

TABLE	OF	CONTENTS
EDK	II	Package	Declaration	(DEC)	File	Format	Specification

1	Introduction

1.1	Overview

1.2	Terms

1.3	Related	Information

1.4	Target	Audience

1.5	Conventions	Used	in	this	Document

2	DEC	File	Overview

2.1	Usage	Overview

2.2	Declaration	File	Format

2.3	EDK	II	DEC	Format

2.4	[Defines]	Usage

2.5	[Includes]	Usage

2.6	[Guids]	Usage

2.7	[Protocols]	Usage

2.8	[Ppis]	Usage

2.9	[LibraryClasses]	Usage

2.10	PCD	Usage

2.11	[UserExtensions]	Usage

3	EDK	II	DEC	File	Format

3.1	General	Rules

3.2	Package	Declaration	(DEC)	Definitions

3.3	Header	Comment	Section

3.4	[Defines]	Section

3.5	[Includes]	Sections

3.6	[Guids]	Sections

3.7	[Protocols]	Sections

3.8	[PPIs]	Sections

3.9	[LibraryClasses]	Sections

3.10	PCD	Sections

3.11	[UserExtensions]	Sections

Appendix	A	DEC	Examples

A.1	EDK	II	IntelFrameworkPkg	Example

A.2	EDK	II	EmulatorPkg	Example

A.3	ShellBinPkg.dec

A.4	UefiCpuPkg.dec

Appendix	B	EDK	II	Module	Types

Tables

Table	1	MACRO	Usages

EDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

2DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

Table	2	EDK	II	Module	Types

EDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

3DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

EDK	II	Package	Declaration	(DEC)	File	Format	Specification
DRAFT	FOR	REVIEW

04/30/2025	11:47:16

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2007-2017,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

1.0 Initial	release. December	2007

1.1 Updated	based	on	errata August	2008

1.2 Updated	based	on	enhancement	requests June	2009

1.21 Updated	based	on	errata	and	for	enhancement
requests January	2010

Standardized	the	format	for	common	content.

Added	support	for	@Keyword	Doxygen	tag

Added	support	for	@ModuleType	Doxygen	tags

Added	support	for	@ValidList,	@DefaultValue	and
@ValidRange	Doxygen	tags	for	PCDs

Added	PKG_UNI_FILE	element	to	[defines]	section

1.22 Errata	and	grammatical	editing April	2010

1.22	w/ Updates: December	2011

EDK	II	Package	Declaration	(DEC)	File	Format	SpecificationEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

4DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

Errata	A Updated	to	support	UEFI	version	2.3.1	and
updated	spec	release	dates	in	Introduction

Clarify	UEFI's	PI	Distribution	Package	Specification

Standardize	Common	data	definitions	for	all
specifications

Grammatical,	formatting	and	spelling	changes

Replaced	"should"	with	wording	saying	that	it	is

"recommended"

Added	EBNF	for		<Extension>	

Added	scoping	rules	for	Macros,	clarified	MACRO
summary

Added	an	example	of	a	binary	only	DEC	file

Removed	references	to	system	environment
variables	in	the	Macros	section

Specifically	state	where		<MACROVAL>		can	be	used,
and	where	it	is	prohibited;

specifically	state	that	MACROVAL	entries	are
expanded	where	they	are	used;

clarify	that	MACROS	are	only	expanded,	not
evaluated	during	initial	parsing	of	the	DEC	file

Added	table	that	shows	that	every	part	of	a	path
name	can	be	replaced	by	a	MACROVAL

Clarify	that	C	data	arrays	must	be	byte	arrays	for
PCD	value	fields;	prohibit	C	format	and

Registry	Format	GUID	structures	in	VOID*	PCD
value	fields

Update	non-zero	number	is	True,	only	0	is
consideered	False

Prohibit	specifying	items	as	architecturally	specific
and	also	common

Changed		<RegistryGuid>		to		<RegistryFormatGUID>		in

3.4

Defined		<GuidValue>		as	a		<CFormatGUID>		for	this
release	(need	to	allow	registry	format	in	a	future
release)

Update	the	[Includes],	[Guids],	[Protocols],	[PPIs],
[LibraryClasses]	and	PCD	sections	to	allow	an
empty	section

Updated	the	format	for		<QuotedString>	,		<CString>	
and		<UnicodeString>	

Update	PATH	related	EBNF

Add		<MacroDefinition>		to	[Defines],	[Includes]	and

	[LibraryClasses]	sections	

Provide	rules	in	2.2.6	for	how	macros	can	be
shared	between	different	subsections

1.22	w/ Updates: June	2012

EDK	II	Package	Declaration	(DEC)	File	Format	SpecificationEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

5DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

Errata	B Added	a	+	after		<Express>		in	the	DoxComment
definition	of	PCDs,	as	more	than	one	expression
can	be

specified	in	the	UEFI	PI	Distribution	Package
Specification.

Added	text	describing	the	use	of		<HexDigit>		for
error	numbers	as	well	as	how	they	are	scoped.

1.22	w/ Updates: June	2012

Errata	B Updated	UEFI/PI	Spec	version	in	chapter	1.3	to
include	Errata	letters.

(cont.) In	Section	3.10	modified	the	optional	error	number
in

DoxComment	definitions	for	PCDs	from		<HexDigit>	+
to

and	defined	to	be	of	type	;

also	added	a	"\
"	after	the	value	to
separate	the	error	code
from	numeric	values

Added	AsBuilt	entries	for	Abstract	and	Description

Clarified	that	the	file	must	use	the	DOS	end-of-line
character	sequence,		0x0D	0x0A	

1.22	w/ Updates: August	2013

Errata	C Updated	UEFI/PI	Specification	version	support	in
chapter	1

Modified	examples	to	correct	previous	errors

Removed	errors	from	text

Updated	examples

Modified	EBNF	to	prevent	using	the	architectural
modifier	of	common	with	any	other	architecture.

Ensure	that	wording	specifically	states	that	the
architecture	modifiers	are	not	case	sensitive.

Add	description	of	PCD	processing	rules	in	section
3.10

Allow	registry	format	GUID	values	in	GUIDs,
Protocols,

PPIs	sections	instead	of	requiring	C	format	GUID
values

(which	will	continue	to	be	allowed)

The	error	codes	are	scoped	to	the
TokenSpaceGUID,	not	to	the	PCD

Added	reference	to	the	EDK	II	Build	Specification
for	PCD	processing	rules.

1.24 	Updates;	 August	2014

Change	revision	number	of	this	specification	from
1.22	to

1.24

Updated		DEC_SPECIFICATION		to		0x00010017	

EDK	II	Package	Declaration	(DEC)	File	Format	SpecificationEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

6DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

Added	additional	parameter	definitions	for
clarification	of	the	comment	content	for	PCDs

Added	the		PACKAGE_UNI_FILE		entry	to	the		[Defines]	
section

Added	reserved	TianoCore	user	extension,	for

	"ExtraFiles"	

Added	PCD	comment	type	for	#	[Error]	which	is
used	to	map	an	error	code	for	a	given	token
space	to	a	specific	string.

1.24	w/ Updates: December	2014

Errata	A Changed	DEC_SPECIFICATION	to	0x00010018	and
allow	specifying	it	as	a	decimal,	i.e.,	1.24.

Updated	specification	dates	and	added	two	new
specifications	in	section	1.2

Removed	expression	EBNF	as	it	has	been	replaced
by	the	EDK	II	Expression	Syntax	Specification.

1.24	w/ Updates: March	2015

Errata	B
-	Update	link	to	the	EDK	II	Specifications,	fixed	the
name	of	the	Multi-String	.UNI	File	Format
Specification

1.24	w/ Updates: August	2015

Errata	C Clarify	that	#include	statements	are	not	permitted
in	UNI	file	specified	in	the	PACKAGE_UNI_FILE	entry

1.25 Updates: January	2015

Specification	revision	to	1.25

Revised	WORKSPACE	wording	for	updated	build
system	that	can	handle

packages	located	outside	of	the	WORKSPACE
directory	tree	(refer	to

the	TianoCore.org	EDKII	website	for	additional
instructions	on	setting

up	a	development	environment).

1.26 Reformat	for	GitBook April	2017

Updated		DEC_SPECIFICATION		to		0x0001001A		or		1.26	

#465	DEC	spec:	document	private	definitions

#482	DEC	Spec:	add	clarification	for	[Ppis],
[Guids],	[Protocols],	[Includes]	Private	support

1.27 Update	Version	to	1.27 Mar	2018

Add	flexible	PCD	value	format	into	spec

Add	structure	PCD	definition	syntax

Add	clarification	that	!error	statement	is	not
permitted	in	DEC	file

1.28 #1453	Update	DEC	spec	to	remove	EDK	related
contents Mar	2019

1.29 #1952	add	HOST_APPLICATION	ModuleType July	2019

EDK	II	Package	Declaration	(DEC)	File	Format	SpecificationEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

7DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

https://bugzilla.tianocore.org/show_bug.cgi?id=465
https://bugzilla.tianocore.org/show_bug.cgi?id=482
https://bugzilla.tianocore.org/show_bug.cgi?id=1453

EDK	II	Package	Declaration	(DEC)	File	Format	SpecificationEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

8DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

https://bugzilla.tianocore.org/show_bug.cgi?id=1952

1	INTRODUCTION
This	document	describes	the	EDK	II	Declaration	(DEC)	file	format.	This	format	was	designed	to	support
building	packaging	and	distribution	of	EDK	II	modules,	as	well	as	for	building	platforms	and	modules
using	the	EDK	II	build	infrastructure.	EDK	II	declaration	files	may	be	created	during	installation	of	a
distribution	that	follows	the	UEFI	Platform	Initialization	Distribution	Package	Specification.	They	may	also
be	created	manually.

The	EDK	II	Build	Infrastructure	supports	generation	of	UEFI	2.5	and	PI	1.4	(Unified	EFI,	Inc.)	compliant
binary	images.

This	version	of	the	specification	clarifies	(or	enables)	existing	content,	no	new	content	has	been
introduced.

1	IntroductionEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

9DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

1.1	Overview
This	document	describes	the	format	for	DEC	files	with	the	following	goals:

Compatible

The	DEC	Format	must	maintain	backward	compatibility	with	any	existing	DEC	file	formats.	This	means
that	the	changes	made	to	this	specification	must	not	require	changes	to	existing	DEC	files.

Simplified	platform	build	and	configuration

One	goal	of	this	format	is	to	simplify	the	build	setup	and	configuration	for	a	given	platform.	It	was	also
designed	to	simplify	the	process	of	developing	EDK	II	firmware	components.

1.1	OverviewEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

10DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

1.2	Terms
BaseTools

The	BaseTools	are	the	tools	required	for	an	EDK	II	build.

BDS

Framework	Boot	Device	Selection	phase.

BNF

BNF	is	an	acronym	for	"Backus	Naur	Form."	John	Backus	and	Peter	Naur	introduced	for	the	first	time	a
formal	notation	to	describe	the	syntax	of	a	given	language.

Component

An	executable	image.	Components	defined	in	this	specification	support	one	of	the	defined	module
types.

DEC

EDK	II	Package	Declaration	File.	This	file	declares	information	about	what	is	provided	in	the	package.	An
EDK	II	package	is	a	collection	of	like	content.

DEPEX

Module	dependency	expressions	that	describe	runtime	process	restrictions.

Dist

This	refers	to	a	distribution	package	that	conforms	to	the	UEFI	Platform	Initialization	Distribution
Package	Specification.

DSC

EDK	II	Platform	Description	File.	This	file	describes	what	and	how	modules,	libraries	and	components	are
to	be	built,	as	well	as	defining	library	instances	which	will	be	used	when	linking	EDK	II	modules.

DXE

Framework	Driver	Execution	Environment	phase.

DXE	SAL

A	special	class	of	DXE	module	that	produces	SAL	Runtime	Services.	DXE	SAL	modules	differ	from	DXE
Runtime	modules	in	that	the	DXE	Runtime	modules	support	Virtual	mode	OS	calls	at	OS	runtime	and	DXE
SAL	modules	support	intermixing	Virtual	or	Physical	mode	OS	calls.

DXE	SMM

A	special	class	of	DXE	module	that	is	loaded	into	the	System	Management	Mode	memory.

DXE	Runtime

Special	class	of	DXE	module	that	provides	Runtime	Services

EBNF

Extended	"Backus-Naur	Form"	meta-syntax	notation	with	the	following	additional	constructs:	square
brackets	"[...]"	surround	optional	items,	suffix	"*"	for	a	sequence	of	zero	or	more	of	an	item,	suffix	"+"	for
one	or	more	of	an	item,	suffix	"?"	for	zero	or	one	of	an	item,	curly	braces	"{...}"	enclosing	a	list	of
alternatives,	and	super/subscripts	indicating	between	n	and	m	occurrences.

1.2	TermsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

11DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

EDK

Extensible	Firmware	Interface	Development	Kit,	the	original	implementation	of	the	Intel(R)	Platform
Innovation	Framework	for	EFI	Specifications	developed	in	2007.

EDK	II

EFI	Development	Kit,	version	II	that	provides	updated	firmware	module	layouts	and	custom	tools,
superseding	the	original	EDK.

EDK	Compatibility	Package	(ECP)

The	EDK	Compatibility	Package	(ECP)	provides	libraries	that	will	permit	using	most	existing	EDK	drivers
with	the	EDK	II	build	environment	and	EDK	II	platforms.

EFI

Generic	term	that	refers	to	one	of	the	versions	of	the	EFI	specification:	EFI	1.02,	EFI	1.10	or	any	version
of	the	UEFI	specification.

FDF

EDK	II	Flash	definition	file.	This	file	is	used	to	define	the	content	and	binary	image	layouts	for	firmware
images,	update	capsules	and	PCI	option	ROMs.

FLASH

This	term	is	used	throughout	this	document	to	describe	one	of	the	following:

An	image	that	is	loaded	into	a	hardware	device	on	a	platform	-	traditional	ROM	image

An	image	that	is	loaded	into	an	Option	ROM	device	on	an	add-in	card

A	bootable	image	that	is	installed	on	removable,	bootable	media,	such	as	a	Floppy,	CD-ROM	or	USB
storage	device.

An	image	that	is	contains	update	information	that	will	be	processed	by	OS	Runtime	services	to
interact	with	EFI	Runtime	services	to	update	a	traditional	ROM	image.

A	UEFI	application	that	can	be	accessed	during	boot	(at	an	EFI	Shell	Prompt),	prior	to	hand-off	to
the	OS	Loader.

Foundation

The	set	of	code	and	interfaces	that	glue	implementations	of	EFI	together.

Framework

Intel(R)	Platform	Innovation	Framework	for	EFI	consists	of	the	Foundation,	plus	other	modular
components	that	characterize	the	portability	surface	for	modular	components	designed	to	work	on	any
implementation	of	the	EFI	architecture.

GUID

Globally	Unique	Identifier.	A	128-bit	value	used	to	name	entities	uniquely.	A	unique	GUID	can	be
generated	by	an	individual	without	the	help	of	a	centralized	authority.	This	allows	the	generation	of
names	that	will	never	conflict,	even	among	multiple,	unrelated	parties.	GUID	values	can	be	registry
format	(8-4-4-4-12)	or	C	data	structure	format.

GUID	also	refers	to	an	API	named	by	a	GUID.

HII

Human	Interface	Infrastructure.	This	generally	refers	to	the	database	that	contains	string,	font,	and	IFR
information	along	with	other	pieces	that	use	one	of	the	database	components.

1.2	TermsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

12DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

HOB

Hand-off	blocks	are	key	architectural	mechanisms	that	are	used	to	hand	off	system	information	in	the
early	pre-boot	stages.

IFR

Internal	Forms	Representation.	This	is	the	binary	encoding	that	is	used	for	the	representation	of	user
interface	pages.

INF

EDK	II	Module	Information	File.	This	file	describes	how	the	module	is	coded.	For	EDK,	this	file	describes
how	the	component	or	library	is	coded	as	well	as	providing	some	basic	build	information.

Source	INF	-	An	EDK	II	Module	Information	file	that	contains	content	in	a	[Sources]	section	and	it
does	not	contain	a	[Binaries]	section.	If	the	[Binaries]	section	is	empty	or	the	only	entries	in	the
[Binaries]	section	are	of	type	DISPOSABLE,	then	the	[Binaries]	section	is	ignored.

Binary	INF	-	An	EDK	II	Module	Information	file	that	has	a	[Binaries]	section	and	does	not	contain	a
[Sources]	section	or	the	[Sources]	section	is	empty.

Mixed	INF	-	An	EDK	II	Module	Information	file	that	contains	content	in	both	[Sources]	and	[Binaries]
sections	and	there	are	entries	in	the	[Binaries]	section	are	not	of	type		DISPOSABLE	

AsBuilt	INF	-	An	EDK	II	Module	Information	file	generated	by	the	EDK	II	build	system	when	building
source	content	(listed	in	a	[Sources]	section).

Library	Class

A	library	class	defines	the	API	or	interface	set	for	a	library.	The	consumer	of	the	library	is	coded	to	the
library	class	definition.	Library	classes	are	defined	via	a	library	class	.h	file	that	is	published	by	a
package.

Library	Instance

An	implementation	of	one	or	more	library	classes.

Module

A	module	is	either	an	executable	image	or	a	library	instance.

Module	Type

All	libraries	and	components	belong	to	one	of	the	following	module	types:		BASE	,		SEC	,		PEI_CORE	,		PEIM	,
	DXE_CORE	,		DXE_DRIVER	,		DXE_RUNTIME_DRIVER	,		DXE_SMM_DRIVER	,		DXE_SAL_DRIVER	,		UEFI_DRIVER	,	or		UEFI_APPLICATION	.	These
definitions	provide	a	framework	that	is	consistent	with	a	similar	set	of	requirements.	A	module	that	is	of
module	type	BASE,	depends	only	on	headers	and	libraries	provided	in	the	MDE,	while	a	module	that	is	of
module	type	DXE_DRIVER	depends	on	common	DXE	components.	The	EDK	II	build	system	also	permits
modules	of	type		USER_DEFINED		and		HOST_APPLICATION	.	These	modules	will	not	be	processed	by	the	EDK	II	Build
system.	See	Table	2	EDK	II	Module	Types.

Package

A	package	is	a	container.	It	can	hold	a	collection	of	files	for	any	given	set	of	modules.	Packages	may	be
described	as	one	of	the	following	types	of	modules:

source	modules,	containing	all	source	files	and	descriptions	of	a	module

binary	modules,	containing	EFI	Sections	or	a	Framework	File	System	and	a	description	file	specific	to
linking	and	binary	editing	of	features	and	attributes	specified	in	a	Platform	Configuration	Database
(PCD,)

mixed	modules,	with	both	binary	and	source	modules

1.2	TermsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

13DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

Multiple	modules	can	be	combined	into	a	package,	and	multiple	packages	can	be	combined	into	a
single	package.

PCD

Platform	Configuration	Database.

PEI

Pre-EFI	Initialization	Phase.

PEIM

An	API	named	by	a	GUID.

PPI

A	PEIM-to-PEIM	Interface	that	is	named	by	a	GUID.

Protocol

An	API	named	by	a	GUID.

Runtime	Services

Interfaces	that	provide	access	to	underlying	platform-specific	hardware	that	might	be	useful	during	OS
runtime,	such	as	time	and	date	services.	These	services	become	active	during	the	boot	process	but
also	persist	after	the	OS	loader	terminates	boot	services.

SAL

System	Abstraction	Layer.	A	firmware	interface	specification	used	on	Intel(R)	Itanium(R)	Processor	based
systems.

SEC

Security	Phase	is	the	code	in	the	Framework	that	contains	the	processor	reset	vector	and	launches	PEI.
This	phase	is	separate	from	PEI	because	some	security	schemes	require	ownership	of	the	reset	vector.

SKU

Stock	Keeping	Unit.

SMM

System	Management	Mode.	A	generic	term	for	the	execution	mode	entered	when	a	CPU	detects	an	SMI.
The	firmware,	in	response	to	the	interrupt	type,	will	gain	control	in	physical	mode.	For	this	document,
"SMM"	describes	the	operational	regime	for	IA32	and	x64	processors	that	share	the	OS-transparent
characteristics.

UEFI	Application

An	application	that	follows	the	UEFI	specification.	The	only	difference	between	a	UEFI	application	and	a
UEFI	driver	is	that	an	application	is	unloaded	from	memory	when	it	exits	regardless	of	return	status,
while	a	driver	that	returns	a	successful	return	status	is	not	unloaded	when	its	entry	point	exits.

UEFI	Driver

A	driver	that	follows	the	UEFI	specification.

UEFI	Specification	Version	2.4

Current	UEFI	version.

UEFI	Platform	Initialization	Distribution	Package	Specification	Version	1.0

The	current	version	of	this	specification	includes	Errata	B.

1.2	TermsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

14DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

UEFI	Platform	Initialization	Specification	1.3

Current	version	of	the	PI	specification.

Unified	EFI	Forum

A	non-profit	collaborative	trade	organization	formed	to	promote	and	manage	the	UEFI	standard.	For
more	information,	see	http://www.uefi.org.

VFR

Visual	Forms	Representation.

VPD

Vital	Product	Data	that	is	read-only	binary	configuration	data,	typically	located	within	a	region	of	a	flash
part.	This	data	would	typically	be	updated	as	part	of	the	firmware	build,	post	firmware	build	(via	patching
tools),	through	automation	on	a	manufacturing	line	as	the	'FLASH'	parts	are	programmed	or	through
special	tools.

1.2	TermsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

15DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

http://www.uefi.org

1.3	Related	Information
The	following	publications	and	sources	of	information	may	be	useful	to	you	or	are	referred	to	by	this
specification:

Unified	Extensible	Firmware	Interface	Specification,	Version	2.5,	Unified	EFI,	Inc,	2015,
http://www.uefi.org.

Platform	Initialization	Specification,	Version	1.4,	Unified	EFI,	Inc.,	2015,	http://www.uefi.org.

UEFI	Platform	Initialization	Distribution	Package	Specification,	Version	1.0	with	Errata	B,	Unified	EFI,
Inc.,	2014,	http://www.uefi.org.

Intel(R)	Platform	Innovation	Framework	for	EFI	Specifications,	Intel,	2007,
http://www.intel.com/technology/framework.

https://github.com/tianocore/tianocore.github.io/wiki/EDK-II-Specifications

EDK	II	Module	Writers	Guide,	Intel,	2010.

EDK	II	User	Manual,	Intel,	2010.

EDK	II	C	Coding	Standard,	Intel,	2015.

EDK	II	Build	Specification,	Intel,	2016.

EDK	II	DSC	Specification,	Intel,	2016.

EDK	II	FDF	Specification,	Intel,	2016.

EDK	II	INF	Specification,	Intel,	2016.

Multi-String	UNI	File	Format	Specification,	Intel,	2016.

EDK	II	Expression	Syntax	Specification,	Intel,	2015.

VFR	Programming	Language,	Intel,	2015.

UEFI	Packaging	Tool	(UEFIPT)	Quick	Start,	Intel,	2015.

EDK	II	Platform	Configuration	Database	Infrastructure	Descriptions,	Intel,	2009.

INI	file,	Wikipedia,	http://en.wikipedia.org/wiki/INI_file.

C	Now	-	C	Programming	Information,	Langston	University,	Tulsa	Oklahoma,	J.H.	Young,	1999-	2011,
http://c.comsci.us/syntax/expression/ebnf.html.

1.3	Related	InformationEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

16DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

http://www.uefi.org
http://www.uefi.org
http://www.uefi.org
http://www.intel.com/technology/framework
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II-Specifications
http://en.wikipedia.org/wiki/INI_file
http://c.comsci.us/syntax/expression/ebnf.html

1.4	Target	Audience
This	document	is	intended	for	persons	doing	EFI	development	and	support	for	different	platforms,	as
well	as	development	and	support	for	distributable	modules.	It	is	most	likely	only	of	interest	in	the	event
that	there	is	a	problem	with	a	build	or	if	a	developer	needs	to	perform	special	customizations	of	a	build
for	a	platform.

