superstore offers a large pool of blocks ranging from enterprise software connectors, ETL tools, machine learning libraries, NLP libraries, cloud services integration, SaaS APIs etc. Goodness with Datoin is, as we cover more and more use cases, the blocks are added to the store. The pre-built machine learning models eliminate the need to train first and helps to get started quickly. We have built and building blocks that solve common problems across industries and functional area. If you are unsure about specific functionality, efficacy etc, quickly try them out by editing existing apps.
  • 35
    OpenCV

    OpenCV

    OpenCV

    OpenCV (Open Source Computer Vision Library) is an open-source computer vision and machine learning software library. OpenCV was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in commercial products. Being a BSD-licensed product, OpenCV makes it easy for businesses to utilize and modify the code. The library has more than 2500 optimized algorithms, which includes a comprehensive set of both classic and state-of-the-art computer vision and machine learning algorithms. These algorithms can be used to detect and recognize faces, identify objects, classify human actions in videos, track camera movements, track moving objects, extract 3D models of objects, produce 3D point clouds from stereo cameras, and stitch images together to produce a high-resolution image of an entire scene, find similar images from an image database, remove red eyes from images taken using flash, follow eye movements, recognize scenery, etc.
  • 36
    Xilinx

    Xilinx

    Xilinx

    The Xilinx’s AI development platform for AI inference on Xilinx hardware platforms consists of optimized IP, tools, libraries, models, and example designs. It is designed with high efficiency and ease-of-use in mind, unleashing the full potential of AI acceleration on Xilinx FPGA and ACAP. Supports mainstream frameworks and the latest models capable of diverse deep learning tasks. Provides a comprehensive set of pre-optimized models that are ready to deploy on Xilinx devices. You can find the closest model and start re-training for your applications! Provides a powerful open source quantizer that supports pruned and unpruned model quantization, calibration, and fine tuning. The AI profiler provides layer by layer analysis to help with bottlenecks. The AI library offers open source high-level C++ and Python APIs for maximum portability from edge to cloud. Efficient and scalable IP cores can be customized to meet your needs of many different applications.
  • 37
    Microsoft Cognitive Toolkit
    The Microsoft Cognitive Toolkit (CNTK) is an open-source toolkit for commercial-grade distributed deep learning. It describes neural networks as a series of computational steps via a directed graph. CNTK allows the user to easily realize and combine popular model types such as feed-forward DNNs, convolutional neural networks (CNNs) and recurrent neural networks (RNNs/LSTMs). CNTK implements stochastic gradient descent (SGD, error backpropagation) learning with automatic differentiation and parallelization across multiple GPUs and servers. CNTK can be included as a library in your Python, C#, or C++ programs, or used as a standalone machine-learning tool through its own model description language (BrainScript). In addition you can use the CNTK model evaluation functionality from your Java programs. CNTK supports 64-bit Linux or 64-bit Windows operating systems. To install you can either choose pre-compiled binary packages, or compile the toolkit from the source provided in GitHub.
  • 38
    Azure Machine Learning
    Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
  • 39
    ElectrifAi

    ElectrifAi

    ElectrifAi

    Proven commercial value in weeks, for high value use cases across all major verticals. ElectrifAi has the largest library of pre-built machine learning models that seamlessly integrate into existing workflows to provide fast and reliable results. Get our domain expertise through pre-trained, pre-structured, or brand-new models. Building machine learning is risky and time-consuming. ElectrifAi delivers superior, fast and reliable results with over 1,000 ready-to-deploy machine learning models that seamlessly integrate into existing workflows. With comprehensive capabilities to deploy proven ML models, we bring you solutions faster. We make the machine learning models, complete the data ingestion and clean up the data. Our domain experts use your existing data to train the selected model that works best for your use case.
  • 40
    Amazon SageMaker Studio Lab
    Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately.
  • 41
    imageio

    imageio

    imageio

    Imageio is a Python library that provides an easy interface to read and write a wide range of image data, including animated images, volumetric data, and scientific formats. It is cross-platform, runs on Python 3.5+, and is easy to install. Imageio is written in pure Python, so installation is easy. Imageio works on Python 3.5+. It also works on Pypy. Imageio depends on Numpy and Pillow. For some formats, imageio needs additional libraries/executables (e.g. ffmpeg), which imageio helps you to download/install. If something doesn’t work as it should, you need to know where to search for causes. The overview on this page aims to help you in this regard by giving you an idea of how things work, and - hence - where things may go sideways.
  • 42
    SquareML

    SquareML

    SquareML

    SquareML is a no-code machine learning platform designed to democratize access to advanced data analytics and predictive modeling, particularly in the healthcare sector. It enables users, regardless of technical expertise, to harness machine learning capabilities without extensive coding knowledge. The platform specializes in data ingestion from multiple sources, including electronic health records, claims databases, medical devices, and health information exchanges. Key features include a no-code data science lifecycle, generative AI models for healthcare, unstructured data conversion, diverse machine learning models for predicting patient outcomes and disease progression, a library of pre-built models and algorithms, and seamless integration with various healthcare data sources. SquareML aims to streamline data processes, enhance diagnostic accuracy, and improve patient care outcomes by providing AI-powered insights.
  • 43
    Kepler

