
Data Management Challenges in Production
Machine Learning

Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, Martin Zinkevich

Google Research

{npolyzotis, sudipr, swhang, martinz}@google.com

ABSTRACT
The tutorial discusses data-management issues that arise in
the context of machine learning pipelines deployed in pro-
duction. Informed by our own experience with such large-
scale pipelines, we focus on issues related to understanding,
validating, cleaning, and enriching training data. The goal
of the tutorial is to bring forth these issues, draw connec-
tions to prior work in the database literature, and outline
the open research questions that are not addressed by prior
art.

CCS Concepts
•Information systems→ Data management systems;
•Computing methodologies → Machine learning;

1. INTRODUCTION
It is hard to overemphasize the importance of machine

learning in modern computing. More and more organiza-
tions adopt machine learning as a tool to glean knowledge
from data and tackle a diverse set of computationally hard
tasks, ranging from machine perception, to text understand-
ing, health care, genomics, and even the protection of endan-
gered species [2].

In many cases, machine learning refers to the one-off appli-
cation of a learning algorithm on a specific dataset. In these
scenarios, the user of machine learning is typically a data
scientist or analyst who wishes to test drive machine learn-
ing or uses it to mine information from the data. Our focus
here is different and considers the deployment of machine
learning in production. This involves setting up a pipeline
that reliably ingests training datasets as input and gener-
ates a model as output, in most cases doing so continuously
(so that new models are generated as fresh datasets arrive)
and dealing gracefully with different types of failures. This
scenario typically involves a team of engineers who spend a
significant portion of their time on the less glamorous as-
pects of machine learning like maintaining and monitoring

SIGMOD’17 May 14-19, 2017, Chicago, IL, USA
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4197-4/17/05.

DOI: http://dx.doi.org/10.1145/3035918.3054782

the machine learning pipelines [16]. The goal of this tuto-
rial is to describe the data-management issues that arise in
these machine learning pipelines, draw connections to exist-
ing works in the database literature, and outline the open
problems that remain to be solved.

As an example, consider the fundamental problem of en-
suring that the data is “valid”. (We discuss a few notions of
validity later.) Invalid data will result in bad models which
in turn will affect downstream services in uncontrolled (and
almost always negative) ways. The database community
has long worried about data validity and has developed ro-
bust mechanisms to deal with this issue, e.g., by enforcing
a schema over the data or devising ways to detect unclean
data. However, as we argue in this tutorial, production ma-
chine learning pipelines do not always provide the scaffolding
required by existing solutions. More generally the context of
machine learning introduces new dimensions in these long-
standing problems.

The target audience of the tutorial comprises database
researchers and practitioners. The goal is to inform the au-
dience about the class of problems that exist in the inter-
section of production machine learning pipelines and data
management, and to motivate further research in this area.
We believe that the database community is well positioned
to tackle these data-related problems.

Note that the tutorial does not cover issues related to the
performance of machine learning pipelines, when the latter
are viewed as dataflows that can be optimized by applying
techniques from database query processing. We acknowl-
edge that this is a rich topic with numerous interesting and
unsolved problems. However, our goal is to draw attention
to a different class of problems that match naturally a core
expertise of the database community: analyzing, modeling,
enriching, validating, and debugging data.

In what follows, we describe at a high level the charac-
teristics of a production machine learning pipeline and then
review a few of the data-related problems that we cover in
the tutorial.

2. PRODUCTION MACHINE LEARNING:
OVERVIEW AND ASSUMPTIONS

Figure 1 shows a high-level schematic of a production
machine learning pipeline. The input of the system com-
prises the training datasets that will be fed to the machine
learning algorithm. The output is a machine-learned model
that is then picked up by serving infrastructure and used in
conjunction with serving data in order to generate predic-

1723

rodkin
Typewritten Text

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


tions. Typically a subset of the serving data, along with the
model’s predictions, is transformed and fed back into the
system as new training data.

Figure 1: Simplified schematic of a production ma-
chine learning pipeline

We focus on the front part of the pipeline and specifically
on issues related to managing the training data. Our expe-
rience has shown that these issues can affect critically the
quality of the generated models and also require significant
time investment to address when they occur. We assume
that the training dataset can be modeled as a (large) collec-
tion of flat records, each record comprising a large number
of features that take scalar values. This model is predomi-
nant in practice and is also adopted by several existing ma-
chine learning frameworks (including the open-sourced Ten-
sorflow [1] library).

We assume a semi-continuous setup where training data
arrives in batches, the machine learning algorithm runs on
a sliding window of recent batches, and so a new batch of
data triggers the generation of a new model. Many of the
problems that we will describe below are also relevant in a
pure streaming setup as well as for one-off executions on a
single batch of data.