1.4	Target	AudienceEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

17DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

1.5	Conventions	Used	in	this	Document
This	document	uses	typographic	and	illustrative	conventions	described	below.

1.5.1	Data	Structure	Descriptions
Intel(R)	processors	based	on	32	bit	Intel(R)	architecture	(IA	32)	are	"little	endian"	machines.	This
distinction	means	that	the	low-order	byte	of	a	multi	byte	data	item	in	memory	is	at	the	lowest	address,
while	the	high-order	byte	is	at	the	highest	address.	Processors	of	the	Intel(R)	Itanium(R)	processor
family	may	be	configured	for	both	"little	endian"	and	"big	endian"	operation.	All	implementations
designed	to	conform	to	this	specification	will	use	"little	endian"	operation.

In	some	memory	layout	descriptions,	certain	fields	are	marked	reserved.	Software	must	initialize	such
fields	to	zero	and	ignore	them	when	read.	On	an	update	operation,	software	must	preserve	any
reserved	field.

The	data	structures	described	in	this	document	generally	have	the	following	format:

Summary
A	brief	description	of	the	data	structure.

Prototype
An	EBNF-type	declaration	for	the	data	structure.

Example
Sample	data	structure	using	the	prototype.

1.5.2	Pseudo-Code	Conventions
Pseudo	code	is	presented	to	describe	algorithms	in	a	more	concise	form.	None	of	the	algorithms	in	this
document	are	intended	to	be	compiled	directly.	The	code	is	presented	at	a	level	corresponding	to	the
surrounding	text.

In	describing	variables,	a	list	is	an	unordered	collection	of	homogeneous	objects.	A	queue	is	an	ordered
list	of	homogeneous	objects.	Unless	otherwise	noted,	the	ordering	is	assumed	to	be	FIFO.

Pseudo	code	is	presented	in	a	C-like	format,	using	C	conventions	where	appropriate.	The	coding	style,
particularly	the	indentation	style,	is	used	for	readability	and	does	not	necessarily	comply	with	an
implementation	of	the	Extensible	Firmware	Specification.

1.5.3	Typographic	Conventions
This	document	uses	the	typographic	and	illustrative	conventions	described	below:

Typographic
Convention Typographic	convention	description

Plain	text The	normal	text	typeface	is	used	for	the	vast	majority	of	the	descriptive	text	in	a
specification.

Plain	text
(blue)

Any	plain	text	that	is	underlined	and	in	blue	indicates	an	active	link	to	the
crossreference.	Click	on	the	word	to	follow	the	hyperlink.

Bold In	text,	a		Bold		typeface	identifies	a	processor	register	name.	In	other	instances,

1.5	Conventions	Used	in	this	DocumentEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

18DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

Bold a		Bold		typeface	can	be	used	as	a	running	head	within	a	paragraph.

Italic In	text,	an	Italic	typeface	can	be	used	as	emphasis	to	introduce	a	new	term	or	to
indicate	a	manual	or	specification	name.

	BOLD	Monospace	

Computer	code,	example	code	segments,	and	all	prototype	code	segments	use	a
	BOLD	Monospace		typeface	with	a	dark	red	color.	These	code	listings	normally	appear
in	one	or	more	separate	paragraphs,	though	words	or	segments	can	also	be
embedded	in	a	normal	text	paragraph.

	Bold	Monospace	

Words	in	a		_Bold	Monospace_		typeface	that	is	underlined	and	in	blue	indicate	an
active	hyper	link	to	the	code	definition	for	that	function	or	type	definition.	Click	on
the	word	to	follow	the	hyper	link.

$(VAR) This	symbol	VAR	defined	by	the	utility	or	input	files.

Italic	Bold In	code	or	in	text,	words	in	Italic	Bold	indicate	placeholder	names	for	variable
information	that	must	be	supplied	(i.e.,	arguments).

Note:	Due	to	management	and	file	size	considerations,	only	the	first	occurrence	of	the	reference	on
each	page	is	an	active	link.	Subsequent	references	on	the	same	page	will	not	be	actively	linked	to	the
definition	and	will	use	the	standard,	non	underlined		Bold	Monospace		typeface.	Find	the	first	instance	of	the
name	(in	the	underlined		Bold	Monospace		typeface)	on	the	page	and	click	on	the	word	to	jump	to	the
function	or	type	definition.

The	following	typographic	conventions	are	used	in	this	document	to	illustrate	the	Extended	Backus-Naur
Form.

[item] Square	brackets	denote	the	enclosed	item	is	optional.

	{item}	
Curly	braces	denote	a	choice	or	selection	item,	only	one	of	which	may	occur	on	a	given
line.

	<item>	 Angle	brackets	denote	a	name	for	an	item.

	(range-

range)	

Parenthesis	with	characters	and	dash	characters	denote	ranges	of	values,	for
example,	(a-zA-Z0-9)	indicates	a	single	alphanumeric	character,	while	(0-9)	indicates	a
single	digit.

	"item"	
Characters	within	quotation	marks	are	the	exact	content	of	an	item,	as	they	must
appear	in	the	output	text	file.

	?	 The	question	mark	denotes	zero	or	one	occurrences	of	an	item.

	*	 The	star	character	denotes	zero	or	more	occurrences	of	an	item.

	+	 The	plus	character	denotes	one	or	more	occurrences	of	an	item.

	item{n}	

A	superscript	number,	n,	is	the	number	occurrences	of	the	item	that	must	be	used.
Example:	(0-9)8	indicates	that	there	must	be	exactly	eight	digits,	so	01234567	is	valid,
while	1234567	is	not	valid.

	item{n,}	

A	superscript	number,	n,	within	curly	braces	followed	by	a	comma	","	indicates	the
minimum	number	of	occurrences	of	the	item,	with	no	maximum	number	of
occurrences.

	item{,n}	
A	superscript	number,	n,	within	curly	braces,	preceded	by	a	comma	","indicates	a
maximum	number	of	occurrences	of	the	item.

	item{n,m}	
A	super	script	number,	n,	followed	by	a	comma	","	and	a	number,	m,	indicates	that	the
number	of	occurrences	can	be	from	n	to	m	occurrences	of	the	item,	inclusive.

1.5	Conventions	Used	in	this	DocumentEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

19DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

1.5	Conventions	Used	in	this	DocumentEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

20DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2	DEC	FILE	OVERVIEW
This	document	describes	the	format	of	EDK	II	package	declaration	(DEC)	files.	The	DEC	files	are	used	by
the	EDK	II	utilities	that	parse	EDK	II	DSC	and	EDK	II	INF	files	to	generate	AutoGen.c	and	AutoGen.h	files
for	the	EDK	II	build	infrastructure.

There	are	no	new	features	or	format	introduced	in	this	specification.

This	version	of	the	specification	reflects	changes	to	the	EDK	II	reference	build	system	that	has	been
updated	to	support	builds	using	EDK	II	Packages	that	are	located	in	directories	outside	of	the	directory
specified	by	the	system	environment	variable,	WORKSPACE.	Refer	to	the	TianoCore.org	web-site	for	more
information	on	the	EDK	II	build	system.

An	EDK	II	Package	(directory)	is	a	directory	that	contains	an	EDK	II	package	declaration	(DEC)	file.	Only
one	DEC	file	is	permitted	per	directory.	EDK	II	Packages	cannot	be	nested	within	other	EDK	II	Packages.

A	DEC	file	describes	content	for	a	collection	of	'like'	modules	located	in	a	directory	tree.	Each	collection
of	modules	must	be	in	a	unique	directory	tree	in	the		WORKSPACE	,	and	must	contain	only	one	DEC	file.

EDK	II	modules	are	located	in	subdirectories	below	the	directory	containing	this	file.	If	a	module	is	a
Library,	the	module	directory	must	be	created	in	the	"Library"	subdirectory.	An	"Include"	subdirectory	is
also	required,	with	the	header	file	for	the	Library	class	placed	in	the	sub-directory	Include/Library/,	and
be	called	LibraryClassName.h.	Additional	content	for	the	Include	directory	may	include	header	files	and
potentially	another	Industry	Standard	directory.

Note:	Path	and	Filename	elements	within	the	DEC	are	case-sensitive	in	order	to	support	building	on
UNIX	style	operating	systems.	Names	that	are	used	in	C	code	are	case	sensitive	as	well	as	MACRO
names	used	as	short-cuts	within	the	DEC	file.	Use	of	"..",	"./"	and	"../"	in	path	and	filename	elements	is
prohibited.

Note:	GUID	values	are	used	during	runtime	to	uniquely	map	the	C	names	of	PROTOCOLS,	PPIS,	PCDS
and	other	variable	names.

Note:	The	examples	in	this	document	use	a	backslash	"\"	character	when	the	example	line	does	not	fit
in	between	the	margins.	This	character	is	not	permitted	in	the	actual	DEC	file,	as	all	valid	entries	must
appear	on	the	same	line.

Note:	The	total	path	and	file	name	length	is	limited	by	the	operating	system	and	third	party	tools.	It	is
recommended	that	for	EDK	II	builds	that	the	WORKSPACE	(or	directories	listed	in	the	PACKAGESPATH
system	environment	variable)	directory	be	either	a	directory	under	a	subst	drive	in	Windows	(s:/build	as
an	example)	or	be	located	in	either	the	/opt	directory	or	in	the	user's	/	home/username	directory	for
Linux	and	OS/X._

2	DEC	File	OverviewEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

21DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.1	Usage	Overview
The	DEC	file	supports	EDK	II	module	builds.	The	file	is	used	to	define	specific	information	that	will	be
shared	between	different	EDK	II	Modules.	There	are	eight	possible	major	section	types	in	the	DEC	file,
Defines,	Includes,	LibraryClasses,	Guids,	Protocols,	Ppis,	PCD	and	UserExtensions.

Within	a	DEC	file,	comments	are	encouraged,	with	the	hash	"#"	character	identifying	a	comment.	All	text
after	a	comment	character	must	be	ignored	by	any	parsing	tool.	Comment	characters	can	be	at	the
start	of	a	line,	or	after	a	data	element	(there	must	be	one	or	more	white	space	characters	between	the
data	element	and	the	comment	character.	Examples:

#	this	is	a	comment	line

[includes.common]	#	This	is	also	a	valid	comment.

[includes.common	#	This	is	not	valid]

The	last	example	is	not	valid,	as	the	section	header	data	element	format	is	[text]	with	the	square
brackets	included	as	part	of	the	data	element.

Note:	All	EDK	II	DEC	files	MUST	use	the	forward	slash	character	for	all	directory	paths	specified.

The	remainder	of	this	chapter	discusses	the	different	section	content	usage.

2.1	Usage	OverviewEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

22DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.2	Declaration	File	Format
This	section	covers	the	content	for	the	EDK	II	DEC	files.

2.2.1	Section	Entries
To	simplify	parsing,	the	EDK	II	meta-data	files	continue	using	the	INI	format.	This	style	was	introduced	for
EDK	meta-data	files,	when	only	the	Windows	tool	chains	were	supported.	It	was	decided	that	for
compatibility	purposes,	that	INI	format	would	continue	to	be	used.	EDK	II	formats	differ	from	the	defacto
format	in	that	the	semicolon	";"	character	cannot	be	used	to	indicate	a	comment.

Leading	and	trailing	space/tab	characters	must	be	ignored.

Duplicate	section	names	must	be	merged	by	tools.

This	declaration	file	consists	of	sections	delineated	by	section	tags	enclosed	within	square	[]	brackets.
Section	tag	entries	are	case-insensitive.	The	different	sections	and	their	usage	are	described	below.
The	text	of	a	given	section	can	be	used	for	multiple	section	names	by	separating	the	section	names
with	a	comma.	For	example:

	[Includes.X64,	includes.IPF]	

The	content	below	each	section	heading	is	processed	by	the	parsing	utilities	in	the	order	that	they
occur	in	the	file.	The	precedence	for	processing	these	architecture	section	tags	is	from	right	to	left,
with	sections	defining	an	architecture	having	a	higher	precedence	than	a	section	which	uses	common
(or	no	architecture	extension)	as	the	architecture.

It	is	not	permissible	to	have	an	architectural	modifier	in	the	same	section	tag	as	an	entry	with	the
common	architectural	modifier.	Specifying	entries	as	only	for	IA32	and	also	valid	for	all	other
architectures	([Includes.common,	Includes.IA32])	is	not	valid.

Note:	Content	such	as	filenames,	directory	names,	MACROs	and	C	variable	names	within	a	section	IS
case	sensitive.		IA32	,		Ia32		and		ia32		within	a	section	are	processed	as	separate	items.		IA32	,		Ia32		and
	ia32		within	a	section	in	a	directory	or	file	name	are	processed	as	separate	items.	(Refer	to	Naming
Conventions	below	for	more	information	on	directory	and/or	file	naming.)

Sections	are	terminated	by	the	start	of	another	section	or	the	end	of	the	file.

Comments	are	not	permitted	between	square	brackets	of	a	section	specifier.

Duplicate	sections	(two	sections	with	identical	section	tags)	will	be	merged	by	tools,	with	the	second
section	appended	to	the	first.

If	architectural	modifiers	are	used	in	the	section	tag,	the	section	is	merged	by	tools	with	content	from
common	sections	(if	specified)	with	the	architectural	section	appended	to	the	first,	into	an	architectural
section.	For	example,	given	the	following:

[Includes]

		Includes/

[Includes.IA32]

		Includes/Ia32

[Includes.X64]

		Includes/X64

2.2	Declaration	File	FormatEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

23DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

After	the	first	pass	of	the	tools,	when	building	the	module	for	IA32,	the	source	files	will	logically	be:

[Includes.IA32]

		Includes/

		Includes/Ia32

When	building	the	module	for	X64,	the	source	files	will	logically	be:

[Includes.X64]

		Includes/

		Includes/X64

The		[Defines]		section	tag	prohibits	use	of	architectural	modifiers.	All	other	sections	can	specify
architectural	modifiers.

2.2.2	Comments
The	hash		#		character	indicates	comments	in	the	Declaration	(DEC)	file.	In	line	comments	terminate	the
processing	of	a	line.	In	line	comments	must	be	placed	at	the	end	of	the	line,	and	may	not	be	placed
within	the	section	([,])	tags.

Only		gPkgTSGuid.PcdFoo|TRUE|BOOLEAN|0x00000015		in	the	following	example	is	processed	by	tools;	the	remainder	of
the	line	is	ignored:

	gPkgTSGuid.PcdFoo|TRUE|BOOLEAN|0x00000015	#	EFI_COMPUTING_UNIT_MEMORY	

Note:	Blank	lines	and	lines	that	start	with	the	hash	#	character	must	be	ignored	by	tools.

Hash	characters	appearing	within	a	quoted	string	are	permitted,	with	the	string	being	processed	as	a
single	token.	The	following	example	must	handle	the	quoted	string	as	single	element	by	tools.

	UI	=	"#	Copyright	2007,	No	Such,	LTD.	All	rights	reserved."	

The	line	extension	character,	"\",	cannot	be	used	to	extend	a	comment.	Like	the	comment	character
stops	processing	of	a	line,	comments	are	always	terminated	by	the	end	of	line.	Doxygen	tags	are
permitted	in	comment	blocks	preceding	individual	GUID,	Protocol,	PPI	and	PCD	entries.	These	tags	are
used	as	containers	for	content	required	by	the	UEFI	Packaging	specification,	and	may	also	be	used	by
tools.	Each	section	will	define	the	valid	Doxygen	tags	which	apply.

If	a	hash	"	#	"	character	is	required	in	a	value	field,	the	value	field	must	be	encapsulated	by	double
quotation	marks.

	<CommentBlock>		Entries
Various	elements	in	the	DEC	file	have	a	recommended	format	for	comment	information	regarding	the
header	files,	module	types	an	item	supports	and	other	information.	These	special	comment	blocks	are
processed	by	tools	used	to	create	a	distribution	package	of	the	code	that	conforms	to	the	UEFI
Distribution	Package	(UDP)	Specification.	Tools	used	to	install	a	distribution	package	that	conforms	to
the	UDP	must	add	appropriate	type	information	in	these	comment	blocks.	The	comment	block	formats
are	specified	in	chapter	3	of	this	document.

The	general	format	of	these	comment	blocks	in	the		[Guids]	,		[Protocols]		and		[Ppis]		sections	is:

		"##"	Path/To/HeaderFile.h

		GUID_C_Name	=	<GUID>	["##"	<ModuleTypeList>]	["#"	<HelpText>]

2.2	Declaration	File	FormatEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

24DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

Example

		##	Include/Guid/GlobalVariable.h

		gEfiGlobalVariableGuid	=	{0x8BE4DF61,0x93CA,0x11D2,{0xAA,0x0D,0x00,0xE0,0x98,0x03,0x2B,0x8C}}

		#	Include/Protocol/DebugPort.h

		gEfiDebugPortDevicePathGuid	=	{0xEBA4E8D2,	0x3858,	0x41EC,{0xA2,	0x81,	0x26,	0x47,	0xBA,	0x96,	0x60,	0xD0}}

		#

		#	UEFI_DRIVER

		#	Guid	for	EFI_DISK_INFO_PROTOCOL.Interface	to	specify	Ide	interface.

{0xAF,	0x17,	0x61,	0x02,	0x87,	0x18,	0x8D,	0xEC}}	##	DXE_DRIVER,	UEFI_DRIVER

}	##	SMM_CORE,	DXE_SMM_DRIVER

Note:	In	the	above	example,	the	line	has	been	extended	so	that	the	field	is	continued	to	the	last	line
(the	"}"	character)	so	that	the	comment	at	the	end	of	the	line	can	be	processed	correctly	by	the
Intel(R)	UEFI	Packaging	Tool.

Additional	informational	help	text	is	also	defined	in	the		<CommentBlock>		tag.	The	format	defined	for
comment	blocks	that	are	at	the	end	of	lines	listed	in	all	of	the	examples	must	not	continue	on	following
lines.	If	the		<CommentBlock>		information	is	long,	the	information	is	allowed	to	be	split	into	multiple	comment
lines	that	immediately	precede	the	element.	For	example:

		##	Include/Guid/DebugAgentGuid.h

		#	PEIM,	DXE_DRIVER,	DXE_SMM_DRIVER

		#	MdeModule	Debug	Agent	GUID

		gEfiDebugAgentGuid	=	{0x865a5a9b,0xb85d,0x474c,{0x84,0x55,0x65,0xd1,0xbe,0x84,0x4b,0xe2}}

Unlike	GUIDs,	Protocols	and	PPIs,	the	PCD	entries	are	not	associated	with	a	header	file,	so	the	general
format	is:

##	CommentBlock

[#	CommentBlockCont]

		Entry	[<ShortSingleCommentBlock>]

Example

		#	DXE_DRIVER,	DXE_SMM_DRIVER

		#	S3	support

		#	The	PCD	is	used	to	specify	memory	size	with	page	number	for	a

		#	pre-allocated	ACPI	NVS	memory	to	be	used	by	PEI	in	S3	phase.

		#	The	default	size	32K.

		#	When	changing	the	value	of	this	PCD,	the	platform	developer	should

		#	make	sure	the	memory	size	is	large	enough	to	meet	PEI	requirement	in

		#	S3	phase.

		gEfiTModPkgTokenSpaceGuid.PcdS3AcpiReservedMemorySize	|0x8000	|	UINT32	|	0x30000007

2.2.3	Valid	Entries
Processing	of	the	line	is	terminated	if	a	comment	is	encountered	or	by	the	end	of	the	line.	Entries	in
this	file	(not	comments)	are	not	allowed	to	span	multiple	lines.

Items	in	quotation	marks	are	treated	as	a	single	token	and	have	the	highest	precedence.	All
expressions	must	be	written	using	in-fix	notation	(operators	are	written	between	the	operands).
Parenthesis	surrounding	groups	of	operands	and	operators	are	recommended	to	determine	the	order

2.2	Declaration	File	FormatEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

25DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

in	which	operations	are	to	be	performed	to	remove	ambiguity.	All	other	processing	occurs	from	left	to
right.

In	the	following	example,	B	-	C	is	processed	first,	then	result	is	added	to	A	followed	by	adding	2;	finally	3
is	added	to	the	result.

	(A	+	(B	-	C)	+	2)	+	3	

In	the	next	example,	A	+	B	is	processed	first,	then	C	+	D	is	processed	and	finally	the	two	results	are
added.

	(A	+	B)	+	(C	+	D)	

Space	and	tab	characters	are	permitted	around	field	separators.

2.2.4	Naming	Conventions
The	EDK	II	build	infrastructure	is	supported	under	Microsoft	Windows,	Linux	and	MAC	OS/X	operating
systems.	As	a	result	of	multiple	environment	support,	all	directory	and	file	names	must	be	treated	as
case	sensitive.

The	use	of	special	characters	in	directory	names	and	file	names	is	restricted	to	the	dash,
underscore,	and	period	characters,	respectively	"-",	"_",	and	".".

Period	characters	must	not	be	followed	by	another	period	character.	File	and	Directory	names	must
not	start	with	"./",	"."	or	"..".

Directory	names	and	file	names	must	not	contain	space	or	tab	characters.

Directory	Names	must	only	contain	alphanumeric,	underscore,	dash	and	period	characters	(period
characters	must	not	be	sequential)	and	it	is	recommended	that	they	start	with	an	alpha	character.

All	files	must	reside	in	the	directory	containing	the	DEC	file	or	in	sub-directories	of	the	directory
containing	the	DEC	file.

It	is	recommended	that	filenames	start	with	an	alpha	character.

All	EDK	II	directories	that	are	architecturally	dependent	must	use	a	name	with	only	the	first
character	capitalized	followed	by	lower	case	characters	or	numeric	characters.	Ia32,	Ipf,	X64	and
Ebc	are	valid	architectural	directory	names.	IA32,	IPF	and	EBC	are	not	acceptable	directory	names,
and	may	cause	build	breaks.	From	a	build	tools	perspective,	an	IA32	directory	name	is	not
equivalent	to	Ia32	or	ia32.

When	an	architecture	is	used	in	a	directory	name,	the	directory	content	must	be	listed	in	a	section
that	uses	the	matching	architecture	modifier.	If	a	common	section	contains	filenames	that	have
directories	with	architecture	modifiers,	the	file	will	be	processed	for	all	architectures,	not	just	the
architecture	specified	in	the	directory	name.

Absolute	paths	are	not	permitted	in	EDK	II	DEC	files.	All	paths	specified	are	relative	to	the	EDK	II
package	directory	containing	the	DEC	file.

Space	Characters	in	filenames:	The	build	tools	must	be	able	to	process	the	tool	definitions	file:
tools_def.txt	(describing	the	location	and	flags	for	compiler	and	user	defined	tools),	which	may	contain
space	characters	in	paths	on	Windows*	systems.

The	EDK	II	Coding	Style	specification	covers	naming	conventions	for	use	within	C	Code	files,	and	as	well
as	specifying	the	rules	for	directory	and	file	names.	This	section	is	meant	to	highlight	those	rules	as
they	apply	to	the	content	of	the	DEC	files.

Architecture	keywords	(IA32,	IPF,	X64	and	EBC)	are	used	by	build	tools	and	in	metadata	files	for
describing	alternate	threads	for	processing	of	files.	These	keywords	must	not	be	used	for	describing
directory	paths.	Additionally,	directory	names	with	architectural	names	(Ia32,	Ipf,	X64	and	Ebc)	do	not

2.2	Declaration	File	FormatEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

26DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

automatically	cause	the	build	tools	or	meta-data	files	to	follow	these	alternate	paths.	Directories	and
Architectural	Keywords	are	similar	in	name	only.