    Kepler

    Stradigi AI

    Leverage Kepler’s Automated Data Science Workflows and remove the need for coding and machine learning experience. Onboard quickly and generate data-driven insights unique to your organization and your data. Receive continuous updates & additional Workflows built by our world-class AI and ML team via our SaaS-based model. Scale AI and accelerate time-to-value with a platform that grows with your business using the team and skills already present within your organization. Address complex business problems with advanced AI and machine learning capabilities without the need for technical ML experience. Leverage state-of-the-art, end-to-end automation, an extensive library of AI algorithms, and the ability to quickly deploy machine learning models. Organizations are using Kepler to augment and automate critical business processes to improve productivity and agility.
  • 44
    NVIDIA RAPIDS
    The RAPIDS suite of software libraries, built on CUDA-X AI, gives you the freedom to execute end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level compute optimization, but exposes that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces. RAPIDS also focuses on common data preparation tasks for analytics and data science. This includes a familiar DataFrame API that integrates with a variety of machine learning algorithms for end-to-end pipeline accelerations without paying typical serialization costs. RAPIDS also includes support for multi-node, multi-GPU deployments, enabling vastly accelerated processing and training on much larger dataset sizes. Accelerate your Python data science toolchain with minimal code changes and no new tools to learn. Increase machine learning model accuracy by iterating on models faster and deploying them more frequently.
  • 45
    fastText

    fastText

    fastText

    fastText is an open source, free, and lightweight library developed by Facebook's AI Research (FAIR) lab for efficient learning of word representations and text classification. It supports both unsupervised learning of word vectors and supervised learning for text classification tasks. A key feature of fastText is its ability to capture subword information by representing words as bags of character n-grams, which enhances the handling of morphologically rich languages and out-of-vocabulary words. The library is optimized for performance and capable of training on large datasets quickly, and the resulting models can be reduced in size for deployment on mobile devices. Pre-trained word vectors are available for 157 languages, trained on Common Crawl and Wikipedia data, and can be downloaded for immediate use. fastText also offers aligned word vectors for 44 languages, facilitating cross-lingual natural language processing tasks.
  • 46
    Alibaba Cloud Machine Learning Platform for AI
    An end-to-end platform that provides various machine learning algorithms to meet your data mining and analysis requirements. Machine Learning Platform for AI provides end-to-end machine learning services, including data processing, feature engineering, model training, model prediction, and model evaluation. Machine learning platform for AI combines all of these services to make AI more accessible than ever. Machine Learning Platform for AI provides a visualized web interface allowing you to create experiments by dragging and dropping different components to the canvas. Machine learning modeling is a simple, step-by-step procedure, improving efficiencies and reducing costs when creating an experiment. Machine Learning Platform for AI provides more than one hundred algorithm components, covering such scenarios as regression, classification, clustering, text analysis, finance, and time series.
    Starting Price: $1.872 per hour
  • 47
    Folio3

    Folio3

    Folio3 Software

    Folio3 machine learning company has a team of dedicated Data Scientists and Consultants that have delivered end-to-end projects related to machine learning, natural language processing, computer vision and predictive analysis. Artificial Intelligence and Machine Learning algorithms have enabled companies to utilize highly-customized solutions equipped with advanced Machine Learning capabilities. Computer vision technology has scaled up visual data analysis, introduced new image- based functionalities and transformed the way companies from various verticals utilize visual content. Predictive analytics solutions offered by Folio3 produce effective and fast results, enabling you to identify opportunities and anomalies in your business processes and strategy.
  • 48
    PyQtGraph

    PyQtGraph

    PyQtGraph

    PyQtGraph is a pure-python graphics and GUI library built on PyQt/PySide and NumPy. It is intended for use in mathematics/scientific/engineering applications. Despite being written entirely in python, the library is very fast due to its heavy leverage of NumPy for number crunching and Qt's GraphicsView framework for fast display. PyQtGraph is distributed under the MIT open-source license. Basic 2D plotting in interactive view boxes. Line and scatter plots. Data can be panned/scaled by mouse. Fast drawing for real-time data display and interaction. Displays most data types (int or float; any bit depth; RGB, RGBA, or luminance). Functions for slicing multidimensional images at arbitrary angles (great for MRI data). Rapid update for video display or real-time interaction. Image display with interactive lookup tables and level control. Mesh rendering with isosurface generation. Interactive viewports rotate/zoom with mouse. Basic 3D scenegraph for easier programming.
  • 49
    Amazon SageMaker Model Training
    Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
  • 50
    Hive AutoML
    Build and deploy deep learning models for custom use cases. Our automated machine learning process allows customers to create powerful AI solutions built on our best-in-class models and tailored to the specific challenges they face. Digital platforms can quickly create models specifically made to fit their guidelines and needs. Build large language models for specialized use cases such as customer and technical support bots. Create image classification models to better understand image libraries for search, organization, and more.