To simplify exposition, the schematic deliberately omits
several modules that perform critical tasks, such as testing
the generated model against holdout data, replacing a model
that is already being served, or doing dark model launches,
to name a few. There are interesting data-related problems
to examine in these modules as well, but they are not part
of this tutorial due to time constraints.

3. DATA ISSUES IN PRODUCTION MACHINE
LEARNING

In this section, we discuss key challenges in managing data
for production machine learning pipelines.

3.1 Understanding
Engineers setting up the machine learning pipeline for the

first time spend a significant portion of their time analyzing
their raw data. This process involves generating and visual-
izing salient features about the data (e.g., the range and sta-
tistical distribution of feature values, correlations between
features in the training data, and distributions of positive
and negative examples across different slices) and identifying
any anomalies or outliers that exist in the data. Scaling this
process to large training data (e.g., a few terabytes per day)
can be a daunting task. Techniques developed for online an-
alytical processing [9, 15, 14], data-driven recommendation
of visualizations [17], and approximate query processing [8,
3] can be applied to develop tools that make it easier for
users to understand their own data.

Another significant step for engineers is to figure out how
to encode their data into features that are compatible with
the trainer. For example, if a string feature of the raw data
contains country identifiers (e.g., “US”, “CN”, “AU”, and so

on) then it can be converted to an integer feature using one-
hot encoding. Automatically recommending and generating
transformations from raw data to features based on charac-
teristics of the data is an interesting and largely unexplored
research area.

Context also plays an important role in understanding
data. As stated in [16], it is crucial to clearly identify
explicit and implicit data dependencies (and accordingly
avoid needlessly introducing new dependencies) in order to
develop a maintainable machine learning pipeline. Many
of the techniques developed for data-provenance manage-
ment are applicable for tracking some of these dependen-
cies, and can therefore help us understand how data flows
through these complex pipelines. At the same time, machine
learning brings new twists to the problem, such as iden-
tifying the short-term and long-term impacts of removing
a legacy feature from the pipeline, or tracking provenance
when the data is generated and processed through a highly-
heterogeneous infrastructure (which is typical in machine
learning pipelines).

3.2 Validation
It is hard to overlook the fact that data validity affects

crucially the quality of the generated model. The notion of
validity has several facets, including: ensuring that train-
ing data have the expected features; these features have the
expected values; features are correlated as expected; and,
serving data does not deviate from training data.

Some of these issues can be solved through well-known
mechanisms from database systems. For instance, the ex-
pected features and the characteristics of their values can be
encoded with something akin to a schema for the training
data. As another example, checking for correlations among
features is very similar to checking for functional depen-
dencies and inclusion dependencies in relational databases.
However, the specific context of machine learning introduces
a few wrinkles. For instance, the schema describing the con-
straints may be a property of the pipeline but may not be
part of the process generating the data, which means that
the data and the schema can evolve separately. (Constrast
this with traditional DBMS technology where the data al-
ways conforms to the schema.) Moreover, machine learn-
ing introduces unique types of constraints that need to be
checked, e.g., bounds on the drift in the statistical distribu-
tion of feature values in the training data, or use of an em-
bedding for some input feature if and only if other features
are normalized in a specific fashion. Furthermore, unlike a
traditional DBMS, any schema over training data needs to
be flexible enough to permit changes in the characteristics
of training data as they reflect events in the real world (for
example, a spike in queries about politics prior to elections).
The schema definition language for training data should
be expressive enough to allow (or disallow) such episodic
changes in the training data as well as detect gradual drifts
in the training data over a period of time.

The deviation between serving and training data (often
referred to as training-serving skew) is a major source of
problems in production machine learning pipelines. The un-
derlying issue is that the data used to generate the model is
different than the data used to probe the model, which (al-
most invariably) means that the generated predictions are
incorrect. This difference can manifest in many ways: the
two types of data may have different features, these features

1724



may use different value encodings (e.g., using 0 and 1 for
boolean values in the training data vs. “0” and “1” in the
serving data), the value distribution for specific features is
different, or there is time travel in the feature values. The
latter arises when the serving data is post-processed before
being used for training (see the “serving-to-training trans-
formations” box in Figure 1) and this post-processing uses
information that is available after serving (hence, the time
travel) to alter the feature values. Several works in the data-
management literature are relevant for skew detection, e.g.,
time-series analysis [5] can be used to detect distribution
drifts, but the detection of time-traveling is a unique ma-
chine learning problem that may require different solutions.