For	clarity,	this	specification	will	use	all	upper	case	letters	when	describing	architectural	keywords,	and
the	directory	names	with	only	the	first	letter	in	upper	case.

All	directory	paths	within	EDK	II	DEC	files	must	use	the	"/"	forward	slash	character	to	separate
directories	as	well	as	directories	from	filenames.

Example
	C:/Work/Edk2/edksetup.bat	

File	names	must	also	follow	the	same	naming	convention	required	for	directories.	No	white	space
characters	are	permitted.	The	special	characters	permitted	in	directory	names	are	the	only	special
characters	permitted	in	file	names.

Absolute	paths	or	relative	paths	outside	of	the	directory	the	DEC	file	resides	must	not	be	used	when
specifying	directories	or	filenames	in	any	section	of	the	DEC	file.

2.2.5	!include	Statements
The		!include		statement	is	NOT	permitted	in	DEC	files.

2.2.6	Macro	Statements
Macro	statements	are	permitted	in	the	EDK	II	DEC	files.	Macro	statements	assign	a	Value	to	a	Variable
Name,	and	are	only	valid	during	the	processing	of	the	DEC	specifying	the	value.	Macro	statements	are
local	to	the	file	-	global	macro	values	are	not	permitted.	Use	of	system	environment	variables	is	also
prohibited	in	value	fields;	they	may	appear	in	comments,	however	during	the	build,	comment	content	is
ignored.	This	decision	was	made	in	order	to	support	UEFI's	PI	Distribution	Package	Specification
requirements.

Macro	Definition	statements	that	appear	within	a	section	of	the	file	(other	than	the		[Defines]		section)
are	scoped	to	the	section	they	are	defined	in.	If	the	Macro	statement	is	within	the		[Defines]		section,
then	the	Macro	is	common	to	the	entire	file,	with	local	definitions	taking	precedence	(if	the	same	MACRO
name	is	redefined	in	subsequent	sections,	then	the	MACRO	value	is	local	to	only	that	section).

Any	defined	MACRO	definitions	will	be	expanded	by	tools	when	they	encounter	the	entry	in	the	section.
All	macros	are	local	to	the	DEC	file	(this	is	a	requirement	for	UEFI	distribution	of	source	and	binary
content).

The	macro	statements	are	positional,	in	that	only	statements	following	a	macro	definition	are	permitted
to	use	the	macro	-	a	macro	cannot	be	used	before	it	has	been	defined.

Macros	defined	the		[Defines]		section	are	common	to	all	sections.

Macros	defined	in	a	common	architectural	section	may	be	used	in	the	architecturally	modified	sections
of	the	same	section	type.	Macros	defined	in	architectural	sections	cannot	be	used	in	other
architectural	sections,	nor	can	they	be	used	in	the	common	section.

Macro	expansion	is	done	at	the	time	the	macro	is	used.

Example

[LibraryClasses.common]

		#	Can	use	$(MDE)

		#	Cannot	use	either	$(SMM)	or	$(SAL)

		DEFINE	MDE	=	Include/Library

		BaseLib|$(MDE)/BaseLib.inf

2.2	Declaration	File	FormatEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

27DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

[LibraryClasses.X64,	LibraryClasses.IA32]

		#	Can	use	$(MDE)	and	local	$(SMM)

		#	Cannot	use	$(SAL)

		DEFINE	SMM	=	Include/Library	SmmLib|$(SMM)/SmmLib.h

[LibraryClasses.IPF]

		#	Can	use	$(MDE)	from	the	common	section	and	local	$(SAL)

		#	Cannot	use	$(SMM)

		DEFINE	SAL	=	Include/Library

		SalLib|$(SAL)/SalLib.h

		PalLib|$(MDE)/PalLib.h

In	the	previous	example,	the	directory	and	filename	for	a	library	instance	is	the	header	file	that	can	be
used	for	all	modules	that	provide	the	library	implementations	that	conform	to	the	definitions	in	the	file.

2.2.7	PCD	Names
Unique	PCD	names	are	defined	as	PCD	Token	Space	Guid	C	name	and	the	PCD	C	name	separated	by	a
period	"."	character:

	PcdTokenSpaceGuidCName.PcdCName	

The	PCD's	Name		(PcdName)		is	defined	as	PCD	Token	Space	Guid	C	name	and	the	PCD	C	name	separated
by	a	period	"	.	"	character.	PCD	C	names	are	used	in	C	code	and	must	follow	the	C	variable	name	rule.

2.2.8	Conditional	Directive	Statements	(!if...)
Conditional	statements	are	NOT	permitted	in	EDK	II	DEC	files.

2.2.9	!error	Statements
The		!error		statement	is	NOT	permitted	in	EDK	II	DEC	files.

2.2	Declaration	File	FormatEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

28DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.3	EDK	II	DEC	Format
EDK	II	DEC	files	can	be	created	by	package	installation	tools	using	the	UEFI	Distribution	Package
description	files	that	accompany	a	distribution	package.	They	may	also	be	created	manually.

All	content	(except	section	tag	names)	within	the	EDK	II	DEC	file	is	case-sensitive.

2.3	EDK	II	DEC	FormatEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

29DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.4	[Defines]	Usage
This	is	a	required	section.

The		[Defines]		section	is	used	to	track	the	package's	GUID	and	version,	which	allows	multiple	copies	of
the	same	package	with	different	versions	to	be	processed	by	tools.	Architectural	modifiers	are	not
permitted	in	the		[Defines]		section.	If	major	changes	to	a	package	occur,	the	GUID	value	of	the	package
must	also	change.

The		DEC_SPECIFICATION		of	existing	DEC	files	does	not	need	to	be	updated	unless	content	in	the	file	has
been	updated	to	match	new	content	specified	by	this	revision	of	the	specification.	Additionally,	the
package's	version	major	number	may	change.	Minor	changes	require	incrementing	the	package's
version	minor	number.	The

	PACKAGE_UNI_FILE		entry	points	to	a	Unicode	file	containing	localization	strings.	The	use	of	the	#include
statement	in	this	file	is	prohibited.	The	file	path	(if	present)	is	relative	to	the	directory	containing	the
DEC	file.

The	parsing	utilities	process	any	local	symbol	assignments	defined	in	this	section.	Note	that	the
sections	are	processed	in	the	order	listed	in	the	DEC	file,	and	later	assignments	of	these	local	symbols
override	previous	assignments.

This	section	will	use	only	one	section	header:

	[Defines]	

The	format	for	entries	in	this	section	is:

	Name	=	Value	

The	following	is	an	example	of	this	section.

[Defines]

		DEC_SPECIFICATION	=	0x0001001B

		PACKAGE_NAME						=	MdePkg

		PACKAGE_GUID						=	1E73767F-8F52-4603-AEB4-F29B510B6766

		PACKAGE_VERSION			=	1.02

		PACKAGE_UNI_FILE		=	MdePkg.uni

2.4	[Defines]	UsageEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

30DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.5	[Includes]	Usage
This	is	an	optional	section.

The		[Includes]		section	is	used	to	identify	the	"standard"	location	"include	directories"	provide	by	this	EDK
II	package.	The		[Includes]		contains	a	list	of	package	relative	directory	names.	These	directories	contain
sub-directories	or	header	files.	If	the	Package	directory	contains	the	directories,	and	the		Include	,
	Include/Ppis	,		Include/Protocol		and		Include/Guid	,	and	header	files	exist	in	each	of	these	directories,	then	all
four	directories	will	be	listed	in	this	section.

This	list	of	directories	is	used	by	the	build	tools	to	create	the	list	of	standard	directory	locations
required	by	compilers.

Also	included	in	this	section	are	the	directories	containing	headers	that	may	be	required	for	individual
EDK	II	module	types.	Refer	to	Appendix,	"EDK	II	Module	Types",	for	a	list	of	the	valid	types.

The	section	tag	modifier,		Private	,	is	used	to	restrict	the	EDK	II	build	system	by	preventing	references	to
content	in	these	sections	from	being	used	by	modules	outside	of	the	package.

Refer	to	the		[Includes]		definition	later	in	this	document	for	a	complete	description	of	this	section	and	its
contents.

The		[Includes]		section	uses	one	of	the	following	section	definitions:

[Includes]

[Includes.common]

[Includes.common.Private]

[Includes.IA32]

[Includes.IA32.Private]

[Includes.X64]

[Includes.X64.Private]

[includes.EBC]

[includes.EBC.Private]

Architectural	sections	may	also	be	combined,	as	in:

[Includes.IA32,	Includes.X64]

[Includes.IA32.Private,	Includes.X64.Private]

The	format	for	entries	in	this	section	is	one	field,	with	an	optional	comment	"	#	"	field	as	shown	below:

	Package_Relative/path	#	Comment	such	as	Keyword	List	

The	relative	path	is	relative	to	the	directory	the	DEC	file	is	in.	Use	of	"..",	"./"	and	"../"	in	the	directory
path	is	not	permitted.

Caution:	Do	not	list	individual	files	in	the		[Includes]		section.

2.5	[Includes]	UsageEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

31DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.5	[Includes]	UsageEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

32DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.6	[Guids]	Usage
This	is	an	optional	section.

This	section	is	used	to	define	the	GUID	Value	for	Guid	C	Names.

The	section	tag	modifier,		Private	,	is	used	to	restrict	the	EDK	II	build	system	by	preventing	references	to
content	in	these	sections	from	being	used	by	modules	outside	of	the	package.

This	section	uses	one	of	the	following	section	definitions:

[Guids]

[Guids.common]

[Guids.common.Private]

[Guids.IA32]

[Guids.IA32.Private]

[Guids.X64]

[Guids.X64.Private]

[Guids.EBC]

[Guids.EBC.Private]

Architectural	sections	may	also	be	combined,	as	in:

[Guids.IA32,	Guids.X64]

[Guids.IA32.Private,	Guids.X64.Private]

Format	for	the	entries	in	this	section	is	two	fields	with	an	equal	"="	character	separating	the	fields	as
shown	below.

	GuidCName	=	{C	Format	Guid	Value}	#	Comment	

The	Comment	section	can	be	used	to	identify	the	list	of	supported	module	types.

2.6	[Guids]	UsageEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

33DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.7	[Protocols]	Usage
This	is	an	optional	section.

This	section	is	used	to	define	the	GUID	Value	for	Protocol	C	Names.

The	section	tag	modifier,		Private	,	is	used	to	restrict	the	EDK	II	build	system	by	preventing	references	to
content	in	these	sections	from	being	used	by	modules	outside	of	the	package.

This	section	use	ones	of	the	following	section	definitions:

[Protocols]

[Protocols.common]

[Protocols.common.Private]

[Protocols.IA32]

[Protocols.IA32.Private]

[Protocols.X64]

[Protocols.X64.Private]

[Protocols.EBC]

[Protocols.EBC.Private]

Architectural	sections	may	also	be	combined,	as	in:

[Protocols.IA32,	Protocols.X64]

[Protocols.IA32.Private,	Protocols.X64.Private]

Format	for	the	entries	in	this	section	is	two	fields	with	an	equal	"="	character	separating	the	fields	as
shown	below.

	ProtocolCName	=	{C	Format	Guid	Value}	#	Comment	

The	Comment	section	can	be	used	to	identify	the	list	of	supported	module	types.

2.7	[Protocols]	UsageEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

34DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.8	[Ppis]	Usage
This	is	an	optional	section.

This	section	is	used	to	define	the	GUID	Value	for	PPI	C	Names.

The	section	tag	modifier,		Private	,	is	used	to	restrict	the	EDK	II	build	system	by	preventing	references	to
content	in	these	sections	from	being	used	by	modules	outside	of	the	package.

This	section	use	ones	of	the	following	section	definitions:

[Ppis]

[Ppis.common]

[Ppis.common.Private]

[Ppis.IA32]

[Ppis.IA32.Private]

[Ppis.X64]

[Ppis.X64.Private]

[Ppis.EBC]

[Ppis.EBC.Private]

Architectural	sections	may	also	be	combined,	as	in:

[Ppis.IA32,	Ppis.X64]

[Ppis.IA32.Private,	Ppis.X64.Private]

Format	for	the	entries	in	this	section	is	two	fields	with	an	equal	"="	character	separating	the	fields	as
shown	below.

		PpiCName		=	{C	Format	Guid	Value}		#	Comment

		PpiCname1	=	RegistryFormatGUID					#	Comment

The	Comment	section	can	be	used	to	identify	the	list	of	supported	module	types.

2.8	[Ppis]	UsageEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

35DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.9	[LibraryClasses]	Usage
This	is	an	optional	section.

This	section	is	used	to	define	the	headers	associated	with	the	new	EDK	II	library	classes.	A	library	class
is	declared	and	its	associated	header	file	specified	in	this	section.	The	module	library	instances	that
satisfy	a	Library	Class	must	use	the	Library	Class	Header	file,	without	modification.

Refer	to	the		[LibraryClasses]		definition	later	in	this	document	for	a	complete	description	of	this	section
and	its	contents.

This	section	uses	one	of	the	following	section	definitions:

[LibraryClasses.common]

[LibraryClasses.IA32]

[LibraryClasses.X64]

[LibraryClasses.EBC]

[LibraryClasses]

Format	for	the	entries	in	this	section	is	two	fields,	with	a	pipe	"|"	character	as	the	field	separator,	as
shown	below.

	LibraryClassName	|	Relative/path/and/header_filename.h	

The	relative	path	is	relative	to	the	directory	the	DEC	file	is	in.	Use	of	"..",	"../"	or	"./"	in	the	directory	path
is	prohibited.

2.9	[LibraryClasses]	UsageEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

36DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.10	PCD	Usage
These	are	optional	sections.

These	sections	are	used	to	declare	basic	information	about	PCDs.	Refer	to	the	PI	Specification	as	well
as	the	EDK	II	Platform	Configuration	Database	Infrastructure	Descriptions	document	for	additional
information	regarding	PCDs.	Only	the	DynamicEx	access	methods	are	defined	in	the	PI	Specification;	the
remaining	types	are	specific	to	this	EDK	II	Build	System.

Generally,	PCDs	using	the	FixedAtBuild	and	PatchableInModule	access	methods	are	used	to	set	static
configuration	elements	that	can	be	determined	at	build	time	(or	modified	prior	to	inserting	a	module
into	a	flash	image).	PCDs	using	the	Dynamic	and	DynamicEx	access	methods	are	used	for	configuration
knobs	that	may	be	manipulated	by	setup	screens	(or	other	methods)	during	the	boot	process.

Information	in	this	section	is	used	to	create	entries	in	the		AutoGen.c		and		AutoGen.h		files	for	EDK	II
modules.

The	PCD	is	used	for	configuration	when	the	PCD	value	is	produced	and	consumed	by	drivers	during
execution,	the	value	may	be	user	configurable	from	setup	or	the	value	is	produced	by	the	platform	in	a
specified	area.	It	is	associated	with	modules	that	are	released	in	source	code.	The	PatchableInModule
and	DynamicEx	PCD	access	methods	are	associated	with	modules	that	are	released	as	binary	only
modules.	The	FeatureFlag	PCD	is	used	to	enable	some	code	paths.

PCDs	are	usually	defined	by	a	specification	that	defines	the	name,	token	number,	token	space	GUID
and	datum	type.	A	default	value	and	valid	access	methods	may	also	be	given	in	the	industry
specification.	If	a	developer	needs	to	create	a	new	PCD,	they	can,	following	the	conventions	listed	in	the
PI	specification.	Only	PCDs	that	will	be	shared	between	multiple	users	need	to	be	defined	in	published
architectural	specs.	If	a	PCD	is	only	going	to	be	used	by	a	single	organization,	then	a	new	PCD	can	be
created	within	the	organization,	keeping	all	modules	that	use	the	PCD	internal	to	the	organization.

PCDs	are	defined	with	C	structure	type	name.	It	means	this	PCD	has	the	layout	of	C	strucutre.	PCD	value
can	be	assigned	by	its	structure	field.

Every	PCD	(PcdName)	is	identified	by	a	two	part	definition	-	the	PCD's	Token	Space	Guid	CName	and	the
PCD	CName.	These	two	parts	are	separated	by	a	period	"	.	"	character.	Together,	these	two	parts	make
up	the	first	field	in	a	PCD	Entry.	When	the	AutoGen	code	is	created,	the	value	of	the	Token	Space	GUID
and	the	token	value	are	used	to	uniquely	identify	the	PCD.

Refer	to	the	PCD	Sections	definition	later	in	this	document	for	a	complete	description	of	this	section	and
its	contents.

This	section	resembles	one	of	the	following	section	definitions:

[PcdsFeatureFlag]

[PcdsFeatureFlag.common]

[PcdsFixedAtBuild.IA32]

[PcdsPatchableInModule.X64]

[PcdsDynamicEx.EBC]

The	EDK	II	build	system	supports	five	PCD	access	methods:	FeatureFlag,	FixedAtBuild,
PatchableInModule,	Dynamic	and	DynamicEx.	These	indicate	access	methods	for	get/set	operations.
The	PcdsDynamicEx	method	is	defined	by	the	PI	Specification.	A	PCD	may	be	listed	under	multiple	PCD
access	method	sections,	except	FeatureFlag	PCDs.	Listing	a	PCD	in	multiple	sections	indicates	that
modules	have	been	coded	to	use	in	any	one	of	the	non‐FeatureFlag	access	methods.

2.10	PCD	UsageEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

37DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

It	recommended	that	modules	use	either	the	FeatureFlag	PCD	or	use	the	flexible	(INF	file's	[Pcd]
section)	for	access.	If	a	module	is	coded	for	only	one	type	of	access,	such	as	FixedAtBuild,	then	it	can
only	use	the	FixedAtBuild	access	method	in	a	platform,	and	therefore,	it	must	not	be	listed	in	any	other
section	types	in	this	file.	Likewise,	if	the	module	is	coded	as	a	DynamicEx	form,	then	it	can	only	be	listed
in	the	DynamicEx	section.	If	a	module	is	coded	for	the	Dynamic	access	method,	then	the	platform
integrator	would	be	able	to	choose	how	they	want	to	use	the	PCD.	It	can	then	be	specified	to	use	either
a	FixedAtBuild,	PatchableInModule,	Dynamic	or	DynamicEx	access	method	in	the	platform	description
(DSC)	file.	Using	the	Dynamic	access	method	in	module	code	is	the	most	flexible	method,	as	platform
integrators	may	chose	a	to	use	a	different	type	(such	as	fixed)	for	a	given	platform	without	modifying
the	module's	INF	file	or	the	code	for	the	module.

The	EDK	II	build	tools	will	automatically	generate	a	const	definition	for	the	FeatureFlag	and	FixedAtBuild
PCDs,	while	the	PatchableInModule	and	both	Dynamic	forms	will	have	a	volatile	definition	generated.

The	two	recommended	access	methods	that	are	commonly	specified	in	modules	INF	files	are:
FeatureFlag	(list	in	[FeaturePcd]	sections)	and	Dynamic	(listed	in	[PCD]	sections).	For	modules	that	will
be	distributed	as	binary	modules,	PCDs	in	those	modules	that	will	be	exposed	by	the	binary	must	use
PatchableInModule	or	DynamicEx	access	mehtods.

It	is	recommended	that	PCDs	be	listed	in	PcdsFixedAtBuild,	PcdsPatchableInModule,	PcdsDynamic	and
PcdsDynamicEx	sections	in	the	DEC	file.

Module	developers	need	to	check	what	sections	a	specific	PCD	is	listed	in,	in	order	to	code	the	module
using	the	correct	access	type.	Also,	PCDs	may	have	different	default	values	for	different	architectures.

The	format	for	entries	in	the	PCDs	sections	is	four	fields,	with	a	pipe	"|"	character	as	the	field	separator,
as	shown	below:

		#	Comment

		TokenSpaceGuidCname.PcdCname|DefaultValue|DatumType|Token

The	Comment	section	can	be	used	to	identify	the	list	of	supported	module	types	as	well	as	to	contain
conditional	test	statements	for	acceptable	values.

Default	values	listed	in	this	file	can	be	overridden	by	the	default	values	specified	in	INF	files	(provided	all
INF	files	use	the	same	value	for	a	PCD)	or	by	values	specified	in	the	DSC	or	FDF	files	of	a	platform.

The	Token	value	is	used	programmatically	in	code.	PCD	Token	numbers	must	be	unique	to	a	Token
Space	GUID	name	space.	The	two	PCD	drivers	use	the	token	number	to	locate	a	PCD's	value.

FeatureFlag	PCDs
FeatureFlag	PCDs	can	only	be	listed	in	FeatureFlag	access	method	sections	in	the	EDK	II	meta‐data	files.
The	datum	type	of	a	FeatureFlag	PCD	must	be	BOOLEAN.

VOID*	PCD	DatumType
The	declarations	in	this	file	do	not	include	a	maximum	datum	size	for	the	"	VOID	*"	PCDs.	It	is
recommended	that	the	platform	integrator	allocate	space	for	the	content,	rather	than	depend	on
letting	tools	compute	the	maximum	value	based	on	the	greater	of	the	lengths	from	the	values	in	the
DEC,	DSC	and	INF	files.	However,	if	the	platform	integrator	does	not	specify	a	size	in	the	DSC	file,	the
data	size	is	calculated	by	the	tools	to	be	the	greatest	length	of	all	values	specified	for	this	PCD	listed	in
the	DEC,	INF,	FDF	and	DSC	files.

If	PCD	is	defined	with	C	structure	type	name,	it	will	also	be	VOID*	PCD.

2.10	PCD	UsageEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

38DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.10	PCD	UsageEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

39DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

2.11	[UserExtensions]	Usage
This	is	an	optional	section.

The	EDK	II	user	extensions	section	allows	for	extending	the	DEC	files	with	custom	processing.	The	format
for	a	user	extension	is:

	[UserExtensions.$(UserID).$(Identifier)]	

Data	elements	under	the	section	header	are	not	required;	this	is	an	optional	section.	Content	of	in	this
section	is	free	form.

The	EDK	II	build	tools	do	not	use	this	section	and	will	ignore	all	content	within	a		[UserExtensions]		section.

The	following	is	an	example	of	a	User	Extensions	section.

[userextensions.NoSuchCorp."Script_1.0"]

			NoSuch.bat

2.11.1	[UserExtensions.TianoCore."ExtraFiles"]	Section
The	EDK	II		[UserExtensions.TianoCore."ExtraFiles"]		section	allow	for	distributing	extraneous	files	that	are
associated	with	a	package.	Files	listed	in	this	section	are	not	processed	by	EDK	II	build	tools.	These	files
must	exist	in	the	directory	or	sub-	directories	of	the	directory	containing	the	DEC	file.

Note:	The	Intel(R)	UEFI	Packaging	Tool	will	parse	this	section	and	for	all	files	listed	in	this	file,	add	the
file	to	the	package	distribution	using	the	UEFI	Distribution	Package	Distribution.

The	section	header	must	be:

	[UserExtensions.TianoCore."ExtraFiles"]	

Having	data	elements	under	the	section	header	is	not	required.

The	following	is	an	example	of	a		[UserExtensions.TianoCore."ExtraFiles"]		section:

[UserExtensions.TianoCore."ExtraFiles"]

		Readme.txt

		UserManual.pdf

2.11	[UserExtensions]	UsageEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

40DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3	EDK	II	DEC	FILE	FORMAT
This	section	of	the	document	describes	the	EDK	II	DEC	sections	using	an	Extended	Backus-Naur	Form.

3	EDK	II	DEC	File	FormatEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

41DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.1	General	Rules
The	general	rules	for	EDK	II	INI	style	documents	follow.

