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Chapter 1

The impredicativity of
induction

The induction principle is this: if a property holds for 0, and if whenever
it holds for a number n it also holds for n + 1, then the property holds for
all numbers. For example, let §(n) be the property that there exists a
number m such that 2-m = n - (n + 1). Then 6(0) (let m = 0). Suppose
2-m=n-(n+1). Then2-(m+n+1)=(n+1) ((n+1)+1), and thus if
6(n) then 6(n + 1). The induction principle allows us to conclude 8(n) for
all numbers n. As a second example, let 7(r) be the property that there
exists a non-zero number m that is divisible by all numbers from 1 to n.
Then 7(0) (let m = 1). Suppose m is a non-zero number that is divisible
by all numbers from 1 to n. Then m - (n + 1) is a non-zero number that is
divisible by all numbers from 1 to n + 1, and thus if 7(n) then n(n + 1).
The induction principle would allow us to conclude n(n) for all numbers n.

The reason for mistrusting the induction principle is that it involves an
impredicative concept of number. It is not correct to argue that induction
only involves the numbers from 0 to n; the property of n being established
may be a formula with bound variables that are thought of as ranging over
all numbers. That is, the induction principle assumes that the natural
number system is given. A number is conceived to be an object satisfy-
ing every inductive formula; for a particular inductive formula, therefore,
the bound variables are conceived to range over objects satisfying every



2 1. THE IMPREDICATIVITY OF INDUCTION

inductive formula, including the one in question.

In the first example, at least one can say in advance how big is the
number m whose existence is asserted by 6(n): it is no bigger than n-(n+1).
This induction is bounded, and one can hope that a predicative treatment
of numbers can be constructed that yields the result #(n). In the second
example, the number m whose existence is asserted by w(n) cannot be
bounded in terms of the data of the problem.

It appears to be universally taken for granted by mathematicians, what-
ever their views on foundational questions may be, that the impredicativity
inherent in the induction principle is harmless—that there is a concept of
number given in advance of all mathematical constructions, that discourse
within the domain of numbers is meaningful. But numbers are symbolic
constructions; a construction does not exist until it is made; when some-
thing new is made, it is something new and not a selection from a pre-
existing collection. There is no map of the world because the world is
coming into being.

Let us explore the possibility of developing arithmetic predicatively.



Chapter 2

Logical terminology

I tried several times to write a brief, clear summary of the logical ter-
minology that will be used in this investigation, but it always came out
long and muddy. Instead, I refer the reader to the beautiful exposition in
Shoenfield’s book [Sh], especially the first four chapters. Our logical ter-
minology and notation are those of [Sh] except for some departures and
additions that will be indicated.

Lower case italic letters, possibly with 0, 1, ... as a subscript, are vari-
ables. The order a,b,...,z2,a9,bp,...,20,a1,... of the variables is called
alphabetical order. Roman letters are used as in [Sh] as syntactical vari-
ables when talking about expressions.

We define A,[a] as follows: if no variable occurring in the term a occurs
bound in the formula A, substitute a for each free occurrence of the vari-
able x in A; otherwise let x;,...,x, be in alphabetical order the variables
that occur in a and occur bound in A, let v;,...,y, be in alphabetical
order the first v variables distinct from all variables occurring i-. A or a,
substitute y, for each bound occurrence of x, in A for all 4 from 1 to v,
and then substitute a for each free occurrence of x. For example, if A is

Vevy (z+y)+z=z+ (y + 2),

then A,[0] is VzVy (£ +y) +0 = z+ (y+0) and A,[z] is VaVy (a+y)+z =
a+ (y + z). We write

Ay, xla1...a,] for Ay fai]...x, (2]
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We make the following abbreviations, in addition to those of [Sh]. If
P1,- .-, P, are binary predicate symbols, we write

agp1d; - ..a,_1Pya, for appiay & --- & a,_1p,a,,

asinz=y=zforz=y & y =2z We follow [Sh] is associating Vv, &, and
— from right to left, and letting vV and & take precedence over — and «
in restoring parentheses, so that

Ay—---— A, 1 — A
is equivalent to
A& - &A1 A,
but we adopt the convention that
Ajo - A 1 A
is an abbreviation for
(A= A) & - & (A,-1+ A)).