There are two orthogonal factors that add more com-
plexity to these validation tasks. The first is the scale of
the training data, since it is typical for machine learning
pipelines to train on billions of examples at a time each hav-
ing hundreds of features. Dealing with this scale may require
solutions that lift techniques from approximate query an-
swering [8]. The second complicating factor is that validity
checks may need to be done at the level of data slices, rather
than in aggregate. An example scenario is a machine learn-
ing pipeline that pulls data from different sources but a data
slice from one particular source is invalid. It is clearly use-
ful to identify this slice and help the user localize the error.
However, it is non-trivial to detect the error in the aggre-
gated data from all data sources, determine the features on
which to slice the data, and finaly identify a specific slice
that explains the error.

It is clearly useful to be able to identify the slices con-
taining errors, but the challenge is that the identity of slices
may not be available and in aggregate the data can still
look valid. This problem is related to the identification of
interesting slices in OLAP analytics [15]. In the context of
machine learning pipelines, the measures of interest should
correlate with metrics that users actually care about and
are likely to monitor, such as prediction error or other loss
metrics.

It is worth mentioning here that the aforementioned valid-
ity errors can appear for different reasons, e.g., due to bugs
in the code that collects or transforms the data, miscom-
munication between groups handling different parts of the
pipeline, or due to production hiccups such as the deploy-
ment of binaries with inconsistent versions. In other words,
while it is conceptually possible to avoid these errors before
they affect the training data, a variety of reasons makes it
necessary to have checks after the data gets ingested in the
machine learning pipeline.

3.3 Cleaning
Once a validation error is detected, the next logical step

is to clean the data. We break down this task in three se-
quential subtasks: understanding where the error occurred;
understanding the impact of the error; and, fixing the error.

We illustrate the first subtask (understanding where the
error occurred) through an example. Assume that the data
is invalid because the value distribution of some specific fea-
ture(s) has changed significantly over time. A simple diag-
nosis of “feature X has different distribution” may not be
very helpful–there is no context to help localize where the
drift occurred. Contrast this with a diagnosis of “feature X
has different distribution in training examples where Y takes
values in [20, 40)”. This localization can help an engineer

understand whether this is indeed an error or a natural evo-
lution of the data (in which case the right course of action
is to update the validation checks). Doing this localization
is equivalent to understanding which regions of the data are
interesting or relevant for the detected anomaly, and so it
may be possible to leverage previous works on guided OLAP
exploration [14] (although the objective function needs to re-
flect the validation constraints related to machine learning).

The second subtask is to understand the impact of the er-
ror on model quality. For practical reasons, a team may be
willing to continue operating the pipeline with invalid data
if the impact on model quality is negligible. Quantifying this
impact is non-trivial in the general case, given that the ma-
chine learning algorithm is in principle a black box function.
Here, we may be able to leverage some characteristics of the
function for specific classes of machine learning algorithms
in order to derive the impact analytically, or run a controlled
number of experiments to quantify the impact empirically.
The latter is of course challenging due to the overhead of
running these experiments, but we may be able to leverage
previous works on DB-parameter optimization [6] in order
to schedule these experiments effectively.

The third task is actually cleaning the data to fix the er-
ror. This cleaning can be done by addressing the root cause,
e.g., fixing a bug in the code that generates the data. An
alternative is to patch the data inside the machine learning
pipeline, as a temporary fix until the underlying problem
is permanently fixed. This approach is related to the rich
body of work on database repairs for certain types of con-
straints [4]. A recent study [12] also looked at applying
similar techniques for a specific class of machine learning
algorithms. An open question is whether these techniques
can be extended to cover the class of validation constraints
discussed in Section 3.2 and also to a more general class
of machine learning algorithms (including artificial neural
networks).

3.4 Enrichment
Enrichment refers to the augmentation of the training and

serving data with new features in order to improve the qual-
ity of the generated model. A common form of enrichment
is to join in a new data source in order to augment the ex-
isting features with new signals. Another form is using the
same signals with different transformations, e.g., using a new
embedding for text data.

A key problem in this context is discovering which ad-
ditional signals or transformations can enrich the data in
a meaningful way. Having a catalog of sources and sig-
nals can provide a first step for discovery, and recent works
have considered the problem of data cataloguing in different
contexts [10, 11] and the discovery of relationships between
sources. An equally important problem is helping the team
understand the boost in model quality by enriching the data
with a certain set of features. This information will help the
team decide whether to invest resources in implementing
the enrichment in production. (Typically, the difficulty lies
in enriching the serving data, where latency requirements
can be stringent.) A recent paper [13] has looked into this
problem for the case of joining with new data sources and
a specific class of algorithms, and it would be interesting to
consider extensions to other cases (e.g., training with black-
box learning algorithms that are hard to approximate, or
using different transformations on existing signals).