Note:	Path	and	Filename	elements	within	the	DEC	are	case-sensitive	in	order	to	support	building	on
UNIX	style	operating	systems.	Additionally,	names	that	are	C	variables	or	used	as	a	macro	are	case
sensitive.	Other	elements	such	as	section	tags	or	hex	digits,	in	the	DEC	file	are	not	casesensitive.	The
use	of	"..",	"../"	and	"./"	in	paths	and	filenames	is	strictly	prohibited.

Only	one	DEC	file	is	permitted	per	directory.

Text	in	section	tags	(text	within	square	brackets)	is	not	case	sensitive.

A	section	terminates	with	either	another	section	definition	or	the	end	of	the	file.

Entries	terminate	with	either	a	comment	or	the	end	of	line	character	sequence.

To	append	comment	information	to	any	item,	the	comment	must	start	with	a	hash	"#"	character.

All	comments	terminate	with	the	end	of	line	character	sequence.

Any	comment	not	associated	with	a	defined	comment	format	is	considered	a	global	comment.

Global	comments	must	be	separated	from	formatted	comments	with	a	blank	line.

Comment	lines	cannot	be	extended	using	the	line	extension	character.

Field	separators	for	lines	that	contain	more	than	one	field	are	pipe	"|"	characters.	This	character
was	selected	to	reduce	the	possibility	of	having	the	field	separator	character	appear	in	a	string,
such	as	a	filename	or	text	string.

Note:	The	only	notable	exception	is	the	PcdName	which	is	a	combination	of	the

PcdTokenSpaceGuidCName	and	the	PcdCName	that	are	separated	by	the	period	"."	character.	This
notation	for	a	PCD	name	is	used	to	uniquely	identify	the	PCD.

When	processing	numeric	values,	either	integer	or	hex,	leading	zeros	specified	in	the	entry	may	be
ignored.	For	example,	0x00000000000000000000001	can	be	a	valid	value	for	a		UINT8		data	type,	as
the	actual	value	is	1.

3.1.1	Backslash
The	backslash	"	\	"	character	is	used	in	this	document	when	an	example	entry	cannot	fit	between	the
margins	of	this	file.	It	must	not	be	used	in	the	DEC	file	to	extend	an	entry.

3.1.2	White	space	characters
Whitespace	(space	and	tab)	characters	are	permitted	between	token	and	field	separator	elements	for
all	entries.

Whitespace	characters	are	not	permitted	between	the	PcdTokenSpaceGuidCName	and	the	dot,	nor	are
they	permitted	between	the	dot	and	the	PcdCName.

3.1	General	RulesEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

42DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.1.3	Paths	for	filenames
Note	that	for	specifying	the	path	for	a	file	name,	if	the	path	value	starts	with	a	dollar	sign	"$"	character,
a	local	MACRO	is	being	specified.	White	space	characters	are	not	permitted	in	path	names.

Caution:	The	use	of	"..",	"./"	and	"../"	in	a	path	element	is	prohibited.

For	all	EDK	II	DEC	files,	the	directory	path	must	use	the	forward	slash	character	for	separating
directories.	For	example,	MdePkg/Include/	is	Valid.

Unless	otherwise	noted,	all	file	names	and	paths	must	be	relative	to	the	directory	where	the	DEC	file	is
located.

3.1	General	RulesEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

43DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.2	Package	Declaration	(DEC)	Definitions
This	section	defines	content	and	format	of	a	package	declaration	file.	The		[Defines]		section	must
appear	before	any	other	section	except	the		<Header>		comment	block.	(The	header,	when	specified,	is
always	the	first	section	of	a	DEC	file.)	The	remaining	sections	may	be	specified	in	any	order	within	the
DEC	file.

Summary
The	EDK	II	Package	Declaration	(DEC)	file	has	the	following	format	(using	the	EBNF).

<EDK_II_DEC>	::=	<Header>?

																	<Defines>

																	<Includes>*

																	<LibraryClass>*

																	<Guids>*

																	<Protocols>*

																	<Ppis>*

																	<Pcd>*

																	<UserExtensions>*

3.2.1	Common	Definitions

Summary
The	following	are	common	definitions	used	by	multiple	section	types	in	EDK	II	metadata	documents.	Not
all	of	the	definitions	below	pertain	to	entries	in	the	DEC	file	(for	example,		<Expression>		statements	are	not
permitted).

Prototype

<Word>																::=	(a-zA-Z0-9_)(a-zA-Z0-9_-.)*	Alphanumeric	characters

																										with	optional	period	".",	dash	"-"	and/or	underscore

																										"_"	characters.	A	period	character	may	not	be

																										followed	by	another	period	character.

																										No	white	space	characters	are	permitted.

<SimpleWord>										::=	(a-zA-Z0-9)(a-zA-Z0-9_-)*	A	word	that	cannot	contain

																										a	period	character.

<ToolWord>												::=	(A-Z)(a-zA-Z0-9)*	Alphanumeric	characters.	white

																										space	characters	are	not	permitted.

<FileSep>													::=	"/"

<Extension>											::=	(a-zA-Z0-9_-)+	One	or	more	alphanumeric	characters.

<File>																::=	<Word>	["."	<Extension>]

<PATH>																::=	[<MACROVAL>	<FileSep>]	<RelativePath>

<RelativePath>								::=	<DirName>	[<FileSep>	<DirName>]*

<DirName>													::=	{<Word>}	{<MACROVAL>}

<FullFilename>								::=	<PATH>	<FileSep>	<File>

<Filename>												::=	[<PATH>	<FileSep>]	<File>

<Chars>															::=	(a-zA-Z0-9_)

<Digit>															::=	(0-9)

<NonDigit>												::=	(a-zA-Z_)

<Identifier>										::=	<NonDigit>	<Chars>*

<CName>															::=	<Identifier>	#	A	valid	C	variable	name.

<CArrayName>										::=	<Identifier>["["[<Number>]"]"]+	#	A	valid	C	variable	array	name.

<AsciiChars>										::=	(0x21	-	0x7E)

<CChars>														::=	[{0x21}	{(0x23	-	0x26)}	{(0x28	-	0x5B)}

																										{(0x5D	-	0x7E)}	{<EscapeSequence>}]*

<DblQuote>												::=	0x22

<SglQuote>												::=	0x27

<EscapeSequence>						::=	"\"	{"n"}	{"t"}	{"f"}	{"r"}	{"b"}	{"0"}	{"\"}

																										{<DblQuote>}	{<SglQuote>}

3.2	Package	Declaration	(DEC)	DefinitionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

44DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

<TabSpace>												::=	{<Tab>}	{<Space>}

<TS>																		::=	<TabSpace>*

<MTS>																	::=	<TabSpace>+

<Tab>																	::=	0x09

<Space>															::=	0x20

<CR>																		::=	0x0D

<LF>																		::=	0x0A

<CRLF>																::=	<CR>	<LF>

<WhiteSpace>										::=	{<TS>}	{<CR>}	{<LF>}	{<CRLF>}

<WS>																		::=	<WhiteSpace>*

<Eq>																		::=	<TS>	"="	<TS>

<FieldSeparator>						::=	"|"

<FS>																		::=	<TS>	<FieldSeparator>	<TS>

<Wildcard>												::=	"*"

<CommaSpace>										::=	","	<Space>*

<Cs>																		::=	","	<Space>*

<AsciiString>									::=	[<TS>*	<AsciiChars>*]*

<EmptyString>									::=	<DblQuote><DblQuote>

<CFlags>														::=	<AsciiString>

<PrintChars>										::=	{<TS>}	{<CChars>}

<QuotedString>								::=	<DblQuote>	<PrintChars>*	<DblQuote>

<SglQuotedString>					::=	<SglQuote>	<PrintChars>*	<SglQuote>

<CString>													::=	{<QuotedString>}	{<SglQuotedString>}

<NormalizedString>				::=	<DblQuote>	[{<Word>}	{<Space>}]+	<DblQuote>

<GlobalComment>							::=	<WS>	"#"	[<TS>	<AsciiString>]	<EOL>+

<Comment>													::=	"#"	<TS>	<AsciiString>	<EOL>+

<UnicodeString>							::=	"L"	{<QuotedString>}	{<SglQuotedString>}

<HexDigit>												::=	(a-fA-F0-9)

<HexByte>													::=	{"0x"}	{"0X"}	[<HexDigit>]	<HexDigit>

<HexNumber>											::=	{"0x"}	{"0X"}	<HexDigit>+

<HexVersion>										::=	"0x"	[0]*	<Major>	<Minor>

<Major>															::=	<HexDigit>?	<HexDigit>?	<HexDigit>?

																										<HexDigit>

<Minor>															::=	<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

<DecimalVersion>						::=	{"0"}	{(1-9)	[(0-9)]*}	["."	(0-9)+]

<VersionVal>										::=	{<HexVersion>}	{(0-9)+	"."	(0-99)}

<GUID>																::=	{<RegistryFormatGUID>}	{<CFormatGUID>}

<RegistryFormatGUID>		::=	<RHex8>	"-"	<RHex4>	"-"	<RHex4>	"-"	<RHex4>	"-"

																										<RHex12>

<RHex4>															::=	<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

<RHex8>															::=	<RHex4>	<RHex4>

<RHex12>														::=	<RHex4>	<RHex4>	<RHex4>

<RawH2>															::=	<HexDigit>?	<HexDigit>

<RawH4>															::=	<HexDigit>?	<HexDigit>?	<HexDigit>?	<HexDigit>

<OptRawH4>												::=	<HexDigit>?	<HexDigit>?	<HexDigit>?	<HexDigit>?

<Hex2>																::=	{"0x"}	{"0X"}	<RawH2>

<Hex4>																::=	{"0x"}	{"0X"}	<RawH4>

<Hex8>																::=	{"0x"}	{"0X"}	<OptRawH4>	<RawH4>

<Hex12>															::=	{"0x"}	{"0X"}	<OptRawH4>	<OptRawH4>	<RawH4>

<Hex16>															::=	{"0x"}	{"0X"}	<OptRawH4>	<OptRawH4>	<OptRawH4>

																										<RawH4>

<CFormatGUID>									::=	"{"	<Hex8>	<CommaSpace>	<Hex4>	<CommaSpace>

																										<Hex4>	<CommaSpace>	"{"

																										<Hex2>	<CommaSpace>	<Hex2>	<CommaSpace>

																										<Hex2>	<CommaSpace>	<Hex2>	<CommaSpace>

																										<Hex2>	<CommaSpace>	<Hex2>	<CommaSpace>

																										<Hex2>	<CommaSpace>	<Hex2>	"}"	"}"

<CArray>														::=	"{"	{<NList>}	{<CArray>}	"}"

<NList>															::=	<HexByte>

																										[<CommaSpace>	<HexByte>]*

<RawData>													::=	<TS>	<Number>	[<Cs>	<Number>	[<EOL>	<TS>]]*

<Integer>													::=	{(0-9)}	{(1-9)(0-9)+}

<Number>														::=	{<Integer>}	{<HexNumber>}

<TRUE>																::=	{"TRUE"}	{"true"}	{"True"}	{"0x1"}

																										{"0x01"}	{"1"}

<FALSE>															::=	{"FALSE"}	{"false"}	{"False"}	{"0x0"}

																										{"0x00"}	{"0"}

<BoolVal>													::=	{<TRUE>}	{<FALSE>}

<BoolType>												::=	{<BoolVal>}	{"{"<BoolVal>"}"}

<MACRO>															::=	(A-Z)(A-Z0-9_)*

<MACROVAL>												::=	"$("	<MACRO>	")"

<PcdName>													::=	<TokenSpaceGuidCName>	"."	<PcdCName>

3.2	Package	Declaration	(DEC)	DefinitionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

45DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

<PcdFieldName>								::=	<TokenSpaceGuidCName>	"."	<PcdCName>	["["<Number>"]"]*	"."	<Field>

<PcdCName>												::=	<CName>

<TokenSpaceGuidCName>	::=	<CName>

<PcdFieldEntry>							::=	<PcdFieldName>	<FS>	<PcdFieldValue>	<EOL>

<PcdFieldValue>							::=	{<BoolType>}	{<NumValUint8>}	{<NumValUint16>}	{<NumValUint32>}	{<NumValUint64>}	{<StringVal>}	{<MACR

OVAL>}	{<Expression>}

<UINT8>															::=	{"0x"}	{"0X"}	(\x0	-	\xFF)

<UINT16>														::=	{"0x"}	{"0X"}	(\x0	-	\xFFFF)

<UINT32>														::=	{"0x"}	{"0X"}	(\x0	-	\xFFFFFFFF)

<UINT64>														::=	{"0x"}	{"0X"}	(\x0	-	\xFFFFFFFFFFFFFFFF)

<UINT8z>														::=	{"0x"}	{"0X"}	<HexDigit>	<HexDigit>

<UINT16z>													::=	{"0x"}	{"0X"}	<HexDigit>	<HexDigit>	<HexDigit>

																										<HexDigit>

<UINT32z>													::=	{"0x"}	{"0X"}	<HexDigit>	<HexDigit>

																										<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

																										<HexDigit>	<HexDigit>

<UINT64z>													::=	{"0x"}	{"0X"}	<HexDigit>	<HexDigit>

																										<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

																										<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

																										<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

																										<HexDigit>	<HexDigit>

<ShortNum>												::=	(0-255)

<IntNum>														::=	(0-65535)

<LongNum>													::=	(0-4294967295)

<LongLongNum>									::=	(0-18446744073709551615)

<ValUint8>												::=	{<ShortNum>}	{<UINT8>}	{<BoolVal>}

																										{<CString>}	{<UnicodeString>}

<ValUint16>											::=	{<IntNum>}	{<UINT16>}	{<BoolVal>}

																										{<CString>}	{<UnicodeString>}

<ValUint32>											::=	{<LongNum>}	{<UINT32>}	{<BoolVal>}

																										{<CString>}	{<UnicodeString>}

<ValUint64>											::=	{<LongLongNum>}	{<UINT64>}	{<BoolVal>}

																										{<CString>}	{<UnicodeString>}

<NumValUint8>									::=	{<ValUint8>}	{"{"<ValUint8>"}"}

<NumValUint16>								::=	{<ValUint16>}

																										{"{"<ValUint8>	[<CommaSpace>	<ValUint8>]*"}"}

<NumValUint32>								::=	{<ValUint32>}

																										{"{"<ValUint8>	[<CommaSpace>	<ValUint8>]*"}"}

<NumValUint64>								::=	{<ValUint64>}

																										{"{"<ValUint8>	[<CommaSpace>	<ValUint8>]*"}"}

<StringVal>											::=	{<UnicodeString>}	{<CString>}	{<Array>}

<Array>															::=	"{"	{<Array>}	{[<Lable>]	<ArrayVal>	

																											[<CommaSpace>	[<Lable>]	<ArrayVal>]*	}	"}"

<ArrayVal>												::=	{<Num8Array>}	{<GuidStr>}	{<DevicePath>}	{<CodeStr>}

<NonNumType>										::=	{<BoolVal>}{<UnicodeString>}	{<CString>}

																										{<Offset>}	{<UintMac>}

<Num8Array>											::=	{<NonNumType>}	{<ShortNum>}	{<UINT8>}

<Num16Array>										::=	{<NonNumType>}	{<IntNum>}	{<UINT16>}

<Num32Array>										::=	{<NonNumType>}	{<LongNum>}	{<UINT32>}

<Num64Array>										::=	{<NonNumType>}	{<LongLongNum>}	{<UINT64>}

<GuidStr>													::=	"GUID("	<GuidVal>	")"

<CodeStr>													::=	"CODE("	<CData>	")"

<GuidVal>													::=	{<DblQuote>	<RegistryFormatGUID>	<DblQuote>}

																										{<CFormatGUID>}	{<CName>}

<DevicePath>										::=	"DEVICE_PATH("	<DevicePathStr>	")"

<DevicePathStr>							::=	A	double	quoted	string	that	follow	the	device	path

																										as	string	format	defined	in	UEFI	Specification	2.6

																										Section	9.6

<UintMac>													::=	{<Uint8Mac>}	{<Uint16Mac>}	{<Uint32Mac>}	{<Uint64Mac>}

<Uint8Mac>												::=	"UINT8("	<Num8Array>	")"

<Uint16Mac>											::=	"UINT16("	<Num16Array>	")"

<Uint32Mac>											::=	"UINT32("	<Num32Array>	")"

<Uint64Mac>											::=	"UINT64("	<Num64Array>	")"

<Lable>															::=	"LABEL("	<CName>	")"

<Offset>														::=	"OFFSET_OF("	<CName>	")"

<ModuleType>										::=	{"BASE"}	{"SEC"}	{"PEI_CORE"}	{"PEIM"}

																										{"DXE_CORE"}	{"DXE_DRIVER"}	{"SMM_CORE"}

																										{"DXE_RUNTIME_DRIVER"}	{"DXE_SAL_DRIVER"}

																										{"DXE_SMM_DRIVER"}	{"UEFI_DRIVER"}

																										{"UEFI_APPLICATION"}	{"USER_DEFINED"}

																										{"HOST_APPLICATION"}

<ModuleTypeList>						::=	<ModuleType>	["	"	<ModuleType>]*

3.2	Package	Declaration	(DEC)	DefinitionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

46DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

<IdentifierName>						::=	<TS>	{<MACROVAL>}	{<PcdName>}	<TS>

<Boolean>													::=	{<BoolType>}	{<Expression>}

<EOL>																	::=	<TS>	0x0D	0x0A

<OA>																		::=	(a-zA-Z)(a-zA-Z0-9)*

<arch>																::=	{"IA32"}	{"X64"}	{"IPF"}	{"EBC"}	{<OA>}

Note:	When	using	CString,	UnicodeString	or	byte	array	format	as	UINT8/UINT16/UINT32/UINT64	values,
please	make	sure	they	fit	in	the	target	type's	size,	otherwise	tool	would	report	failure.

Note:	LABEL()	macro	in	byte	arrays	to	tag	the	byte	offset	of	a	location	in	a	byte	array.	OFFSET_OF()
macro	in	byte	arrays	that	returns	the	byte	offset	of	a	LABEL()	declared	in	a	byte	array.

Note:	When	using	the	characters	"|"	or	"||"	in	an	expression,	the	expression	must	be	encapsulated	in
open	"("	and	close	")"	parenthesis.

Note:	Comments	may	appear	anywhere	within	a	DEC	file,	provided	they	follow	the	rules	that	a	comment
may	not	be	enclosed	within	Section	headers,	and	that	in	line	comments	must	appear	at	the	end	of	a
statement.

Parameters
Expression

Expression	syntax	is	defined	the	EDK	II	Expression	Syntax	Specification.

ExpressionVal

An	expression	that	evaluates	to	a	number	that	fits	the	datum	types	of	the	other	elements,	For	example,
if	one	of	the	other	elements	is	a		UINT8	,	then	the	expression	must	evaluate	to	a	value	that	is	byte.	It	is
recommended	that	all	parameters	be	typecast	to		UINT64		values	before	any	operation	performed,	then
the	result	can	be	tested	to	ensure	that	the	datum	size	of	the	result	is	correct.	PCD	names	can	be	used
as	parameters,	and	the	value	of	the	PCD	is	used	for	evaluation	purposes.	Any	result	that	exceeds	the
size	of	the	datum	type	must	break	the	build.

Note:	Circular	references	(self-references	are	tight	circular	references)	must	cause	a	build	break.

UnicodeString

When	the		<UnicodeString>		element	(these	characters	are	string	literals	as	defined	by	the	C99
specification:	L"string"/L'string',	not	actual	Unicode	characters)	is	included	in	a	value,	the	build	tools
may	be	required	to	expand	the	ASCII	string	between	the	quotation	marks	into	a	valid	UCS-2	character
format	string.	The	build	tools	parser	must	treat	all	content	between	the	field	separators	(excluding
white	space	characters	around	the	field	separators)	as	ASCII	literal	content	when	generating	the
AutoGen.c	and	AutoGen.h	files.

Comments

3.2	Package	Declaration	(DEC)	DefinitionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

47DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

Strings	that	appear	in	comments	may	be	ignored	by	the	build	tools.	An	ASCII	string	matching	the	format
of	the	ASCII	string	defined	by		<UnicodeString>		(L"Foo"	for	example,)	that	appears	in	a	comment	must	never
be	expanded	by	any	tool.

CFlags

CFlags	refers	to	a	string	of	valid	arguments	appended	to	the	command	line	of	any	third	party	or
provided	tool.	It	is	not	limited	to	just	a	compiler	executable	tool.	MACRO	values	that	appear	in	quoted
strings	in	CFlags	content	must	not	be	expanded	by	parsing	tools.

OA

Other	Architecture	-	One	or	more	user	defined	target	architectures,	such	as	ARM	or	PPC.	The
architectures	listed	here	must	have	a	corresponding	entry	in	the	EDK	II	meta-data	file,
Conf/tools_def.txt.

FileSep

FileSep	refers	to	either	the	back	slash	"\"	or	forward	slash	"/"	characters	that	are	used	to	separate
directory	names.	All	EDK	II	DEC	files	must	use	the	"	/	"	forward	slash	character	when	specifying	the
directory	portion	of	a	filename.	Microsoft	operating	systems,	that	normally	use	a	back	slash	character
for	separating	directory	names,	will	interpret	the	forward	slash	character	correctly.

CArray

All	C	data	arrays	used	in	PCD	value	fields	must	be	byte	arrays.	The	C	format	GUID	style	is	a	special	case
that	is	permitted	in	some	fields	that	use	the		<CArray>		nomenclature.

CData

All	C	data	used	in	PCD	value	CODE	syntax	can	be	C	style	value	to	initialize	C	structure	or	Array	in	C
source	code.

EOL

The	DOS	End	Of	Line:	"0x0D	0x0A"	character	sequence	must	be	used	for	all	EDK	II	meta-data	files.	All	Nix
based	tools	can	properly	process	the	DOS	EOL	characters.	Microsoft	based	tools	cannot	process	the
Nix	style	EOL	characters.

3.2.2	MACROs
Use	of	MACRO	statements	is	optional.

Summary
Macro	statements	are	characterize	by	a		DEFINE		line.	Macro	statements	in	DEC	files	are	only	permitted	to
describe	a	path	(shortcut	name).	If	the	Macro	statement	is	within	the		[Defines]		section,	then	the	Macro
is	common	to	the	entire	file,	with	local	definitions	taking	precedence	(if	the	same	MACRO	name	is	used
in	subsequent	sections,	then	the	MACRO	value	is	local	to	only	that	section.)

Macro	statements	in	comments	must	also	be	ignored	by	parsing	tools.

Macros	may	not	be	referenced	before	they	are	defined.

A	previously	defined	macro	is	permitted	to	be	used	as	$(MACRO)	in	the	right	side	of	a	different	Macro	(in
the	value)	statement.

Macro	names	must	not	use	the	name	of	the	tokens	defined	in	this	file,	such	as	PACKAGE_GUID	is	defined
as	a	token	in	the		[Defines]		section	of	this	document,	and	therefore	cannot	be	used	as	the		<MACRO>	
name	in	a		<MacroDefinition>		statements,		<MACRO>		variable.

If	the	tools	encounters	a	macroval,	as	in	$(MACRO),	that	is	not	defined,	the	build	tools	must	break.

3.2	Package	Declaration	(DEC)	DefinitionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

48DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

Prototype

<MacroDefinition>	::=	<TS>	"DEFINE"	<TS>	<MACRO>	<Eq>	[<Value>]	<EOL>

<Value>											::=	{<PATH>}	{<Filename>}

Examples

DEFINE	GEN_SKU_DIR	=	MyPlatformPkg/GenPei

DEFINE	SKU1_Dir	=	MyPlatformPkg/Sku1/Pei

DEFINE	LIB	=	Include/Library

DEFINE	PROTO_HDRS	=	$(LIB)/Protocol

Parameters
	<PATH>	

Any	part	of	the	path	line	can	be	replaced	by	a	MACRO	as	shown	in	the	following	table.