If Ais Ay — Ay, we write hypA for A; and conA for A;. If Ais Ay « A,,
we write lhsA for A; and rhsA for A;. We write

3IxA for Ix(A & Vy(Axly] — v =x)),

where y is the first variable in alphabetical order distinct from x and all

variables occurring in A. If all bound occurrences of x in A occur in the

part 3xB, we write scopes, A for B, and similarly with 3 replaced by 3! or V.
We write the defining axiom of a function symbol f as

fX;..x, =y—D

(instead of y = fx;...x, < D as in [Sh,§4.6]). Sometimes we write it in the
form

fX;...x, =y < A, otherwise y =e
where e is a constant. This is an abbreviation for

fX)...x, =y o AV (-IyA &y =e).
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Then the existence condition is trivial, but the uniqueness condition still
has to be verified. Also, we sometimes adjoin a new function symbol f by
writing

fx;...x, = a

where a is a term containing no variable other than x;,...,x,; the defining
axiom is understood to be

fxX;...x, =y y=a

where y is the first variable in alphabetical order distinct from x,,...,x,.

A formula will be called unary in case one and only one variable occurs
free in it. If C is unary and x is the variable occurring free in it, we write
Cla] for Cy|a]. Let C be a unary formula. Then we write A¢ for the formula
obtained by replacing each part of A of the form 3yB by Jy(Cly| & B). (We
follow [Sh] in regarding Vy as an abbreviation for ~3y—; if one chooses not
to eliminate the defined symbol V, then an equivalent formula is obtained if
in addition one replaces each part of A of the form VyB by Vy(C|y] — B).)
Let x;,...,%, be in alphabetical order the variables occurring free in A;
then we write

C(freeA) for Clx;} & --- & Clx,|.

If A is closed, then C(freeA) is the empty expression; we make the conven-
tion that if A is closed, then all occurrences of “C(freeA)” together with
attendant logical connectives are to be deleted. (In general, I will not worry
about the distinction between use and mention, but in this case I use quo-
tation marks lest the reader be puzzled as to how to go about deleting the
empty expression.) We write

A® for C(freeA) — Ag

and call A the relativization of A by C.
Let C be a unary formula of a theory T. For f a v-ary function symbol,
we say that C respects f in case

Fr Clzy] — -+ — Clz,] — Clfzy...1,].
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We say that C respects A in case Fr AC. We say that C is tnductive in
case C respects 0 and S (assuming T to contain the constant O and the
unary function symbol S), so that C is inductive if and only if

Fr C[0] & (C|z] — C|Sz])

(or, equivalently, if and only if -1 C[0] & Vz(C[z] — C[Sz])). We say that C
is hereditary in case

Fr Clz] & y < z — Cly]

(assuming T to contain the binary predicate symbol <). If C' is also unary,
we say that C' is stronger than C in case

Fr C'lz] — Clz].

If x occurs free in A and y;,...,y, are in alphabetical order the variables
distinct from x that occur free in A, we write

A for Vy;---Vy,A,

and we say that A in inductive in x in case A, is inductive. If p is a unary
predicate sumbol, we say that p is inductive, etc., in case the formula p(z)
is inductive, etc.

The definitions in the preceding paragraph are all relative to the the-
ory T. If T is not clear from the context, we add in T.

We write

indxA for A,[0] & Vx(A — A,[Sx]).

An induction formula is a formula of the form ind, A — A.

We write T[B,,..., B, for the theory obtained by adjoining to the lan-
guage of T all of the new nonlogical symbols in By, ...,B, and then adjoin-
ing B;...., B, as nonlogical axioms.