1725



Another wrinkle is that data sources may contain sensitive
information (e.g., PII data) and hence may not be accessed
until the team goes through an access review. However, go-
ing through a review and obtaining access to sensitive data
can result in operational overheads (e.g., the team has to log
accesses for auditing and enforce certain policies). Hence, it
is interesting to ask whether the effect of enrichment can
be approximated in a privacy-preserving fashion and with-
out access to the sensitive data, in order to help the team
decide whether to apply for access. One possibility is to
leverage techniques from privacy-preserving learning [7], al-
though the focus of previous works is more on learning a
privacy-preserving model rather than approximating the ef-
fect of additional features on model quality.

4. REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. G. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A.
Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. CoRR,
abs/1603.04467, 2016.

[2] R. Abousleiman, G. Qu, and O. A. Rawashdeh. North
atlantic right whale contact call detection. CoRR,
abs/1304.7851, 2013.

[3] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. Blinkdb: queries with
bounded errors and bounded response times on very
large data. In Eighth Eurosys Conference 2013,
EuroSys ’13, Prague, Czech Republic, April 14-17,
2013, pages 29–42, 2013.

[4] L. Bertossi. Consistent query answering in databases.
SIGMOD Rec., 35(2):68–76, June 2006.

[5] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang,
and E. Keogh. Querying and mining of time series
data: Experimental comparison of representations and
distance measures. Proc. VLDB Endow.,
1(2):1542–1552, Aug. 2008.

[6] S. Duan, V. Thummala, and S. Babu. Tuning
database configuration parameters with ituned.
PVLDB, 2(1):1246–1257, 2009.

[7] C. Dwork. Differential privacy: A survey of results. In
Theory and Applications of Models of Computation,
volume 4978, pages 1–19. Springer Verlag, April 2008.

[8] M. N. Garofalakis and P. B. Gibbons. Approximate
query processing: Taming the terabytes. In VLDB
2001, Proceedings of 27th International Conference on
Very Large Data Bases, September 11-14, 2001,
Roma, Italy, 2001.

[9] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. Data Mining and Knowledge Discovery,
1(1):29–53, 1997.

[10] A. Halevy, F. Korn, N. F. Noy, C. Olston,
N. Polyzotis, S. Roy, and S. E. Whang. Goods:
Organizing google’s datasets. In Proceedings of the
2016 International Conference on Management of
Data, SIGMOD ’16, pages 795–806, New York, NY,
USA, 2016. ACM.

[11] J. M. Hellerstein, V. Sreekanti, J. E. Gonzales,
Sudhansku, Arora, A. Bhattacharyya, S. Das, A. Dey,
M. Donsky, G. Fierro, S. Nag, K. Ramachandran,
C. She, E. Sun, C. Steinbach, and V. Subramanian.
Establishing common ground with data context. In
Proceedings of CIDR 2017, 2017.

[12] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and
K. Goldberg. Activeclean: Interactive data cleaning
for statistical modeling. PVLDB, 9(12):948–959, 2016.

[13] A. Kumar, J. F. Naughton, J. M. Patel, and X. Zhu.
To join or not to join?: Thinking twice about joins
before feature selection. In Proceedings of the 2016
International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA,
June 26 - July 01, 2016, pages 19–34, 2016.

[14] S. Sarawagi. User-adaptive exploration of
multidimensional data. In VLDB 2000, Proceedings of
26th International Conference on Very Large Data
Bases, September 10-14, 2000, Cairo, Egypt, pages
307–316, 2000.

[15] G. Sathe and S. Sarawagi. Intelligent rollups in
multidimensional OLAP data. In VLDB 2001,
Proceedings of 27th International Conference on Very
Large Data Bases, September 11-14, 2001, Roma,
Italy, pages 531–540, 2001.

[16] D. Sculley, G. Holt, D. Golovin, E. Davydov,
T. Phillips, D. Ebner, V. Chaudhary, and M. Young.
Machine learning: The high interest credit card of
technical debt. In SE4ML: Software Engineering for
Machine Learning (NIPS 2014 Workshop), 2014.

[17] M. Vartak, S. Rahman, S. Madden, A. G.
Parameswaran, and N. Polyzotis. SEEDB: efficient
data-driven visualization recommendations to support
visual analytics. PVLDB, 8(13):2182–2193, 2015.

1726