Table	1	MACRO	Usages

MACRO	DEFINITION MACRO	USAGE

DEFINE	MY_MACRO	=	test1 $(MY_MACRO)/test2/test3.inf

DEFINE	MY_MACRO	=	test1/ $(MY_MACRO)test2/test3.inf

DEFINE	MY_MACRO	=	test3.inf test1/test2/$(MY_MACRO)

DEFINE	MY_MACRO	=	test3 test1/test2/$(MY_MACRO).inf

DEFINE	MY_MACRO	=	test1/test2/test3.inf $(MY_MACRO)

3.2.3	Conditional	Statements
The	conditional	statements	are	not	permitted	anywhere	within	the	DEC	file.

3.2.4	!include	Statement
The	!include	statement	is	not	permitted	in	an	EDK	II	DEC	file.

3.2.5	!error	Statement
The		!error		statement	is	not	permitted	in	an	EDK	II	DEC	file.

3.2.6	Special	Comment	Blocks
This	section	defines	special	format	comment	blocks	that	contain	information	about	this	package.	These
command	blocks	are	not	required.

The	UEFI	Distribution	Package	Specification	states	the	for	a	given	PCD	Token	Space,	Error	numbers	must
be	unique.	Since	there	may	be	multiple	PCD	that	may	have	identical	error	types,	an	error	number	with
an	associated	error	message	may	be	shared.	The	syntax	described	here	can	be	used	by	tools	to	map
these	error	numbers	by	a	token	space	GUID	C	name.	These	comment	blocks	must	appear	before
content	might	be	used	(in	later	sections	of	the	DEC	file).

Prototype

<ErrNoBlock>	::=	<TS>	"#"	<EOL>

3.2	Package	Declaration	(DEC)	DefinitionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

49DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

																	<TS>	"#"	<MTS>	"[Error."	<TSpaceGuidCName>	"]"	<EOL>

																	[<TS>	"#"	<MTS>	<UINT32>	<FS>	<AsciiString>	<EOL>]+

																	<TS>	"#"	<EOL>+

Example

#

#	[Error.gEfiIntelFrameworkModulePkgTokenSpaceGuid]

#	0x80000001	|	Invalid	value	provided.

#	0x80000002	|	Reserved	bits	must	be	set	to	zero.

#

3.2	Package	Declaration	(DEC)	DefinitionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

50DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.3	Header	Comment	Section
This	is	an	optional	section	for	EDK	II	packages	that	will	not	be	distributed	using	tools	that	create	UEFI
Distribution	Packages.	It	is	required	for	EDK	II	packages	that	will	be	distributed	using	tools	that	create
UEFI	Distribution	Packages.

Summary
The	Copyright	and	License	notices	for	the	DEC	file	are	in	the	comments	that	start	the	file.	The	format	for
the	comment	section	is:

##	@file

#	Abstract

#

#	Description

#

#	Copyright

#

#	License

#

##

This	information	can	be	derived	from	an	XML	Distribution	package	file	(UEFI	Packaging

Specification)	or	from	a	developer	creating	a	new	package	declaration	(DEC)	document.

Prototype

<Header>									::=	<SourceHeader>

																					[<BinaryHeader>]

<SourceHeader>			::=	<Comment>*

																					"##"	[<Space>]	<Space>	"@file"	[<TS>	<File>]	<EOL>

																					[<Abstract>]

																					[<Description>]

																					<Copyright>+

																					"#"	<EOL>

																					<License>

																					"##"	<EOL>

<Filename>							::=	<Word>	"."	<Extension>

<Abstract>							::=	"#"	<AsciiString>	<EOL>	["#"	<EOL>]

<Description>				::=	["#"	<AsciiString>	<EOL>]+	["#"	<EOL>]

<Copyright>						::=	"#"	<TabSpace>	<CopyName>	<Date>	","	<CompInfo>

<CopyName>							::=	["Portions"	<MTS>]	"Copyright	(c)"	<MTS>

<Date>											::=	<Year>	[<TS>	{<DateList>}	{<DateRange>}]

<Year>											::=	"2"	(0-9)(0-9)(0-9)

<DateList>							::=	<CommaSpace>	<Year>	[<CommaSpace>	<Year>]*

<DateRange>						::=	"-"	<TS>	<Year>

<CompInfo>							::=	(0x20	-	0x7e)*	<MTS>	<Arr>

<Arr>												::=	"All	rights	reserved."	[<TS>	"
"]	<EOL>

<License>								::=	["#"	<TS>	<AsciiString>	<EOL>]+	["#"	<EOL>]

<BinaryHeader>			::=	"##"	<Space>	<Space>	"@BinaryHeader"	<EOL>

																					<BinaryAbstract>	"#"	<EOL>

																					<BinDescription>

																					"#"	<EOL>

																					<Copyright>+

																					"#"	<EOL>

																					<BinaryLicense>

																					"#"	<EOL>

																					"##"	<EOL>

<Filename>							::=	<Word>	"."	<Extension>

<BinaryAbstract>	::=	"#"	<TS>	<AsciiString>	<EOL>

<BinDescription>	::=	["#"	<TS>	<AsciiString>	<EOL>]+

<Copyright>						::=	"#"	<MTS>	<CopyName>	<Date>	","	<CompInfo>

3.3	Header	Comment	SectionEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

51DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

<CopyName>							::=	["Portions"	<MTS>]	"Copyright	(c)"	<MTS>

<Date>											::=	<Year>	[<TS>	{<DateList>}	{<DateRange>}]

<Year>											::=	"2"	(0-9)(0-9)(0-9)

<DateList>							::=	<CommaSpace>	<Year>	[<CommaSpace>	<Year>]*

<DateRange>						::=	"-"	<TS>	<Year>

<CompInfo>							::=	(0x20	-	0x7e)*	<MTS>	<Arr>

<Arr>												::=	"All	rights	reserved."	[<TS>	"
"]	<EOL>

<BinaryLicense>		::=	["#"	<TS>	<AsciiString>	<EOL>]+

Parameters
Abstract

A	brief	one	line	description	of	what	the	package	provides.

BinaryAbstract

A	brief	one	line	description	of	what	the	packages	provides	that	may	be	different	from	a	source	abstract.

Description

A	detailed	description	of	what	the	package	provides.

BinaryDescription

A	detailed	description	of	what	the	package	provides	that	may	be	different	from	a	source	description.

Copyright

The	copyright	date	should	be	modified	if	there	is	a	functional	change	to	the	source	code.	Since	binaries
are	constructed	from	source,	the	binary	file	uses	the	same	copyright	date	as	the	source	DEC,	however
tools	are	not	required	to	ensure	that	the	dates	are	identical.

License

One	or	more	licenses	that	the	package	with	source	code	is	released	under.

BinaryLicense

One	or	more	licenses	that	the	binary	package	is	released	under	that	may	be	different	from	the	licenses
used	for	distributing	the	package	with	source	code.

Example

##	@file

#	Framework	Module	Development	Environment	Industry	Standards

#

#	This	Package	provides	headers	and	libraries	that	conform	to

#	EFI/Framework	Industry	standards.

#

#	Copyright	(c)	2006	-	2007,	Intel	Corporation.

#

#	All	rights	reserved.

#	This	program	and	the	accompanying	materials	are	licensed	and	made

#	available	under	the	terms	and	conditions	of	the	BSD	License	which

#	accompanies	this	distribution.

#	The	full	text	of	the	license	may	be	found	at

#	http://opensource.org/licenses/bsd-license.php

#

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR

#	IMPLIED.

#

##

3.3	Header	Comment	SectionEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

52DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.3	Header	Comment	SectionEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

53DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.4	[Defines]	Section
This	section	is	required.

Summary
This	describes	the		[Defines]		section,	which	is	required	in	all	DEC	files.	This	file	is	created	during
installation	of	a	UEFI	distribution	package	or	by	the	developer	and	is	an	input	to	the	EDK	II	build	tool
parsing	utilities.	Elements	may	appear	in	any	order	within	this	section.

The	code	for	this	specification	is		"0001001B	"	and	new	versions	of	this	specification	must	increment	the
minor	(001B)	portion	of	the	specification	code.	This	value	may	also	be	specified	as	a	decimal	value,
1.27.

Existing	DEC	files	are	not	required	to	update	the		DEC_SPECIFICATION		version	value.	This	value	may	be	used
by	tools	to	identify	any	new	functionality	introduced	by	this	specification	version.

Tools	are	allowed	to	use	the		PACKAGE_GUID		and		PACKAGE_VERSION		values	for	testing	dependencies.	This	is
particularly	import	for	creating	UEFI	Distribution	Packages,	as	they	are	required	fields	in	the	distribution
package	description	file.

Note	that	comments	may	be	appended	to	define	statements	as	well	as	located	anywhere	within	the
	[Defines]		section.

Prototype

<defines>				::=	"[Defines]"	<EOL>

																	<TS>	"DEC_SPECIFICATION"	<Eq>	<SpecVer>	<EOL>

																	<TS>	"PACKAGE_NAME"	<Eq>	<UiNameType>	<EOL>

																	<TS>	"PACKAGE_GUID"	<Eq>	<RegistryFormatGUID>	<EOL>

																	<TS>	"PACKAGE_VERSION"	<Eq>	<DecimalVersion>	<EOL>	[<TS>

																	"PACKAGE_UNI_FILE"	<Eq>	<Filename>	<EOL>]

																	<MacroDefinition>*

<UiNameType>	::=	<Word>

<SpecVer>				::=	{<HexVersion>}	{(0-9))+	"."	(0-9)+}

Parameters
UiNameType

The		PACKAGE_NAME		value	may	be	used	for	creating	directories.

DecimalVersion

This	is	a	decimal	number,	and	if	not	specified	is	assumed	to	be	0	Alpha	characters	are	not	permitted.

SpecVer

For	new	DEC	files,	the	version	value	must	be	set	to	0x0001001B	Tools	that	process	this	version	of	the
DEC	file	can	successfully	process	earlier	versions	of	the	DEC	file	(this	is	a	backward	compatible	update).
There	is	no	requirement	to	change	the	value	in	existing	DEC	files	if	no	other	content	changes.	This	may
also	be	specified	as	decimal	value,	1.27.

Filename

Filenames	listed	in	the		[Defines]		section	must	be	relative	to	the	directory	the	DEC	file	is	in.	Use	of	"..",	"."
and	"../"	in	the	directory	path	is	not	permitted.	Use	of	an	absolute	path	is	not	permitted.	The	file	name
specified	in	the		PACKAGE_UNI_FILE		entry	must	be	a	Unicode	file	with	an	extension	of	.uni,	.UNI	or	.Uni.

3.4	[Defines]	SectionEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

54DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

Example	1

[DEFINES]

		DEC_SPECIFICATION	=	0x0001001B

		PACKAGE_NAME						=	MdePkg

		PACKAGE_GUID						=	1E73767F-8F52-4603-AEB4-F29B510B6766

		PACKAGE_VERSION			=	1.06

		PACKAGE_UNI_FILE		=	MdePkg.uni

Example	2

[DEFINES]

		DEC_SPECIFICATION	=	1.27

		PACKAGE_NAME						=	IntelFspPkg

		PACKAGE_GUID						=	444C6CDF-55BD-4744-8F74-AE98B003B955

		PACKAGE_VERSION			=	0.1

3.4	[Defines]	SectionEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

55DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.5	[Includes]	Sections
These	sections	are	optional.

Summary
Defines	the		[Includes]		section	tag	in	the	DEC	files.	This	section	lists	the	"standard"	include	locations,
not	file	names,	provided	in	the	package.	Each	include		<PATH>		entry	listed	in	a	section	must	be	unique	to
the	section	(duplicate	entries	within	a	section	are	not	permitted).

A	path	entry	listed	in	an	architectural	section	must	not	be	listed	in	the	common	section.

The	included	path	must	not	end	with	the		<FileSep>		character.

All	paths	must	be	relative	to	the	directory	that	contains	the	DEC	file.	Use	of	absolute	paths,	or		WORKSPACE	
relative	paths	is	prohibited.

It	is	permissible	to	use	a		<MACROVAL>		entry	in	this	section	provided	the	above	rules	are	followed.

The	'	common	'	architecture	modifier	in	a	section	tag	must	not	be	combined	with	other	architecture	type
modifiers;	doing	so	will	result	in	a	build	break.

Prototype

<Include>						::=	"[Includes"	[<com_attribs>]	"]"	<EOL>	<IncEntries>*

<com_attribs>		::=	{<Public>}	{<Hidden>}

<Public>							::=	{".common"}	{<attribs>}

<Hidden>							::=	{".common.Private"}	{<hattribs>}

<attribs>						::=	<attrs>	[","	<TS>	"Includes"	<attrs>]*

<attrs>								::=	"."	<arch>

<hattribs>					::=	<hattrs>	[","	<TS>	"includes"	<hattrs>]*

<hattrs>							::=	"."	<arch>	".Private"

<IncEntries>			::=	{<MacroDefinition>}	{<HdrFile>}

<HdrFile>						::=	<CommentBlock>*

																			<TS>	<PATH>

																			{<CommentBlock>}	{<EOL>}

<CommentBlock>	::=	<TS>	"##"	<TS>	<ModuleTypeList>	<CmtOrEol>

<CmtOrEol>					::=	{<Comment>}	{<EOL>}

Parameters
PATH

Path	statements	listed	in	this	section	must	be	relative	to	the	directory	that	contains	the	DEC	file.	Use	of
"..",	"../"	or	"./"	in	the	directory	path	is	prohibited.

Restrictions
It	is	NOT	permissible	to	list	an	include	directory	under	common	and	under	a	specific	architecture.	It	is
permissible	to	specify	include	directory	entries	under	all	architectures	except		"common	"	if	different	include
directories	are	required	for	different	architectures.

It	is	NOT	permissible	to	mix	section	tags	without	the		Private		modifier	with	section	tags	with	the		Private	
modifier.	If	this	condition	is	detected,	the	build	tools	must	terminate	with	an	error	message.

For	example,		[Includes.common,	Includes.IA32.Private]		is	prohibited.

It	is	NOT	permissible	for	the	same	include	directory	to	be	listed	in	section	tags	with	and	without	the
	Private		modifier.	If	this	condition	is	detected,	the	build	tools	must	terminate	with	an	error	message.

3.5	[Includes]	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

56DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

For	example,	the	following	is	prohibited	because	the	same	directory	called		MyPrivateIncludePath		is	listed	in
a	tag	with	and	without	a		Private		modifier.

[Includes]

		MyPrivateIncludePath

[Includes.common.Private]

		MyPrivateIncludePath

Example

#	Include	section	-	list	of	Include	Paths	relative	to	the	DEC	file	that

#	are	provided	by	this	package.

#	Comments	are	used	for	Keywords	and	Module	Types.

#

###

[Includes.common]

		Include	#	Includes	for	all	processor	architectures

[Includes.IA32]

		Include/Ia32	#	Includes	specific	to	IA32

[Includes.X64]

		Include/X64	#	Includes	specific	to	X64

[Includes.EBC]

		Include/Ebc	#	Includes	specific	to	EBC

[Includes.ARM]

		Include/Arm	#	Includes	specific	to	ARM

3.5	[Includes]	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

57DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.6	[Guids]	Sections
These	sections	are	optional.

Summary
Defines	the		[Guids]		section	tag	of	the	DEC	files.

GUID	entries	listed	in	architectural	sections	are	not	permitted	to	be	listed	in	the	common	architectural
section.

The	'	common	'	architecture	modifier	in	a	section	tag	must	not	be	combined	with	other	architecture	type
modifiers;	doing	so	will	result	in	a	build	break.

The	use	of	a		<MACROVAL>		element	in	this	section	is	prohibited.

Each	GUID	entry	must	be	listed	only	once	per	section.

Prototype

<Guids>										::=	"[Guids"	[<com_attribs>]	"]"	<EOL>	<GuidEntries>*

<com_attribs>				::=	{<Public>}	{<Hidden>}

<Public>									::=	{".common"}	{<attribs>}

<Hidden>									::=	{".common.Private"}	{<hattribs>}

<attribs>								::=	<attrs>	[","	<TS>	"Guids"	<attrs>]*

<attrs>										::=	"."	<arch>

<hattribs>							::=	<hattrs>	[","	<TS>	"Guids"	<hattrs>]*

<hattrs>									::=	"."	<arch>	".Private"

<GuidEntries>				::=	[<GuidComment>]

																					<TS>	<CName>	<Eq>	<CFormatGUID>	{<CommentBlock>}	{<EOL>}

<GuidComment>				::=	[<Description>]

																					<TS>	"##"	<TS>	<GuidHeaderFile>	<EOL>

<GuidValue>						::=	<CFormatGUID>

<GuidHeaderFile>	::=	<PATH>	<Word>	".h"

<Description>				::=	<TS>	"##"	<TS>	<AsciiString>	<EOL>

																					[<TS>	"#"	<TS>	<AsciiString>	<EOL>]*

<CommentBlock>			::=	<TS>	"##"	<TS>	<ModuleTypeList>

																					{<Comment>}	{<EOL>}

Parameters
GuidHeaderFile

Path	to	the	GUID	header	file	statement	listed	in	comments	in	this	section	must	be	relative	to	the
directory	that	contains	the	DEC	file.	Use	of	"..",	"../"	or	"./"	in	the	directory	path	is	prohibited.

Restrictions
It	is	not	permissible	to	list	a	GUID	entry	under	common	and	under	a	specific	architecture.	It	is
permissible	to	specify	GUID	entries	under	all	architectures	except		"common	"	if	different	GUID	values	may
be	required	for	different	architectures.

It	is	NOT	permissible	to	mix	section	tags	without	the		Private		modifier	with	section	tags	with	the		Private	
modifier.	If	this	condition	is	detected,	the	build	tools	must	terminate	with	an	error	message.

For	example,		[Guids.common,	Guids.IA32.Private]		is	prohibited.

It	is	NOT	permissible	for	the	same	GUID	to	be	listed	in	section	tags	with	and	without	the		Private		modifier.
If	this	condition	is	detected,	the	build	tools	must	terminate	with	an	error	message.

3.6	[Guids]	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

58DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

For	example,	the	following	is	prohibited	because	the	GUID	named		MyPrivateGuid		is	listed	in	a	tag	with	and
without	a		Private		modifier.

[Guids]

		MyPrivateGuid	=	{	0x1e96808b,	0xfa93,	0x4230,	{	0xb5,	0x6b,	0x96,	0xc5,	0x95,	0x9b,	0xd1,	0xd2	}}

[Guids.common.Private]

		MyPrivateGuid	=	{	0x1e96808b,	0xfa93,	0x4230,	{	0xb5,	0x6b,	0x96,	0xc5,	0x95,	0x9b,	0xd1,	0xd2	}}

Example

#	Global	Guid	Definition	section	-	list	of	Global	Guid	C	Name

#	Data	Structures	that	are	provided	by

#	this	package.

#

###

[Guids.common]

gPcdHobGuid																		=	{	0x582E7CA1,	0x68CD,	0x4D44,{	0xB4,	0x3B,	0xF2,	0x98,	0xED,	0x58,	0x7B,	0xA6	}}

gEfiWinNtPassThroughGuid					=	{	0xCC664EB8,	0x3C24,	0x4086,{	0xB6,	0xF6,	0x34,	0xE8,	0x56,	0xBC,	0xE3,	0x6E	}}

gEfiWinNtCPUSpeedGuid								=	{	0xD4F29055,	0xE1FB,	0x11D4,{	0xBD,	0x0D,	0x00,	0x80,	0xC7,	0x3C,	0x88,	0x81	}}

gEfiWinNtCPUModelGuid								=	{	0xBEE9B6CE,	0x2F8A,	0x11D4,{	0xBD,	0x0D,	0x00,	0x80,	0xC7,	0x3C,	0x88,	0x81	}}

gEfiWinNtMemoryGuid										=	{	0x99042912,	0x122A,	0x11D4,{	0xBD,	0x0D,	0x00,	0x80,	0xC7,	0x3C,	0x88,	0x81	}}

gEfiWinNtConsoleGuid									=	{	0xBA73672C,	0xA5D3,	0x11D4,{	0xBD,	0x00,	0x00,	0x80,	0xC7,	0x3C,	0x88,	0x81	}}

gEfiWinNtUgaGuid													=	{	0xAB248E99,	0xABE1,	0x11D4,{	0xBD,	0x0D,	0x00,	0x80,	0xC7,	0x3C,	0x88,	0x81	}}

gEfiWinNtGopGuid													=	{	0x4e11e955,	0xccca,	0x11d4,{	0xbd,	0x0d,	0x00,	0x80,	0xc7,	0x3c,	0x88,	0x81	}}

gEfiWinNtSerialPortGuid						=	{	0x0C95A93D,	0xA006,	0x11D4,{	0xBC,	0xFA,	0x00,	0x80,	0xC7,	0x3C,	0x88,	0x81	}}

gEfiWinNtFileSystemGuid						=	{	0x0C95A935,	0xA006,	0x11D4,{	0xBC,	0xFA,	0x00,	0x80,	0xC7,	0x3C,	0x88,	0x81	}}

gEfiWinNtPhysicalDisksGuid			=	{	0x0C95A92F,	0xA006,	0x11D4,{	0xBC,	0xFA,	0x00,	0x80,	0xC7,	0x3C,	0x88,	0x81	}}

gEfiWinNtVirtualDisksGuid				=	{	0x0C95A928,	0xA006,	0x11D4,{	0xBC,	0xFA,	0x00,	0x80,	0xC7,	0x3C,	0x88,	0x81	}}

gEfiEdkNt32PkgTokenSpaceGuid	=	{	0x0D79A645,	0x1D91,	0x40a6,{	0xA8,	0x1F,	0x61,	0xE6,	0x98,	0x2B,	0x32,	0xB4	}}

3.6	[Guids]	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

59DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.7	[Protocols]	Sections
These	sections	are	optional.

Summary
Defines	the		[Protocols]		section	tag.	This	is	a	list	of	the	global	PROTOCOL	C	Names	and	their	C	Guid
values	that	are	declared	in	the	EDK	II	package	(.DEC)	file.	Protocol	entries	listed	in	architectural
sections	are	not	permitted	to	be	listed	in	the	common	architectural	section.

The	'	common	'	architecture	modifier	in	a	section	tag	must	not	be	combined	with	other	architecture	type
modifiers;	doing	so	will	result	in	a	build	break.

The	use	of	a		<MACROVAL>		element	in	this	section	is	prohibited.

Each	Protocol	entry	must	be	listed	only	once	per	section.

Prototype

<Protocols>							::=	"[Protocols"	[<com_attribs>]	"]"	<EOL>	<ProtocolEntries>*

<com_attribs>					::=	{<Public>}	{<Hidden>}

<Public>										::=	{".common"}	{<attribs>}

<Hidden>										::=	{".common.Private"}	{<hattribs>}

<attribs>									::=	<attrs>	[","	<TS>	"Protocols"	<attrs>]8

<attrs>											::=	"."	<arch>

<hattribs>								::=	<hattrs>	[","	<TS>	"Protocols"	<hattrs>]*

<hattrs>										::=	"."	<arch>	".Private"

<ProtocolEntries>	::=	[<ProtocolComment>]

																						<TS>	<CName>	<Eq>	<CFormatGUID>	{<CommentBlock>}	{<EOL>}

<ProtocolComment>	::=	[<Description>]

																						<ProtoHdrFile>

<ProtoHdrFile>				::=	<TS>	"##"	<TS>	<PATH>	<Word>	".h"

<Description>					::=	<TS>	"##"	<TS>	<AsciiString>	<EOL>

																						[<TS>	"#"	<TS>	<AsciiString>	<EOL>]*

<CommentBlock>				::=	[<TS>	"##"	<TS>	<ModuleTypeList>]

																						{<Comment>}	{<EOL>}

Parameters
ProtocolHeaderFile

Path	to	the	Protocol	header	file	statement	listed	in	comments	in	this	section	must	be	relative	to	the
directory	that	contains	the	DEC	file.	Use	of	"..",	"../"	or	"./"	in	the	directory	path	is	prohibited.