Let C be a unary formula of the theory T. We say that C respects T
in case C respects every function symbol and nonlogical axiom of T and
Fr JzClz). This last condition follows from the first if T contains a con-
stant (0-ary function symbol) e, for then 1 Cle]. Let C respect T, let U
be the extension by definitions of T obtained by adjoining the unary pred-
icate symbol U with defining axiom Ujz < C|z|, and let u; be u for each
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nonlogical sumbol u of T. Then we have an interpretation (see [Sh,§4.7]) of
T in U, which we call the interpretation associated with C.

We write (£), where ¢ is some label, as an abbreviation for the formula
with that label, and we do not hesitate to treat it as a formula. For example,
the formula with label 3.4 will be found in Chapter 3; it is £+ Sy = S(z+y),
so (3.4),]0] is £ + SO = S(z + 0).

When we introduce a hypothesis in a proof we use the word suppose,
and the discharge of the hypothesis is indicated by the word thus. (Suppose
we adopt this convention (suppose, that is, that in proofs we use these two
words (suppose and thus) in the manner indicated, and only thus). Then
these two words (suppose and thus) function much as parentheses (suppose
playing the role of the left parenthesis, with the role of the right parenthesis
being played by thus). We hope to achieve clarity thus.)

As is customary in mathematics, we use letters—for the purposes of this
paragraph, a letter is an italic lower case letter possibly with 0,1, ... as a
subscript—sometimes as variables and, in the course of a proof, sometimes
as constants, and a single letter may play both roles in a given proof. When
we have proved 3x, --- 3%, A, we indicate the introduction of constants (see
the discussion of special constants in [Sh,§4.2]) by writing

there exist x;, ..., and x, such that A

(with the appropriate change in grammar or punctuation when v is 1 or 2).
We write

let x; = ag,...,X, = a,
instead of
there exist Xy, ..., and x, such that x; =a; & --- & x, = a,.

A numeral 1s an expression of the form S---S0. We use n, possibly with
a subscript, as a syntactical variable for numerals, and o is an abbreviation
for the numeral with v occurrences of S.



Chapter 3

The axioms of arithmetic

By Peano Arithmetic we mean the theory I whose nonlogical s'yrnbols
are the constant 0, the unary function symbol S (successor), and the binary
function symbols + and -, and whose nonlogical axioms are

3.1 Az. Sz # 0,

32 Az. Sx =Sy -z =y,
33 Az. 2 + 0 = z,

3.4 Az. z+ Sy = S(z + y),
3.5 Az. -0 =0,

36 Az. x-Sy =2z-y + r,

and all induction formulas in the language of /. We have adopted the usual
convention that - takes predecence over + in restoring parentheses, so that
(3.6) is an abbreviation for z-Sy = (z - y) + z.

If we simply drop the induction formulas as axioms, then the resulting
theory is too weak to be of much arithmetical interest; a model-theoretic
argument to this effect is given by Mostowski, Robinson, and Tarski in
IMRT,pp.62-64].

Robinson’s theory (see [Ro]) is the theory @ with the language of I
whose nonlogical axioms are (3.1)-(3.6) and the following formula (which
is a theorem of I since it is easily proved by induction):

R. z#0—-3JySy==z.
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This beautiful and much studied theory is in a sense a minimal axiomati-
zation of arithmetic. We will work only in theories that are interpretable

in Q.

It will be convenient to reformulate @ as an open theory. The formula
37A2z. Pr=y—Sy=zv(z=0&y=0)

is the defining axiom of a unary function symbol P (predecessor) that can
be adjoined to Q; the existence condition holds by (R) and the uniqueness
condition holds by (3.2). Let Qo be the theory whose nonlogical symbols
are those of ) together with P and whose nonlogical axioms are (3.1)-(3.7);
then {R)} is a theorem, but not an axiom, of Qq.

To get to the main point more quickly, let us at first adjoin the associa-
tive, distributive, and commutative laws:

38 Az. (z+y)+z=z+ (y+ 2),
39Az. z-(y+z)=z-y+z-2,
310 Az. (z-y)-z=z-(y-2),
3.11 Az. z+y =y +z,

312 Az. z-y =y z.

Let @1 be Qo with (3.8)-(3.12) as additional axioms. Later we will inves-
tigate how to avoid assuming these as axioms.