Restrictions
It	is	NOT	permissible	to	list	a	Protocol	entry	under	common	and	under	a	specific	architecture.	It	is
permissible	to	specify	Protocol	entries	under	all	architectures	except		"common	"	if	different	Guid	values
may	be	required	for	different	architectures.

It	is	NOT	permissible	to	mix	section	tags	without	the		Private		modifier	with	section	tags	with	the		Private	
modifier.	If	this	condition	is	detected,	the	build	tools	must	terminate	with	an	error	message.

For	example,		[Protocols.common,	Protocols.IA32.Private]		is	prohibited.

It	is	NOT	permissible	for	the	same	protocol	to	be	listed	in	section	tags	with	and	without	the		Private	
modifier.	If	this	condition	is	detected,	the	build	tools	must	terminate	with	an	error	message.

3.7	[Protocols]	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

60DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

For	example,	the	following	is	prohibited	because	the	protocol	named		MyPrivateProtocol		is	listed	in	a	tag
with	and	without	a		Private		modifier.

[Protocols]

		MyPrivateProtocol	=	{	0xc7c4a20f,	0xd1d1,	0x427a,	{	0xb0,	0x82,	0xa8,	0xb6,	0x24,	0xf7,	0x69,	0x4f	}}

[Protocols.common.Private]

		MyPrivateProtocol	=	{	0xc7c4a20f,	0xd1d1,	0x427a,	{	0xb0,	0x82,	0xa8,	0xb6,	0x24,	0xf7,	0x69,	0x4f	}}

Example

#	Global	Protocols	Definition	section	-	list	of	Global	Protocols	C	Name

#	Data	Structures	that	are	provided	by

#	this	package.

#

###

[Protocols.common]

gEfiWinNtThunkProtocolGuid	=	{	0x58C518B1,	0x76F3,	0x11D4,{	0xBC,	0xEA,	0x00,	0x80,	0xC7,	0x3C,	0x88,	0x81	}}

gEfiWinNtIoProtocolGuid				=	{	0x96EB4AD6,	0xA32A,	0x11D4,{	0xBC,	0xFD,	0x00,	0x80,	0xC7,	0x3C,	0x88,	0x81	}}

3.7	[Protocols]	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

61DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.8	[PPIs]	Sections
These	sections	are	optional.

Summary
Defines	the	optional		[Ppis]		section	tag.	This	is	a	list	of	the	global	PPI	C	Names	that	are	referenced	in
the	EDK	II	package's	module	C	code.

PPI	entries	listed	in	architectural	sections	are	not	permitted	to	be	listed	in	the	common	architectural
section.

The	'	common	'	architecture	modifier	in	a	section	tag	must	not	be	combined	with	other	architecture	type
modifiers;	doing	so	will	result	in	a	build	break.

The	use	of	a		<MACROVAL>		element	in	this	section	is	prohibited.

Each	PPI	entry	must	be	listed	only	once	per	section.

Prototype

<Ppis>										::=	"[Ppis"	[<com_attribs>]	"]"	<EOL>	<PpiEntries>*

<com_attribs>			::=	{<Public>}	{<Hidden>}

<Public>								::=	{".common"}	{<attribs>}

<Hidden>								::=	{".common.Private"}	{<hattribs>}

<attribs>							::=	<attrs>	[","	<TS>	"Ppis"	<attrs>]*

<attrs>									::=	"."	<arch>

<hattribs>						::=	<hattrs>	[","	<TS>	"Ppis"	<hattrs>]*

<hattrs>								::=	"."	<arch>	".Private"

<PpiEntries>				::=	[<PpiComment>]

																				<TS>	<CName>	<Eq>	<CFormatGUID>	{<CommentBlock>}	{<EOL>}

<PpiComment>				::=	[<Description>]

																				<TS>	"##"	<TS>	<PpiHeaderFile>	<EOL>

<Description>			::=	<TS>	"##"	<TS>	<AsciiString>	<EOL>

																				[<TS>	"#"	<TS>	<AsciiString>	<EOL>]*

<PpiHeaderFile>	::=	<PATH>	<Word>	".h"

<CommentBlock>		::=	[<TS>	"##"	<TS>	<ModuleTypeList>]

																				{<Comment>}	{<EOL>}

Parameters
PpiHeaderFile

Path	to	the	PPI	header	file	statement	listed	in	comments	in	this	section	must	be	relative	to	the	directory
that	contains	the	DEC	file.	Use	of	"..",	"../"	or	"./"	in	the	directory	path	is	prohibited.

Restrictions
It	is	NOT	permissible	to	list	a	PPI	entry	under	common	and	under	a	specific	architecture.	It	is	permissible
to	specify	PPI	entries	under	all	architectures	except		"common	"	if	different	Guid	values	may	be	required	for
different	architectures.

It	is	NOT	permissible	to	mix	section	tags	without	the		Private		modifier	with	section	tags	with	the		Private	
modifier.	If	this	condition	is	detected,	the	build	tools	must	terminate	with	an	error	message.

For	example,		[Ppis.common,	Ppis.IA32.Private]		is	prohibited.

It	is	NOT	permissible	for	the	same	PPI	to	be	listed	in	section	tags	with	and	without	the		Private		modifier.	If
this	condition	is	detected,	the	build	tools	must	terminate	with	an	error	message.

3.8	[PPIs]	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

62DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

For	example,	the	following	is	prohibited	because	the	PPI	named		MyPrivatePpi		is	listed	in	a	tag	with	and
without	a		Private		modifier.

[Ppis]

		MyPrivatePpi	=	{	0x10ed6a18,	0xbbf7,	0x4051,	{	0xba,	0xb8,	0xb4,	0x90,	0x1a,	0x65,	0xa2,	0xc5	}}

[Ppis.common.Private]

		MyPrivatePpi	=	{	0x10ed6a18,	0xbbf7,	0x4051,	{	0xba,	0xb8,	0xb4,	0x90,	0x1a,	0x65,	0xa2,	0xc5	}}

Example

#	Global	Ppis	Definition	section	-	list	of	Global	Ppis	C	Name

#	Data	Structures	that	are	provided	by

#	this	package.

#

###

[Ppis.common]

gPeiNtThunkPpiGuid				=	{	0x98C281E5,	0xF906,	0x43DD,{	0xA9,	0x2B,	0xB0,	0x03,	0xBF,	0x27,	0x65,	0xDA	}}

gNtPeiLoadFilePpiGuid	=	{	0xFD0C65EB,	0x0405,	0x4CD2,{	0x8A,	0xEE,	0xF4,	0x00,	0xEF,	0x13,	0xBA,	0xC2	}}

gNtFwhPpiGuid									=	{	0x4E76928F,	0x50AD,	0x4334,{	0xB0,	0x6B,	0xA8,	0x42,	0x13,	0x10,	0x8A,	0x57	}}

gPeiNtAutoScanPpiGuid	=	{	0x0DCE384D,	0x007C,	0x4BA5,{	0x94,	0xBD,	0x0F,	0x6E,	0xB6,	0x4D,	0x2A,	0xA9	}}

3.8	[PPIs]	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

63DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.9	[LibraryClasses]	Sections
These	sections	are	optional.

Summary
Defines	the		[LibraryClasses]		tag	in	the	DEC	files.

The		[LibraryClasses]		section	maps	the	location,	relative	to	the	DEC	file,	of	library	ClassName	to	the
header	file	for	the	library	class	specified	by	the	ClassName.

ClassName	entries	listed	in	architectural	sections	are	not	permitted	to	be	listed	in	the	common
architectural	section.

The	'	common	'	architecture	modifier	in	a	section	tag	must	not	be	combined	with	other	architecture	type
modifiers;	doing	so	will	result	in	a	build	break.

All	paths	must	be	relative	to	the	directory	that	contains	the	DEC	file.	Use	of	absolute	paths,	or		WORKSPACE	
relative	paths	is	prohibited.

It	is	permissible	to	use	a		<MACROVAL>		entry	in	this	section	provided	the	above	rules	are	followed.

Each	ClassName	entry	must	be	listed	only	once	per	section.

Prototype

<LibraryClasses>	::=	"[LibraryClasses"	[<com_attribs>]	"]"	<EOL>	<LcEntries>*

<com_attribs>				::=	{".common"}	{<attribs>}

<attribs>								::=	<attrs>	[","	<TS>	"LibraryClasses"	<attrs>]*

<attrs>										::=	"."	<arch>

<LcEntries>						::=	{<LcEntry>}	{<MacroDefinition>}

<LcEntry>								::=	[<LcDoxygenHelp>]

																					<TS>	<ClassName>	<FS>	<Filename>	{<CommentBlock>}	{<EOL>}

<LcDoxygenHelp>		::=	<TS>	"##"	<TS>	"@LibraryClasses"	<TS>	<AsciiString>	<EOL>

<ClassName>						::=	<ToolWord>

																					#	A	User	Defined	Keyword	consisting	of

																					#	alphanumeric	characters.	No	special

																					#	characters	are	permitted.

<Filename>							::=	<PATH>	<File>	".h"

<CommentBlock>			::=	<TS>	"##"	<TS>	<ModuleTypeList>

																					{<Comment>}	{<EOL>}

Parameters
Filename

Path	portion	of	the	header	file	statements	in	this	section	must	be	relative	to	the	directory	that	contains
the	DEC	file.	Use	of	"..",	"../"	or	"./"	in	the	directory	path	is	prohibited.

Restrictions
It	is	NOT	permissible	to	list	a	Library	Class	entry	under	common	and	under	a	specific	architecture.	It	is
permissible	to	specify	Library	Class	entries	under	all	architectures	except		"common	"	if	different	header
filename	values	are	required	for	different	architectures.

#	Library	Class	Header	section	-	list	of	Library	Class	header

#	files	that	are	provided	by

#	this	package.

#

3.9	[LibraryClasses]	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

64DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

###

[LibraryClasses.common]

		UefiRuntimeServicesTableLib	|Include/Library/UefiRuntimeServicesTableLib.h

		UefiLib	|	Include/Library/UefiLib.h

		UefiDriverModelLib	|	Include/Library/UefiDriverModelLib.h

		UefiDriverEntryPoint	|	Include/Library/UefiDriverEntryPoint.h

		UefiDecompressLib	|	Include/Library/UefiDecompressLib.h

		UefiBootServicesTableLib	|	Include/Library/UefiBootServicesTableLib.h

		TimerLib|Include/Library/TimerLib.h

		SmbusLib|Include/Library/SmbusLib.h

		ResourcePublicationLib|Include/Library/ResourcePublicationLib.h

		PostCodeLib|Include/Library/PostCodeLib.h

		ReportStatusCodeLib|Include/Library/ReportStatusCodeLib.h

		PrintLib|Include/Library/PrintLib.h

		PerformanceLib|Include/Library/PerformanceLib.h

		PeiServicesTablePointerLib|Include/Library/PeiServicesTablePointerLib.h

		PeimEntryPoint|Include/Library/PeimEntryPoint.h

		PeiServicesLib|Include/Library/PeiServicesLib.h

		PeiCoreEntryPoint|Include/Library/PeiCoreEntryPoint.h

		PeCoffLib|Include/Library/PeCoffLib.h

		BaseLib|Include/Library/BaseLib.h

[LibraryClasses.IA32]

		UefiApplicationEntryPoint	|Include/Library/UefiApplicationEntryPoint.h	#	UEFI_APPLICATION

[LibraryClasses.X64]

		UefiApplicationEntryPoint|Include/Library/UefiApplicationEntryPoint.h	#	UEFI_APPLICATION

[LibraryClasses.EBC]

		UefiApplicationEntryPoint|Include/Library/UefiApplicationEntryPoint.h	#	UEFI_APPLICATION

3.9	[LibraryClasses]	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

65DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.10	PCD	Sections
These	are	optional	sections.	However,	if	modules	in	this	package's	directory	tree	use	a	PCD	that	is	not
declared	in	other	DEC	files,	then	the	package	creator	must	list	the	PCD	in	this	file.

Summary
Defines	the	PCDs	section	tags	in	the	DEC	files.

There	are	five	defined	PCD	access	method	types.	Do	not	confuse	these	access	types	with	the	data
types	of	the	PCDs.	The	five	access	method	types	are:		PcdsFeatureFlag	,		PcdsFixedAtBuild	,		PcdsPatchableInModule	,
	PcdsDynamic		and		PcdsDynamicEx	.	The	PCD	is	used	to	define	potential	values	that	a	module	might	be	coded
against,	and	if	a	module	uses	the	access	methods	for		PcdsDynamic	,	then	the	platform	can	define	the	final
usage.	PCDs	listed	as		PcdsDynamic		or		PcdsDynamicEx		will	only	have	one	value	in	the	final	binary	image	-	the
PEI	and	DXE	PCD	Drivers	that	maintain	these	values	use	a	single	database	for	all	architectures,	with	a
unique	value	for	a	PCD	(identified	by	the	Token	Space	GUID	value	and	the	Token	Number).

If	a	PCD	is	only	listed	under	a		PcdsFixedAtBuild		or		PcdsPatchableInModule	,	then	modules	are	restricted,	and
cannot	be	coded	to	use	either	of	the	dynamic	PCD	access	methods.

Using	the	"	common	"	architectural	modifier	is	exactly	the	same	as	specifying	a	PCD	section	type	without	an
architectural	modifier.	A	PCD	listed	in	an	INF	or	DSC	file	which	uses	an	architectural	modifier	may	be
listed	in	the	'	common	'	section	in	the	DEC	file;	it	is	not	required	to	list	PCDs	in	architectural	sections	in	the
DEC.	If	a	PCD	is	only	listed	under	a	section	with	an	architectural	modifier	that	is	not	'common',	then	it
may	only	be	used	by	modules	build	for	that	specific	architecture.

Each	PCD	entry	must	be	listed	only	once	per	section.	If	a	PCD	is	listed	more	than	once	within	one
section,	the	last	entry	takes	precedence.

The	PCD	values	in	this	file	are	the	default	values.	Default	values	listed	in	architectural	sections	override
default	values	specified	in	a	'common'	architectural	section.	The	EDK	II	build	system	allows	these	values
may	be	overridden	by	default	values	in	the	INF	files	(provided	all	INF	files	use	the	same	default	value	for
PCDs	that	are	used	by	multiple	modules)	and	by	values	specified	in	the	DSC	or	FDF	file.	A	PCD's	Datum
type	cannot	be	changed	for	different	access	methods,	only	one	datum	type	is	permitted.

PCD	entries	may	be	put	into	any	or	all	PCD	section	types	except		PcdsFeatureFlag		sections.

The	use	of	a		<MACROVAL>		element	in	this	section	is	prohibited.

The	Token	number	specified	in	a	PCD	entry	is	used	in	code	(auto-generated	files	by	the	EDK	II	build
system),	along	with	the	Token	Space	GUID	value	to	uniquely	identify	a	given	PCD.	The	Token	number
must	be	identical	for	every	entry	of	a	PCD	in	this	file	(using	a	different	token	number	for	a	PCD	listed	in
	PcdsDynamic		and		PcdsDynamicEx		sections	for	example,	will	result	in	a	build	break).

PCDs	listed	in		PcdsFeatureFlag		sections	must	only	be	listed	in		PcdsFeatureFlag		sections.

Prototype

<PCDs>												::=	<PcdSections>*

<PcdSections>					::=	{<PcdFeature>}	{<PcdOther>}

<PcdFeature>						::=	<FFSectionTag>	<FFEntries>*

<FFEntries>							::=	["##"	<TS>	<PcdDescription>]

																						[<TS>	<Prompt>]

																						[{<List>}	{<Express>}]

																						<TS>	<PcdBool>

<FFSectionTag>				::=	"["	"PcdsFeatureFlag"	[<com_FFattribs>}	"]"	<EOL>

<com_FFattribs>			::=	{".common"}	{<FFattribs>}

<FFattribs>							::=	<attrs>	[","	<TS>	"PcdsFeatureFlag"	<attrs>]*

3.10	PCD	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

66DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

<PcdOther>								::=	"["	<PcdType>	[<com_or_attribs>]	"]"	<EOL>

																						<PcdEntries>*

<PcdType>									::=	{"PcdsPatchableInModule"}	{"PcdsFixedAtBuild"}

																						{"PcdsDynamic"}	{"PcdsDynamicEx"}

<com_or_attribs>		::=	{<com_attribs>}	{<attribs>}

<com_attribs>					::=	[".common"]	[","	<TS>	<PcdType>	[".common"]]*

<attribs>									::=	<attrs>	[","	<TS>	<PcdType>	<attrs>]*

<attrs>											::=	"."	<arch>

<PcdEntries>						::=	["##"	<TS>	<PcdDescription>]

																						[<TS>	<Prompt>]

																						[<DoxComment>]	<PcdEntry>

<PcdEntry>								::=	<TS>	{<PcdBool>}	{<PcdNumEntry>}	{<PcdPtr>}	{<PcdStruct>}	{<PcdFieldValue>}

<PcdNumEntry>					::=	{<Pcd8>}	{<Pcd16>}	{<Pcd32>}	{<Pcd64>}

<PcdBool>									::=	<PcdName>	<FS>	<BoolPcd>	<FS>	<Token>	<CbOrEol>

<BoolPcd>									::=	<Boolean>	<FS>	"BOOLEAN"

<CbOrEol>									::=	{<CommentBlock>}	{<EOL>}

<Pcd8>												::=	<PcdName>	<FS>	<PcdUint8>	<FS>	<Token>	<CbOrEol>

<PcdUint8>								::=	{<NumValUint8>}	{<Expression>}	<FS>	"UINT8"

<Pcd16>											::=	<PcdName>	<FS>	<PcdUint16>	<FS>	<Token>	<CbOrEol>

<PcdUint16>							::=	{<NumValUint16>}	{<Expression>}	<FS>	"UINT16"

<Pcd32>											::=	<PcdName>	<FS>	<PcdUint32>	<FS>	<Token>	<CbOrEol>

<PcdUint32>							::=	{<NumValUint32>}	{<Expression>}	<FS>	"UINT32"

<Pcd64>											::=	<PcdName>	<FS>	<PcdUint64>	<FS>	<Token>	<CbOrEol>

<PcdUint64>							::=	{<NumValUint64>}	{<Expression>}	<FS>	"UINT64"

<PcdStruct>							::=	<PcdName>	<FS>	<PtrVal>	<FS>	{<CName>}	{<CArrayName>}	<FS>	<Token>	"{"	<EOL>

																						<TS>	<PcdStructHF>

																						<TS>	<PcdStructPKGs>	"}"	<CbOrEol>

<PcdStructHF>					::=	"<HeaderFile>"	<EOL>	<PcdStructFile>

<PcdStructPKGs>			::=	"<Packages>"	<EOL>	<PcdStructFile>*

<PcdStructFile>			::=	<Filename>	<EOL>

<PcdPtr>										::=	<PcdName>	<FS>	<PcdPtrVal>	<FS>	<Token>	<CbOrEol>

<PcdPtrVal>							::=	<PtrVal>	<FS>	"VOID*"

<PtrVal>										::=	{<StringVal>}	{<Expression>}

<Token>											::=	{<LongNum>}	{<UINT32>}

<DoxComment>						::=	<TS>	{<Range>+}	{<List>}	{<Express>+}

<Prompt>										::=	"#"	<TS>	"@Prompt	<MTS>	<AsciiString>	<EOL>

<Range>											::=	"#"	<TS>	"@ValidRange"	<TS>	<ERangeValues>	<EOL>

<ERangeValues>				::=	[<ErrorCode>	<TS>]	<RangeValues>

<List>												::=	"#"	<TS>	"@ValidList"	<TS>	<EValidValueList>	<EOL>

<EValidValueList>	::=	[<ErrorCode>	<TS>]	<ValidValueList>

<Express>									::=	"#"	<TS>	"@Expression"	<TS>	<EExpression>	<EOL>

<EExpression>					::=	[<ErrorCode>	<TS>]	<Expression>

<ErrorCode>							::=	<NumValUint32>	<FS>

<PcdDescription>		::=	<AsciiString>	<EOL>

																						[<TS>	"#"	<AsciiString>	<EOL>]*

<CommentBlock>				::=	<TS>	"##"	<TS>	<ModuleTypeList>	{<Comment>}	{<EOL>}

<RangeValues>					::=	{<ValidRange>}	{<RangeExpress>}

<RngOp>											::=	<TS>	{"AND"}	{"and"}	{"OR"}	{"or"}	<TS>

<RangeExpress>				::=	{"("	<ValidRng>	")"	<RngOp>	"("	<ValidRng>	")"}

																						{"NOT"	<TS>	"("	<ValidRng>	")"}

<ValidRng>								::=	["NOT"	<TS>]	"("	<ValidRangeIn>	")"

<ValidRangeIn>				::=	["NOT"	<TS>]	{<Integer>	<TS>	"-"	<TS>	<Integer>}

																						{<HexValue>	<TS>	"-"	<TS>	<HexValue>}

																						{"LT"	<TS>	{<Integer>}	{<HexValue>}}

																						{"GT"	<TS>	{<Integer>}	{<HexValue>}}

																						{"LE"	<TS>	{<Integer>}	{<HexValue>}}

																						{"GE"	<TS>	{<Integer>}	{<HexValue>}}

																						{"XOR"	<TS>	{<Integer>}	{<HexValue>}}

																						{"EQ"	<TS>	{<Integer>}	{<HexValue>}}

<ValidValueList>		::=	<Number>	[","	<TS>	<Number>]*

Parameters
Expression

The	expression	in	the	@Expression	entry	must	evaluate	to	True	in	order	for	the	value	to	be	valid.

RangeExpressions

3.10	PCD	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

67DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

This	is	required	to	be	an	in-fix	logical	expression,	evaluated	left	to	right,	for	a	range	of	values,	using
Relational,	Equality	and	Logical	Operators	(LT,	LE,	GT,	GE.)	The	forms	PcdCName	and/or
PcdTokenSpaceGuidCName.PcdCName	are	permitted.	Parentheses	are	recommended	for	clarity.	Since
there	may	be	different	error	numbers	associated	with	valid	ranges	(one	for	less	than,	another	for
greater	than)	more	than	one	ValidRange	entry	is	permitted.

HexDigit

This	value,	if	specified	corresponds	to	the	ErrorNumber	of	an	Error	Message	defined	in	a	UEFI	PI
Distribution	Package.	Each	error	number	is	related	to	a	single	error	message	(translations	of	message
text	are	not	considered	as	separate	error	messages),	with	the	text	of	error	messages	included	in	the
Unicode	file	specified	in	the		PACKAGE_UNI_FILE		element	in	the		[Defines]		section.

TokenNumber

Each	PCD	declared	within	a	token	space	(defined	by	the	Token	Space	GUID)	must	be	assigned	a	unique
32-bit	value.	This	token	number	and	an	optional	token	space	GUID	are	used	in	code	for	accessing	a
PCD's	value.

ErrorCode

This	value,	if	specified	corresponds	to	the	ErrorNumber	of	an	Error	Message	defined	in	a	UEFI	PI
Distribution	Package.	Each	error	number	is	related	to	a	single	error	message.

Token

Each	PCD	declared	within	a	token	space	(defined	by	the	Token	Space	GUID)	must	be	assigned	a	unique
32-bit	value.	This	token	number	and	an	optional	token	space	GUID	are	used	in	code	for	accessing	a
PCD's	value.

Restrictions
It	is	permissible	to	list	a	PCD	entry	under	common	and	under	a	specific	architecture.

It	is	permissible	to	specify	PCD	entries	under	all	architectures	except	"	common	"	if	different	default	values
may	be	required	for	different	architectures.	The	tools	must	use	architectural	specific	recommended
values	over	recommended	values	listed	in	the	common	sections.	This	technique	is	permitted	to	allow
unique	recommendations	for	individual	architectures.

It	is	not	permissible	to	list	command	modifier	and	an	architectural	modifier	in	a	section	header.	The
following	example	is	not	permitted:

	[PcdsPatchableInModule.IA32,	PcdPatchableInModule.common]	

It	is	permissible	to	specify	multiple	architectures	for	like	PcdType	items	in	the	same	section	header.	For
example:

	[PcdsFeatureFlag.IA32,	PcdsFeatureFlag.X64]	

It	is	permissible	to	mix	PcdsPatchableInModule,	PcdsFixed,	PcdsDynamic	and	PcdsDynamicEx	PcdType
elements	within	an	architecture	section.	For	example:

	[PcdsPatchableInModule.IA32,	PcdsFixedAtBuild.IA32]	

The		PcdsFeatureFlag		PcdType	may	not	be	mixed	with	any	other	PcdType	elements	in	the	section	header.
The	following	example	is	NOT	VALID:

	[PcdsFeatureFlag.IA32,	PcdsFixedAtBuild.IA32]	

While	allowed	by	this	specification,	it	is	not	recommended	to	mix	different

PcdType.architecture	values	in	a	single	section.	The	following	example	is	valid,	but	not	recommended:

	[PcdsDynamicEx.IA32,	PcdsFixedAtBuild.X64]	

3.10	PCD	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

68DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

Refer	to	the	PI	Specification	for	more	information.

Example

##

#

#

#	PCD	Declarations	section	-	list	of	all	PCDs	Declared	by	this	package

#	Only	this	package	should	be	providing	the

#	declaration,	other	packages	should	not.

#

#

#

[PcdsFeatureFlag.common]

		##	If	TRUE,	the	component	name	protocol	will	not	be	installed.

		gEfiMdePkgTokenSpaceGuid.PcdComponentNameDisable	|	FALSE	|BOOLEAN	|	0x0000000d

		##	If	TRUE,	the	driver	diagnostics	protocol	will	not	be	installed.

		gEfiMdePkgTokenSpaceGuid.PcdDriverDiagnosticsDisable	|	FALSE	|BOOLEAN	|	0x0000000e

[PcdsFixedAtBuild.common]

		##	Indicates	the	maximum	length	of	unicode	string

		gEfiMdePkgTokenSpaceGuid.PcdMaximumUnicodeStringLength	|1000000	|	UINT32	|	0x00000001

		##	Indicates	the	maximum	length	of	ascii	string

		gEfiMdePkgTokenSpaceGuid.PcdMaximumAsciiStringLength	|	1000000	|UINT32	|	0x00000002

		##	Indicates	the	maximum	node	number	of	linked	list

		gEfiMdePkgTokenSpaceGuid.PcdMaximumLinkedListLength	|	1000000	|UINT32	|	0x00000003

[PcdsFixedAtBuild.common,	PcdsPatchableInModule.common]	##	This	flag	is	used	to	control	the	printout	of	DebugLib

gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel	|	0x80000000	|UINT32	|	0x00000006

		##	Indicates	the	allowable	maximum	number	in	extract	handler	table

		gEfiMdePkgTokenSpaceGuid.PcdMaximumGuidedExtractHandler	|	0x10	|UINT32	|	0x00000025

[PcdsFixedAtBuild,	PcdsPatchableInModule,	PcdsDynamic,	PcdsDynamicEx]	##	This	value	is	used	to	set	the	base	address	of	pci	exp

ress	hierarchy

gEfiMdePkgTokenSpaceGuid.PcdPciExpressBaseAddress	|	0xE0000000	|UINT64	|	0x0000000a

		##	Default	current	ISO	639-2	language:	English	&	French

		gEfiMdePkgTokenSpaceGuid.PcdUefiVariableDefaultLangCodes	|"engfraengfra"	|	VOID*	|	0x0000001c

		##	Default	current	ISO	639-2	language:	English

		gEfiMdePkgTokenSpaceGuid.PcdUefiVariableDefaultLang	|	"eng"	|VOID*	|	0x0000001d

Note:	In	the	above	example,	the	backslash	character	is	used	to	show	a	line	continuation	for	readability.
Use	of	a	backslash	character	in	the	actual	DEC	file	is	not	permitted.

3.10	PCD	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

69DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

3.11	[UserExtensions]	Sections
These	sections	are	optional.

Summary
Defines	the	optional	EDK	II	DEC	file		[UserExtensions]		tag.	The	build	tools	must	have	an	a	priori	knowledge
of	how	to	process	any	items	in	this	section.	EDK	II	build	tools	ignore	this	section.

Each		[UserExtensions]		section	must	have	a	unique	set	of		UserId		and		IdString		values.	This	means	that	the
same		UserId		can	be	used	in	more	than	one	section,	provided	the		IdString		values	are	different.	The
same		IdString		values	can	be	used	if	the		UserId		values	are	different.	The	same		IdString		and		UserId	
values	can	be	used	if	specifying	architecture	specific	content.

The	use	of	a		<MACROVAL>		element	in	this	section	is	prohibited.

The		"common	"	architecture	modifier	in	a	section	tag	must	not	be	combined	with	other	architecture	type
modifiers;	doing	so	may	result	in	a	build	break.

Prototype

<UserExtensions>	::=	"[UserExtensions"	<com_attribs>	"]"	<EOL>

																					<statements>*

<com_attribs>				::=	{<UserId>	<IdString>	[".common"]}	{<atttribs>}

<attribs>								::=	<attrs>	[","	<TS>	""UserExtensions"	<attrs>]*

<attrs>										::=	<UserId>	<IdString>	["."	<arch>]

<UserId>									::=	"."	(a-zA-Z)(a-zA-Z0-9_.)*

<IdString>							::=	"."	{<NormalizedString>}	{<SimpleWord>}

<statements>					::=	Content	is	build	tool	chain	specific.

Parameters
UserId

Words	that	contain	period	"."	must	be	encapsulated	in	double	quotation	marks.

IdString

Normalized	strings	that	contain	period	"."	or	space	characters	must	be	encapsulated	in	double
quotation	marks.	It	is	recommended	that	the	IdString	start	with	a	letter.

Example
	[UserExtensions.NoSuchCorp."MyScript_1"]	MyBatch.bat	

3.11.1	[UserExtensions.TianoCore."ExtraFiles"]	Section
This	is	an	optional	section.

Defines	the	optional	EDK	II	DEC	file		[UserExtensions.TianoCore."ExtraFiles"]		section	tag.	The	EDK	II	build	tools
must	not	process	any	files	listed	in	this	section.

Summary
This	section	is	used	by	the	Intel(R)	UEFI	Packaging	Tool	that	is	distributed	as	part	of	the	EDK	II
BaseTools,	to	locate	files	listed	under	this	section	header	and	add	them	to	the	UEFI	distribution
package.	When	installing	a	UEFI	distribution	package,	these	files	will	be	installed	in	the	package's

3.11	[UserExtensions]	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

70DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

directory	tree.

Prototype

<UserExtensions>	::=	"[UserExtensions"	<TcEf>	"]"	<EOL>	<FileNames>*

<TcEf>											::=	".TianoCore."	<DblQuote>	"ExtraFiles"	<DblQuote>

<FileNames>						::=	<TS>	[<RelativePath>]	<File>	<EOL>

Parameters
FileNames

Paths	listed	in	the	filename	elements	of	the	this	section	must	be	relative	to	the	directory	the	DEC	file
resides	in.	Use	of	"..",	"."	and	"../"	in	the	directory	path	is	not	permitted.

Example

[UserExtensions.TianoCore."ExtraFiles"]

		Readme.txt

3.11	[UserExtensions]	SectionsEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

71DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

APPENDIX	A	DEC	EXAMPLES
The	following	are	examples	of	EDK	II	package	declaration	(DEC)	files.	Line	extension	characters	are	not
permitted	in	the	DEC	file,	they	are	used	here	for	readability.

The	first	example	shows	a	DEC	file	for	a	package	that	provides	only	library	class	definitions	and	library
instances.	The	second	example	shows	a	DEC	file	that	provide	library	class	definitions,	library	instances
and	drivers.	The	third	example	shows	the	format	of	a	DEC	file	for	binary	only	content	within	the	directory
structure.

Note:	In	the	all	of	the	following	examples,	the	backslash	"\"	character	at	the	end	of	a	line	is	used	to
show	a	line	continuation	for	readability.	Use	of	a	backslash	character	in	the	actual	DEC	file	is	not
permitted.

Appendix	A	DEC	ExamplesEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

72DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

A.1	EDK	II	IntelFrameworkPkg	Example

##	@file

#	Intel	Framework	Module	Package.

#

#	This	package	contains	the	definitions	and	module	implementation

#	which	follows	Intel	EFI	Framework	Specification.

#

#	Copyright	(c)	2007	-	2016,	Intel	Corporation.	All	rights	reserved.

#

#	This	program	and	the	accompanying	materials	are	licensed	and	made

#	available	under	the	terms	and	conditions	of	the	BSD	License

#	which	accompanies	this	distribution.	The	full	text	of	the	license	may

#	be	found	at:

#	http://opensource.org/licenses/bsd-license.php

#

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR

#	IMPLIED.

#

##

[Defines]

		DEC_SPECIFICATION	=	0x00010019

		PACKAGE_NAME						=	IntelFrameworkModulePkg

		PACKAGE_UNI_FILE		=	IntelFrameworkModulePkg.uni

		PACKAGE_GUID						=	88894582-7553-4822-B484-624E24B6DECF

		PACKAGE_VERSION			=	0.92

[Includes]

		Include	#	Root	include	for	the	package

[LibraryClasses]

		##	@libraryclass	Platform	BDS	library	definition	about	platform

		#	specific	behavior.

		PlatformBdsLib|Include/Library/PlatformBdsLib.h

		##	@libraryclass	Generic	BDS	library	definition,	include	the	data

		#	structure	and	function.

		GenericBdsLib|Include/Library/GenericBdsLib.h

[Guids]

		#	IntelFrameworkModule	package	token	space	guid

		#	Include/Guid/IntelFrameworkModulePkgTokenSpace.h

		gEfiIntelFrameworkModulePkgTokenSpaceGuid	=	{	0xD3705011,	0xBC19,0x4af7,	{	0xBE,	0x16,	0xF6,	0x80,	0x30,	0x37,	0x8C,	0x15	}}

		##	GUID	identifies	Data	Hub	records	logged	by	Status	Code	Runtime

		#	Protocol.

		#	Include/Guid/DataHubStatusCodeRecord.h

		gEfiDataHubStatusCodeRecordGuid	=	{	0xD083E94C,	0x6560,	0x42E4,	{0xB6,	0xD4,	0x2D,	0xF7,	0x5A,	0xDF,	0x6A,	0x2A	}}

		##	GUID	indicates	the	tiano	custom	compress/decompress	algorithm.

		#	Include/Guid/TianoDecompress.h

		gTianoCustomDecompressGuid	=	{	0xA31280AD,	0x481E,	0x41B6,{	0x95,	0xE8,	0x12,	0x7F,	0x4C,	0x98,	0x47,	0x79	}}

		##	GUID	indicates	the	LZMA	custom	compress/decompress	algorithm.

		#	Include/Guid/LzmaDecompress.h

		gLzmaCustomDecompressGuid	=	{	0xEE4E5898,	0x3914,	0x4259,{	0x9D,	0x6E,	0xDC,	0x7B,	0xD7,	0x94,	0x03,	0xCF	}}

		##	Include/Guid/AcpiVariable.h

		gEfiAcpiVariableCompatiblityGuid	=	{	0xc020489e,	0x6db2,	0x4ef2,{	0x9a,	0xa5,	0xca,	0x6,	0xfc,	0x11,	0xd3,	0x6a	}}

		##	Include/Guid/LegacyBios.h

		gEfiLegacyBiosGuid	=	{	0x2E3044AC,	0x879F,	0x490F,{	0x97,	0x60,	0xBB,	0xDF,	0xAF,	0x69,	0x5F,	0x50	}}

		##	Include/Guid/LegacyDevOrder.h

		gEfiLegacyDevOrderVariableGuid	=	{	0xa56074db,	0x65fe,	0x45f7,{	0xbd,	0x21,	0x2d,	0x2b,	0xdd,	0x8e,	0x96,	0x52	}}

		##	Include/Guid/CapsuleDataFile.h

		gEfiUpdateDataFileGuid	=	{	0x283fa2ee,	0x532c,	0x484d,{	0x93,	0x83,	0x9f,	0x93,	0xb3,	0x6f,	0xb,	0x7e	}}

		##	Include/Guid/BlockIoVendor.h

		gBlockIoVendorGuid	=	{	0xcf31fac5,	0xc24e,	0x11d2,{0x85,	0xf3,	0x0,	0xa0,	0xc9,	0x3e,	0xc9,	0x3b	}}

		##	Include/Guid/BdsHii.h

		gFrontPageFormSetGuid					=	{	0x9e0c30bc,	0x3f06,	0x4ba6,{0x82,	0x88,	0x9,	0x17,	0x9b,	0x85,	0x5d,	0xbe	}}

		gBootManagerFormSetGuid			=	{	0x847bc3fe,	0xb974,	0x446d,{0x94,	0x49,	0x5a,	0xd5,	0x41,	0x2e,	0x99,	0x3b	}}

		gDeviceManagerFormSetGuid	=	{	0x3ebfa8e6,	0x511d,	0x4b5b,{0xa9,	0x5f,	0xfb,	0x38,	0x26,	0xf,	0x1c,	0x27	}}

		gDriverHealthFormSetGuid		=	{	0xf76e0a70,	0xb5ed,	0x4c38,{0xac,	0x9a,	0xe5,	0xf5,	0x4b,	0xf1,	0x6e,	0x34	}}

A.1	EDK	II	IntelFrameworkPkg	ExampleEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

73DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

		gBootMaintFormSetGuid					=	{	0x642237c7,	0x35d4,	0x472d,{0x83,	0x65,	0x12,	0xe0,	0xcc,	0xf2,	0x7a,	0x22	}}

		gFileExploreFormSetGuid			=	{	0x1f2d63e1,	0xfebd,	0x4dc7,{0x9c,	0xc5,	0xba,	0x2b,	0x1c,	0xef,	0x9c,	0x5b	}}

		##	Include/Guid/BdsLibHii.h

		gBdsLibStringPackageGuid	=	{	0x3b4d9b23,	0x95ac,	0x44f6,{0x9f,	0xcd,	0xe,	0x95,	0x94,	0x58,	0x6c,	0x72	}}

		##	Include/Guid/LastEnumLang.h

		gLastEnumLangGuid	=	{	0xe8c545b,	0xa2ee,	0x470d,{0x8e,	0x26,	0xbd,	0xa1,	0xa1,	0x3c,	0xa,	0xa3	}}

		##	Include/Guid/HdBootVariable.h

		gHdBootDevicePathVariablGuid	=	{	0xfab7e9e1,	0x39dd,	0x4f2b,{0x84,	0x8,	0xe2,	0xe,	0x90,	0x6c,	0xb6,	0xde	}}

[Protocols]

		##	Vga	Mini	port	binding	for	a	VGA	controller

		#	Include/Protocol/VgaMiniPort.h

		gEfiVgaMiniPortProtocolGuid	=	{	0xc7735a2f,	0x88f5,	0x4882,{	0xae,	0x63,	0xfa,	0xac,	0x8c,	0x8b,	0x86,	0xb3	}}

		##	ISA	I/O	Protocol	is	used	to	perform	ISA	device	Io/Mem	operations.

		#	Include/Protocol/IsaIo.h

		gEfiIsaIoProtocolGuid	=	{	0x7ee2bd44,	0x3da0,	0x11d4,{	0x9a,	0x38,	0x0,	0x90,	0x27,	0x3f,	0xc1,	0x4d	}}

		##	ISA	Acpi	Protocol	is	used	to	operate	and	communicate	with	ISA

		#	device.

		#	Include/Protocol/IsaAcpi.h

		gEfiIsaAcpiProtocolGuid	=	{	0x64a892dc,	0x5561,	0x4536,{	0x92,	0xc7,	0x79,	0x9b,	0xfc,	0x18,	0x33,	0x55	}}

		##	PS/2	policy	protocol	abstracts	the	specific	platform	initialization

		#	and	setting.

		#	Include/Protocol/Ps2Policy.h

		gEfiPs2PolicyProtocolGuid	=	{	0x4DF19259,	0xDC71,	0x4D46,{	0xBE,	0xF1,	0x35,	0x7B,	0xB5,	0x78,	0xC4,	0x18	}}

		##	OEM	Badging	Protocol	defines	the	interface	to	get	the	OEM	badging

		#	image	with	the	dispaly	attribute.

		#	Include/Protocol/OEMBadging.h

		gEfiOEMBadgingProtocolGuid	=	{	0x170E13C0,	0xBF1B,	0x4218,{	0x87,	0x1D,	0x2A,	0xBD,	0xC6,	0xF8,	0x87,	0xBC	}}

		##	Include/Protocol/ExitPmAuth.h

		gExitPmAuthProtocolGuid	=	{	0xd088a413,	0xa70,	0x4217,{	0xba,	0x55,	0x9a,	0x3c,	0xb6,	0x5c,	0x41,	0xb3	}}

#

#	[Error.gEfiIntelFrameworkModulePkgTokenSpaceGuid]

#	0x80000001	|	Invalid	value	provided.

#	0x80000002	|	Reserved	bits	must	be	set	to	zero.

#

[PcdsFeatureFlag]

		##	Indicates	if	OEM	device	is	enabled	as	StatusCode	report	device.

		#	It	is	only	used	in	Framework	StatusCode	implementation.	

		#	TRUE	-	Enable	OEM	device.

		#	FALSE	-	Disable	OEM	device.

		#	@Prompt	Report	StatusCode	via	OEM	Device.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdStatusCodeUseOEM|FALSE|BOOLEAN|0x00010024

		##	Indicates	if	StatusCode	report	is	loged	into	DataHub.

		#	TRUE	-	Log	StatusCode	report	into	DataHub.

		#	FALSE	-	Does	not	log	StatusCode	report	into	DataHub.

		#	@Prompt	Log	StatusCode	into	DataHub.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdStatusCodeUseDataHub|FALSE|BOOLEAN|0x00010029

		##	Indicates	if	Serial	device	uses	half	hand	shake.

		#	TRUE	-	Serial	device	uses	half	hand	shake.

		#	FALSE	-	Serial	device	doesn't	use	half	hand	shake.

		#	@Prompt	Enable	Serial	device	Half	Hand	Shake.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdIsaBusSerialUseHalfHandshake|FALSE|BOOLEAN|0x00010043

		##	Indicates	if	Legacy	support	is	needed	for	ACPI	S3	Save.

		#	TRUE	-	Support	Legacy	OS	with	S3	boot.

		#	FALSE	-	Does	not	support	Legacy	OS	with	S3	boot.

		#	@Prompt	Turn	on	Legacy	Support	in	S3	Boot.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdPlatformCsmSupport|TRUE|BOOLEAN|0x00010044

		##	Indicates	if	PS2	keyboard	does	a	extended	verification	during	start.

		#	Extended	verification	will	take	some	performance.	It	can	be	set	to

		#	FALSE	for	boot	performance.

		#	TRUE	-	Turn	on	PS2	keyboard	extended	verification.

		#	FALSE	-	Turn	off	PS2	keyboard	extended	verification.

		#	@Prompt	Turn	on	PS2	Keyboard	Extended	Verification.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdPs2KbdExtendedVerification|TRUE|BOOLEAN|0x00010045

		##	Indicates	if	Framework	Acpi	Support	protocol	is	installed.

		#	TRUE	-	Install	Framework	Acpi	Support	protocol.

		#	FALSE	-	Doesn't	install	Framework	Acpi	Support	protocol.

		#	@Prompt	Enable	Framework	Acpi	Support.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdInstallAcpiSupportProtocol|TRUE|BOOLEAN|0x00010046

		##	Indicates	if	PS2	mouse	does	a	extended	verification	during	start.

		#	Extended	verification	will	take	some	performance.	It	can	be	set	to

A.1	EDK	II	IntelFrameworkPkg	ExampleEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

74DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

		#	FALSE	for	boot	performance.

		#	TRUE	-	Turn	on	PS2	mouse	extended	verification.	

		#	FALSE	-	Turn	off	PS2	mouse	extended	verification.	

		#	@Prompt	Turn	on	PS2	Mouse	Extended	Verification

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdPs2MouseExtendedVerification|TRUE|BOOLEAN|0x00010047

		##	Indicates	if	only	Boot	logo	is	showed	and	all	message	output	is

		#	disabled	in	BDS.

		#	TRUE	-	Only	Boot	Logo	is	showed	in	boot.

		#	FALSE	-	All	messages	and	Boot	Logo	are	showed	in	boot.

		#	@Prompt	Enable	Boot	Logo	only.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdBootlogoOnlyEnable|FALSE|BOOLEAN|0x00010048

[PcdsFixedAtBuild,	PcdsPatchableInModule]

		##	FFS	filename	to	find	the	default	BMP	Logo	file.

		#	@Prompt	FFS	Name	of	Boot	Logo	File.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdLogoFile	|{	0x99,	0x8b,0xB2,	0x7B,	0xBB,	0x61,	0xD5,	0x11,	0x9A,	0x5D,	0x00,	0x

90,	0x27,0x3F,	0xC1,	0x4D	}|VOID*|0x40000003

		##	FFS	filename	to	find	the	shell	application.

		#	@Prompt	FFS	Name	of	Shell	Application.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdShellFile|{	0xB7,	0xD6,0x7A,	0xC5,	0x15,	0x05,	0xA8,	0x40,	0x9D,	0x21,	0x55,	0x

16,0x52,	0x85,	0x4E,	0x37	}|VOID*|0x40000004

		##	ISA	Bus	features	to	support	DMA,	SlaveDMA	and	ISA	Memory.	

		#	BIT0	indicates	if	DMA	is	supported

		#	BIT1	indicates	if	only	slave	DMA	is	supported

		#	BIT2	indicates	if	ISA	memory	is	supported

		#	Other	BITs	are	reseved	and	must	be	zero.

		#	If	more	than	one	features	are	supported,	the	different	BIT	will	be

		#	enabled	at	the	same	time.

		#	@Prompt	ISA	Bus	Features.

		#	@Expression	0x80000002	|(gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdIsaBusSupportedFeatures	&	0xF8)	==	0

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdIsaBusSupportedFeatures|0x05|UINT8|0x00010040

[PcdsDynamic,	PcdsDynamicEx]

		##	Indicates	if	the	machine	has	completed	one	boot	cycle	before.

		#	After	the	complete	boot,	BootState	will	be	set	to	FALSE.

		#	TRUE	-	The	complete	boot	cycle	has	not	happened	before.

		#	FALSE	-	The	complete	boot	cycle	has	happened	before.

		#	@Prompt	Boot	State	Flag.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdBootState|TRUE|BOOLEAN|0x0001002f

		##	Timeout	value	for	displaying	progressing	bar	in	before	boot	OS.

		#	According	to	UEFI	2.0	spec,	the	default	TimeOut	should	be	0xffff.

		#	This	PCD	should	be	set	as	HII	type	PCD	by	platform	integrator	mapped

		#	to	UEFI	global	variable	L"TimeOut".

		#	@Prompt	Boot	Timeout	(s).

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdPlatformBootTimeOut|0xffff|UINT16|0x40000001

		##	Error	level	for	hardware	recorder.

		#	If	value	0,	platform	does	not	support	feature	of	hardware	error

		#	record.

		#	This	PCD	should	be	set	as	HII	type	PCD	by	platform	integrator	mapped

		#	to	UEFI	global	variable	L"HwErrRecSupport".

		#	@Prompt	Error	Level	For	Hardware	Recorder.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdHardwareErrorRecordLevel|0|UINT16|0x40000002