Chapter 4

Order

The following formula is the defining axiom of a binary predicate symbol
that we adjoin to Q;:

41 Def. <y Fzz+2=1y.
Call the resulting theory Q]. In this chapter we prove a few simple theorems
in Q).
4.2 Thm. 0 <z <z <8Sr.
Proof. We have 0 + r = z by (3.3) and (3.11}, so 0 < z. We have

z+0=1zby (3.3),s0z < z,and z+ S0 = S(z+0) = Sz by (3.4) and (3.3),
so x < Sz.

43 Thm z<0-—-z2=0.

Proof. Suppose r < 0. Then there exists z such that £+ z = 0. Suppose
z =0. Then z = 0 by (3.3) and thus z = 0 — z = 0, so suppose z # 0.
Then SPz = z by (3.7), so that z + SPz = 0, and S(z + Pz) = 0 by (3.4),
which is impossible by (3.1). Thus z = 0 and z = 0, and thus (4.3).

44 Thm. y<Sre—y<zVvy=Sz.

Proof. Suppose y < z. Then there exists z such that y + z = z, and by
(3.4) we get y+Sz = S(y+ 2) = Sz, and so y < Sz. Thusy <z — y < Sz.
Suppose y = Sz. Then y < Sz by (4.2) and thus rhs(4.4) — lhs(4.4).
Conversely, suppose y < Sz, so that there exists z such that y + z = Sxz.
Then z = 0 — y = Sz by (3.3}, so suppose z # 0. Then SPz = z by (3.7)

10
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and so y + SPz = Sz. By (3.4), S(y + Pz) = Sz and then y + P2 = z by
(3.2), so that y < z. Thus 2 # 0 —» y < z, and thus (4.4).

4.5 Thm r<y & y<z—oz <z

Proof. Suppose hyp(4.5). Then there exist u and v such that z + u =
y&y+v==z Thenz=(z+u)+v=2z+(u+v)by(3.8),andso z <z
Thus (4.5).

4.6 Thm. Pz < 1.

Proof. We have PO < 0 by (3.7) and (4.2}, so suppose £ # 0. Then
z = 8Pz = SPz+ 0 =0+ SPz = S(0 + Pz) = S(Pz +0) = Pz + S0 by
(3.7), (3.3), (3.11), and (3.4), so that Pz < z. Thus (4.6).

4.7 Thm. r<y—z+z<z+y.

Proof. Suppose z < y. Then there exists v such that z + u
Therefore (2 + ) + v = z + (z + u) = z + y by (3.8), and thus (4.7).

I
=

48 Thm. z<y—-z-z<z-y.

Proof. Suppose £ < y. Then there exists u such that z + u = y.
Therefore z-z+ 2-u =2-(z+u) = z-y by (3.9), and thus (4.8).



Chapter 5

Induction by relativization

Let C be a unary formula. We use the following abbreviations:
C! for Vy(y <z — Cly]),
C? for Vy(C'ly] — Cl'y + z]),
C? for Vy(C?y] — Cz[!; - z]).

Then C!, C%, and C2 are unary formulas with free variable z. We will show
that if C is inductive, then C® is stronger than C, is hereditary, and is not
only inductive but respects P, +, -, and the defining axiom of <. This
relativization scheme is due to R. Solovay; see [PD] and [Pu].

Metatheorem 5.1 Let T be an eztension of Q) (possibly Q) itself), and
let C be a unary formula of T. Then the following is a theorem of T:

REL. C|0] & Vz(C[z] — C|[Sz]) —
(Cla] - Cla) &
(CPlz] & u<z— Cul) &
C3o] &
(CYlz] - C¥[sq]) &
(CYla] —» C¥[Pa) &
(Clar] & Clas] — Clas + z3]) &
(CS[II] & 03[12] s Cs[Il . 152]) &
(C3lz] & C3ly] — (z < y « 32(C¥z] & z+ z = y))).