[PcdsPatchableInModule,	PcdsDynamic,	PcdsDynamicEx]

		#	The	4	PCDs	below	are	used	to	specify	the	video	resolution	and	text

		#	mode	of	text	setup.

		#	To	make	text	setup	work	in	this	resolution,

		#	PcdVideoHorizontalResolution,	PcdVideoVerticalResolution,

		#	PcdConOutColumn	and	PcdConOutRow	in	MdeModulePkg.dec	should	be

		#	created	as	PcdsDynamic	or	PcdsDynamicEx

		#	in	platform	DSC	file.	Then	BDS	setup	will	update	these	PCDs	defined

		#	in	MdeModulePkg.dec	and	reconnect	console	drivers	(GraphicsConsole,

		#	Terminal,	Consplitter)	to	make	the	video	resolution	and	text	mode

		#	work	for	text	setup.

		##	Specify	the	video	horizontal	resolution	of	text	setup.

		#	@Prompt	Video	Horizontal	Resolution	of	Text	Setup.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdSetupVideoHorizontalResolution|800|UINT32|0x50000001

		##	Specify	the	video	vertical	resolution	of	text	setup.

		#	@Prompt	Video	Vertical	Resolution	of	Text	Setup.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdSetupVideoVerticalResolution|600|UINT32|0x50000002

		##	Specify	the	console	output	column	of	text	setup.

		#	@Prompt	Console	Output	Column	of	Text	Setup.

A.1	EDK	II	IntelFrameworkPkg	ExampleEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

75DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdSetupConOutColumn|80|UINT32|0x50000003

		##	Specify	the	console	output	row	of	text	setup.

		#	@Prompt	Console	Output	Row	of	Text	Setup.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdSetupConOutRow|25|UINT32|0x50000004

[PcdsFixedAtBuild,	PcdsDynamic,	PcdsDynamicEx,	PcdsPatchableInModule]

		#	I/O	Base	address	of	floppy	device	controller.

		#	@Prompt	I/O	Base	Address	of	Floppy	Device	Controller.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdFdcBaseAddress|0x3f0|UINT16|0x30000000

		##	Indicates	if	BiosVideo	driver	will	switch	to	80x25	Text	VGA	Mode

		#	when	exiting	boot	service.

		#	TRUE	-	Switch	to	Text	VGA	Mode.

		#	FALSE	-	Does	not	switch	to	Text	VGA	Mode.

		#	@Prompt	Switch	to	Text	VGA	Mode	on	UEFI	Boot.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdBiosVideoSetTextVgaModeEnable|FALSE|BOOLEAN|0x30000001

		##	Indicates	if	BiosVideo	driver	will	check	for	VESA	BIOS	Extension

		#	service	support.

		#	TRUE	-	Check	for	VESA	BIOS	Extension	service.

		#	FALSE	-	Does	not	check	for	VESA	BIOS	Extension	service.

		#	@Prompt	Enable	Check	for	VESA	BIOS	Extension	Service.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdBiosVideoCheckVbeEnable|TRUE|BOOLEAN|0x30000002

		##	Indicates	if	BiosVideo	driver	will	check	for	VGA	service	support.

		#	NOTE:	If	both	PcdBiosVideoCheckVbeEnable	and

		#	PcdBiosVideoCheckVgaEnable	are	set	to	FALSE,

		#	that	means	Graphics	Output	protocol	will	not	be	installed,	the	VGA

		#	miniport	protocol	will	be	installed	instead.

		#	TRUE	-	Check	for	VGA	service.

		#	FALSE	-	Does	not	check	for	VGA	service.

		#	@Prompt	Enable	Check	for	VGA	Service.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdBiosVideoCheckVgaEnable|TRUE|BOOLEAN|0x30000003

		##	Indicates	if	memory	space	for	legacy	region	will	be	set	as

		#	cacheable.

		#	TRUE	-	Set	cachebility	for	legacy	region.

		#	FALSE	-	Does	not	set	cachebility	for	legacy	region.

		#	@Prompt	Enable	Cachebility	for	Legacy	Region.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdLegacyBiosCacheLegacyRegion|TRUE|BOOLEAN|0x00000004

		##	Specify	memory	size	with	bytes	to	reserve	EBDA	below	640K	for	OPROM.

		##	The	value	should	be	a	multiple	of	4KB.

		#	@Prompt	Reserved	EBDA	Memory	Size.

		#	@Expression	0x80000001	|(gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdEbdaReservedMemorySize<	0xA0000)	AND((gEfiIntelFrame

workModulePkgTokenSpaceGuid.PcdEbdaReservedMemorySize&	0x1000)	==	0)

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdEbdaReservedMemorySize|0x8000|UINT32|0x30000005

		##	Specify	memory	size	with	page	number	for	a	pre-allocated	ACPI	NVS

		#	memory	to	be	used

		#	by	PEI	in	S3	phase.	The	default	size	32K.	When	changing	the	value	of

		#	this	PCD,	the	platform	developer	should	make	sure	the	memory	size	is

		#	large	enough	to	meet	PEI	requiremnt	in	S3	phase.

		#	@Prompt	Reserved	S3	Boot	ACPI	Memory	Size.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdS3AcpiReservedMemorySize|0x8000|UINT32|0x30000006

		##	Specify	memory	size	for	boot	script	executor	stack	usage	in	S3

		#	phase.

		#	The	default	size	32K.	When	changing	the	value	of	this	PCD,	the

		#	platform	developer	should	make	sure	the	memory	size	is	large	enough

		#	to	meet	boot	script	executor	requiremnt	in	S3	phase.

		#	@Prompt	Reserved	S3	Boot	Script	Stack	ACPI	Memory	Size.

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdS3BootScriptStackSize|0x8000|UINT32|0x30000007

		##	Specify	the	end	of	address	below	1MB	for	the	OPROM.

		#	The	last	shadowed	OpROM	should	not	exceed	this	address.

		#	@Prompt	Top	Address	of	Shadowed	Legacy	OpROM.

		#	@Expression	0x80000001	|gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdEndOpromShadowAddress<	0x100000

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdEndOpromShadowAddress|0xdffff|UINT32|0x30000008

		##	Specify	the	low	PMM	(Post	Memory	Manager)	size	with	bytes	below	1MB.

		#	The	value	should	be	a	multiple	of	4KB.

		#	@Prompt	Low	PMM	(Post	Memory	Manager)	Size.

		#	@Expression	0x80000001	|(gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdLowPmmMemorySize	<

		0x100000)	AND((gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdLowPmmMemorySize	&0x1000)	=	=	0)

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdLowPmmMemorySize|0x10000|UINT32|0x30000009

		##	Specify	the	high	PMM	(Post	Memory	Manager)	size	with	bytes	above	1MB.

		#	The	value	should	be	a	multiple	of	4KB.

		#	@Prompt	High	PMM	(Post	Memory	Manager)	Size.

		#	@Expression	0x80000001	|(gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdHighPmmMemorySize	&0x1000)	==	0

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdHighPmmMemorySize|0x400000|UINT32|0x3000000a

A.1	EDK	II	IntelFrameworkPkg	ExampleEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

76DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

A.1	EDK	II	IntelFrameworkPkg	ExampleEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

77DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

A.2	EDK	II	EmulatorPkg	Example

##	@file

#

#	This	is	the	Emu	Emulation	Environment	Platform

#

#	Copyright	(c)	2008	-	2016,	Intel	Corporation.	All	rights	reserved.

#	Portions	copyright	(c)	2011,	Apple	Inc.	All	rights	reserved.

#

#	This	program	and	the	accompanying	materials	are	licensed	and	made

#	available	under	the	terms	and	conditions	of	the	BSD	License	which

#	accompanies	this	distribution.

#	The	full	text	of	the	license	may	be	found	at

#	http://opensource.org/licenses/bsd-license.php

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR

#	IMPLIED.

#

##

[Defines]

		DEC_SPECIFICATION	=	0x00010019

		PACKAGE_NAME						=	EmulatorPkg

		PACKAGE_GUID						=	36E48BD7-7D92-5A47-A2CD-513F072E3300

		PACKAGE_VERSION			=	0.1

[Includes]

		Include

[LibraryClasses]

		ThunkPpiList|Include/Library/ThunkPpiList.h

		ThunkProtocolList|Include/Library/ThunkProtocolList.h

		EmuThunkLib|Include/Library/EmuThunkLib.h

		KeyMap|Include/Library/KeyMapLib.h

		PpiListLib|Include/Library/PpiListLib.h

		SmbiosLib|Include/Library/SmbiosLib.h

[Protocols]

		gEmuThunkProtocolGuid										=	{	0x5CF32E0B,	0x8EDF,	0x2E44,{	0x9C,	0xDA,	0x93,	0x20,	0x5E,	0x99,	0xEC,	0x1C	}	}

		gEmuIoThunkProtocolGuid								=	{	0x453368F6,	0x7C85,	0x434A,{	0xA9,	0x8A,	0x72,	0xD1,	0xB7,	0xFF,	0xA9,	0x26	}	}

		gEmuGraphicsWindowProtocolGuid	=	{	0x30FD316A,	0x6728,	0x2E41,{	0xA6,	0x90,	0x0D,	0x13,	0x33,	0xD8,	0xCA,	0xC1	}	}

		gEmuThreadThunkProtocolGuid				=	{	0x3B1E4B7C,	0x09D8,	0x944F,{	0xA4,	0x08,	0x13,	0x09,	0xEB,	0x8B,	0x44,	0x27	}	}

		gEmuBlockIoProtocolGuid								=	{	0x6888A4AE,	0xAFCE,	0xE84B,{	0x91,	0x02,	0xF7,	0xB9,	0xDA,	0xE6,	0xA0,	0x30	}	}

		gEmuSnpProtocolGuid												=	{	0xFD5FBE54,	0x8C35,	0xB345,{	0x8A,	0x0F,	0x7A,	0xC8,	0xA5,	0xFD,	0x05,	0x21	}	}

[Ppis]

		gEmuThunkPpiGuid	=	{	0xE113F896,	0x75CF,	0xF640,{	0x81,	0x7F,	0xC8,	0x5A,	0x79,	0xE8,	0xAE,	0x67	}	}

[Guids]

		gEmulatorPkgTokenSpaceGuid	=	{	0x4F792E68,	0xE8C8,	0x794E,	{	0xB1,0xD8,	0x37,	0x03,	0xF3,	0xF2,	0xD5,	0xA5	}	}

		gEmuSystemConfigGuid							=	{	0xF8626165,	0x6CEB,	0x924A,	{	0xBA,0xFC,	0xF1,	0x3A,	0xB9,	0xD6,	0x57,	0x28	}	}

		gEmuVirtualDisksGuid							=	{	0xf2ba331a,	0x8985,	0x11db,	{	0xa4,0x06,	0x00,	0x40,	0xd0,	0x2b,	0x18,	0x35	}	}

		gEmuPhysicalDisksGuid						=	{	0xf2bdcc96,	0x8985,	0x11db,	{	0x87,0x19,	0x00,	0x40,	0xd0,	0x2b,	0x18,	0x35	}	}

[PcdsFeatureFlag]

		##	If	TRUE,	if	symbols	only	load	on	breakpoints	and	gdb	entry

		gEmulatorPkgTokenSpaceGuid.PcdEmulatorLazyLoadSymbols|TRUE|BOOLEAN|0x00020000

[PcdsFixedAtBuild]

		gEmulatorPkgTokenSpaceGuid.PcdEmuFlashNvStorageVariableBase|0x0|UINT64|0x00001014

		gEmulatorPkgTokenSpaceGuid.PcdEmuFlashNvStorageFtwSpareBase|0x0|UINT64|0x00001015

		gEmulatorPkgTokenSpaceGuid.PcdEmuFlashNvStorageFtwWorkingBase|0x0|UINT64|0x00001016

		gEmulatorPkgTokenSpaceGuid.PcdEmuFdBaseAddress|0x0|UINT64|0x00001017

		gEmulatorPkgTokenSpaceGuid.PcdEmuFlashNvStorageEventLogBase|0x0|UINT64|0x0000100e

		gEmulatorPkgTokenSpaceGuid.PcdEmuFlashNvStorageEventLogSize|0x0|UINT32|0x0000100f

		gEmulatorPkgTokenSpaceGuid.PcdEmuFlashFvRecoveryBase|0x0|UINT64|0x00001010

		gEmulatorPkgTokenSpaceGuid.PcdEmuFlashFvRecoverySize|0x0|UINT32|0x00001011

		gEmulatorPkgTokenSpaceGuid.PcdEmuFirmwareFdSize|0x0|UINT32|0x00001012

		gEmulatorPkgTokenSpaceGuid.PcdEmuFirmwareBlockSize|0|UINT32|0x00001013

A.2	EDK	II	EmulatorPkg	ExampleEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

78DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

		##	Number	of	Application	Processors	(APs)	in	the	system	0	means

		#	Uniprocessor	mode

		gEmulatorPkgTokenSpaceGuid.PcdEmuApCount|L"0"|VOID*|0x00001019

		##	Magic	page	to	implement	PEI	Services	Table	Pointer	Lib

		gEmulatorPkgTokenSpaceGuid.PcdPeiServicesTablePage|0x1003000000|UINT64|0x0000101b

		##	Size	of	the	packet	filter

		gEmulatorPkgTokenSpaceGuid.PcdNetworkPacketFilterSize|524288|UINT32|0x0000101c

[PcdsFixedAtBuild,	PcdsPatchableInModule]

		gEmulatorPkgTokenSpaceGuid.PcdEmuBootMode|1|UINT32|0x00001006

		gEmulatorPkgTokenSpaceGuid.PcdEmuFirmwareVolume|L"..FvFv_Recovery.fd"|VOID*|0x00001009

		gEmulatorPkgTokenSpaceGuid.PcdEmuMemorySize|L"64!64"|VOID*|0x0000100c

		#

		#	filename[:[R|F][O|W]][:BlockSize]

		#	filename	can	be	a	device	node,	like	/dev/disk1

		#	R	-	Removable	Media	F	-	Fixed	Media

		#	O	-	Write	protected	W	-	Writable

		#	Default	is	Fixed	Media,	Writable

		#	For	a	file	the	default	BlockSize	is	512,	and	can	be	overridden	via

		#	BlockSize,	for	example	2048	for	an	ISO	CD	image.	The	block	size	for	a

		#	device	comes	from	the	device	and	is	not	configurable.

		#	Device	Size	comes	from	file	or	device.

		#	On	Mac	OS	X	you	can	use	Disk	Utility	to	create	.dmg	files	and	mount

		#	them	like	disks

		gEmulatorPkgTokenSpaceGuid.PcdEmuVirtualDisk|L"disk.dmg:FW"|VOID*|0x00001001

		gEmulatorPkgTokenSpaceGuid.PcdEmuGop|L"GOP	Window"|VOID*|0x00001018

		gEmulatorPkgTokenSpaceGuid.PcdEmuFileSystem|L".!../../../../../EdkShellBinPkg/bin/ia32/Apps"|VOID*|0x00001004

		gEmulatorPkgTokenSpaceGuid.PcdEmuSerialPort|L"/dev/ttyS0"|VOID*|0x00001002

		gEmulatorPkgTokenSpaceGuid.PcdEmuNetworkInterface|L"en0"|VOID*|0x0000100d

		gEmulatorPkgTokenSpaceGuid.PcdEmuCpuModel|L"Intel(R)	Processor	Model"|VOID*|0x00001007

		gEmulatorPkgTokenSpaceGuid.PcdEmuCpuSpeed|L"3000"|VOID*|0x00001008

		gEmulatorPkgTokenSpaceGuid.PcdEmuMpServicesPollingInterval|0x100|UINT64|0x0000101a

A.2	EDK	II	EmulatorPkg	ExampleEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

79DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

A.3	ShellBinPkg.dec
The	following	is	an	example	of	a	DEC	file	where	only	binary	modules	are	provided;	no	libraries	or	source
code	is	present	in	the	package's	directory	tree.

##	@file

#	UEFI	2.0	Shell	Binary	Package

#

#	This	package	contains	binary	shell	application	that	follows

#	UEFI	specification	and	UEFI	Shell	2.0	specification.

#

#	Copyright	(c)	2011	-	2016,	Intel	Corporation.	All	rights	reserved.

#

#	This	program	and	the	accompanying	materials	are	licensed	and	made

#	available	under	the	terms	and	conditions	of	the	BSD	License	which

#	accompanies	this	distribution.

#	The	full	text	of	the	license	may	be	found	at:

#	http://opensource.org/licenses/bsd-license.php

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"

#	BASIS,	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER

#	EXPRESS	OR	IMPLIED.

#

##

[Defines]

		DEC_SPECIFICATION	=	0x00010019

		PACKAGE_NAME						=	ShellBinPkg

		PACKAGE_GUID						=	4B34AD9D-1324-41e5-8B1D-359AA7BCA62C

		PACKAGE_VERSION			=	0.1

A.3	ShellBinPkg.decEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

80DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

A.4	UefiCpuPkg.dec

###	@file	UefiCpuPkg.dec

#	This	Package	provides	UEFI	compatible	CPU	modules	and	libraries.

#

#	Copyright	(c)	2007	-	2016,	Intel	Corporation.	All	rights	reserved.

#

#	This	program	and	the	accompanying	materials	are	licensed	and	made

#	available	under	the	terms	and	conditions	of	the	BSD	License	which

#	accompanies	this	distribution.

#	The	full	text	of	the	license	may	be	found	at:

#	http://opensource.org/licenses/bsd-license.php

#

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR

#	IMPLIED.

#

##

[Defines]

		DEC_SPECIFICATION	=	0x00010019

		PACKAGE_NAME						=	UefiCpuPkg

		PACKAGE_UNI_FILE		=	UefiCpuPkg.uni

		PACKAGE_GUID						=	2171df9b-0d39-45aa-ac37-2de190010d23

		PACKAGE_VERSION			=	0.2

[Includes]

		Include

[LibraryClasses]

		##	@libraryclass	Defines	some	routines	that	are	generic	for	IA32

		#	family	CPU	to	be	UEFI	specification	compliant.

		##

		UefiCpuLib|Include/Library/UefiCpuLib.h

[LibraryClasses.IA32,	LibraryClasses.X64]

		##	@libraryclass	Provides	functions	to	manage	MTRR	settings	on	IA32

		#	and	X64	CPUs.

		##

		MtrrLib|Include/Library/MtrrLib.h

		##	@libraryclass	Provides	functions	to	manage	the	Local	APIC	on	IA32

		#	and	X64	CPUs.

		##

		LocalApicLib|Include/Library/LocalApicLib.h

[Guids]

		gUefiCpuPkgTokenSpaceGuid	=	{	0xac05bf33,	0x995a,	0x4ed4,{	0xaa,	0xb8,	0xef,	0x7a,	0xe8,	0xf,	0x5c,	0xb0	}}

#

#	[Error.gUefiCpuPkgTokenSpaceGuid]

#	0x80000001	|	Invalid	value	provided.

#

[PcdsFixedAtBuild,	PcdsPatchableInModule]

		##	This	value	is	the	CPU	Local	Apic	base	address,	which	aligns	the

		#	address	on	a	4-KByte	boundary.

		#	@Prompt	Configure	base	address	of	CPU	Local	Apic

		#	@Expression	0x80000001	|(gUefiCpuPkgTokenSpaceGuid.PcdCpuLocalApicBaseAddress	&	0xfff)	==	0

		gUefiCpuPkgTokenSpaceGuid.PcdCpuLocalApicBaseAddress|0xfee00000|UINT32|0x00000001

A.4	UefiCpuPkg.decEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

81DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

APPENDIX	B	EDK	II	MODULE	TYPES
Table	2	EDK	II	Module	Types

MODULE_TYPE
Supported
Architecture

Types
Description

BASE Any
Modules	or	Libraries	can	be	ported	to	any	execution
environment.	This	module	type	is	intended	to	be	used
by	silicon	module	developers	to	produce	source	code
that	is	not	tied	to	any	specific	execution	environment.

SEC Any
Modules	of	this	type	are	designed	to	start	execution	at
the	reset	vector	of	a	CPU.	They	are	responsible	for
preparing	the	platform	for	the	PEI	phase.

PEI_CORE Any This	module	type	is	used	by	PEI	Core	implementations
that	are	compliant	with	the	PI	Specification.

PEIM Any This	module	type	is	used	by	PEIMs	that	are	compliant
with	PI	Specification.

DXE_CORE Any This	module	type	is	used	by	DXE	Core	implementations
that	are	compliant	with	the	PI	Specification.

DXE_DRIVER Any This	module	type	is	used	by	DXE	Drivers	that	are
compliant	with	the	PI	Specification.

DXE_RUNTIME_DRIVER Any
This	module	type	is	used	by	DXE	Drivers	that	are
compliant	to	the	PI	Specification.	These	modules
execute	in	both	boot	services	and	runtime	services
environments.

DXE_SAL_DRIVER IPF

This	module	type	is	used	by	DXE	Drivers	that	can	be
called	in	physical	mode	before	SetVirtualAddressMap()
is	called	and	either	physical	mode	or	virtual	mode	after
SetVirtualAddressMap()	has	been	called.	This	module
type	is	only	available	for	IPF	processor	types.

DXE_SMM_DRIVER IA32,	X64 This	module	type	is	used	by	DXE	Drivers	that	are	loaded
into	SMRAM.

SMM_CORE Any This	is	the	SMM	core.

UEFI_DRIVER Any
This	module	type	is	used	by	UEFI	Drivers	that	are
compliant	with	the	EFI	1.10	and	UEFI	specifications.
These	modules	provide	services	in	the	boot	services
execution	environment.	UEFI	Drivers	that	return

EFI_SUCCESS	are	not	unloaded	from	memory.	UEFI
Drivers	that	return	an	error	are	unloaded	from	memory.

UEFI_APPLICATION Any
This	module	type	is	used	by	UEFI	Applications	that	are
compliant	with	the	EFI	1.10	and	EFI	2.0	specifications.
UEFI	Applications	are	always	unloaded	when	they	exit.

HOST_APPLICATION Any This	module	type	is	used	by	building	executable
program	that	can	directly	run	in	OS	environment.

Appendix	B	EDK	II	Module	TypesEDK	II	Package	Declaration	(DEC)	File	Format	Specification[DRAFT]

82DRAFT	FOR	REVIEW	[04/30/2025	11:47:16]

	EDK II Package Declaration (DEC) File Format Specification
	1 Introduction
	1.1 Overview
	1.2 Terms
	1.3 Related Information
	1.4 Target Audience
	1.5 Conventions Used in this Document

	2 DEC File Overview
	2.1 Usage Overview
	2.2 Declaration File Format
	2.3 EDK II DEC Format
	2.4 [Defines] Usage
	2.5 [Includes] Usage
	2.6 [Guids] Usage
	2.7 [Protocols] Usage
	2.8 [Ppis] Usage
	2.9 [LibraryClasses] Usage
	2.10 PCD Usage
	2.11 [UserExtensions] Usage

	3 EDK II DEC File Format
	3.1 General Rules
	3.2 Package Declaration (DEC) Definitions
	3.3 Header Comment Section
	3.4 [Defines] Section
	3.5 [Includes] Sections
	3.6 [Guids] Sections
	3.7 [Protocols] Sections
	3.8 [PPIs] Sections
	3.9 [LibraryClasses] Sections
	3.10 PCD Sections
	3.11 [UserExtensions] Sections

	Appendix A DEC Examples
	A.1 EDK II IntelFrameworkPkg Example
	A.2 EDK II EmulatorPkg Example
	A.3 ShellBinPkg.dec
	A.4 UefiCpuPkg.dec

	Appendix B EDK II Module Types