12
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Demonstration. We prove (REL) in T as follows. Suppose hyp(REL).
Then we claim:
Cl(z] — Cla],
C’[o},
C!|z] — CY{Sz],
Clz] & u < z — Cuj;

A e

C[z] — CY[z],

C?(0],

C?[z] — C?[S),

C?[z] & u < z — C?[u),

C?[zy] & C?|zy] — C¥zy + z5);

©PNRo o

10. C3[z] — C*[z],

11. C®[0},

12. C3z] — C3[Sz],

13. C?¥z] & u <z — C3[u],

14. CSIII] & Cs[xz} — CS[II + 1:2],
15. C%[z,y] & C3[z,] — C3(z; - z4].

Suppose C![z]. By (4.2) we have C[z], and thus (1). Suppose y < 0.
Then y = 0 by (4.3), so that C[y] and thus (2). Suppose C![z] & y < Sz.
By (4.4), y < zVy = Sz. But y < z — C[y, so suppose y = Sz. By (1)
we have C[z] and so C[Sz], i.e. Cly]. Thus C[y], and thus (3). Suppose
Cllz) & v < z & y < u. Then y < z by (4.5), and so C[y]. Thus (4).

Suppose CZ[z]. By (2) we have C'[0 + z], but 0 + z = z by (3.11)
and (3.3), so that C!|z], and thus (5). We have (6) by (3.3). Suppose
C?|z] & C'|y]. Then C'[y + z|, and so C'[S(y + z)] by (3). But S(y + z) =
y+Sz by (3.4), and so C!{y+Sz]. Thus (7). Suppose C*z] & u < z & C!ly].
Then y+u < y+z by (4.7), so that C![y+u] by (4), and thus (8). Suppose
C?z;] & C?|z;] & C'|y|. By (3.8), y+(z1+22) = (y+z1) + 22, but we have
Clly + z)] and therefore C*|(y + z1) + Z2}, i.e. C'[y + (z; + z3)]. Thus (9).

Suppose C3|z]. We have C?|SO] by (6) and (7), and hence C?|SO - z].
But SO-z2 =z-80=z-04+z =042z =z+0 = z by (3.12), (3.6),
(3.5), (3.11), and (3.3), so that C*|z] and thus (10). We have (11) by (3.5)
and (6). Suppose C*z] & C*[y]. By (3.6), y-Sz = y-z +y. We have
C?ly - z], so (9) yields C*ly- z + y], i.e. C*|y - Sz], and thus (12). Suppose
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C3lz] & u < z & C?*[y|. Then y-u < y-z by (4.8). We have C?y - z], so
C?|y - u] by (8), and thus (13). Suppose C3|z,] & C*|z,] & C¥[y]. By (3.9),
y-(z1+12) =y 271 +y-z;. We have C?|y- ;] and C¥y - z,], so by (9) we
obtain C%ly - z1 + y - 72}, i.e. C*[y- (1 + z2)], and thus (14). Again suppose
C3|z;1] & C3[z;] & C?[y]. We have C%[y - z,] and therefore C?*|(y - z,) - ;).
But (y-z,)zs = y-(z1- ) by (3.10), so that C*[y-(z; - z,)], and thus (15).

By (10), (5), and (1) we have C3[z] — C[z]. By (4.6) and (13) we
have C®[z] — C*[Pz|. Finally, suppose C3[z] & C3*[y]. It is trivial that
32(C32] & £+ z = y) — = < y, so suppose z < y. Then there exists z such
that z+ 2z = y. By (3.11), z+ z = y, so z < y and by (13) we obtain C3(z|.
Thus z <y « 3z(C3z] & + z = y), and thus C3[z] & C¥[y] = (z <y <
(2l & z+2=y)). O

If we regard the concept of number as being in need of clarification,
then we can seek to clarify the concept by formalizing it. We can do this,
for example, by postulating the simple algorithmic properties (3.1)-(3.12),
adjoining defining axioms, and proving theorems, such as the theorems
of @ proved in Chapter 4. But this theory is very weak, and in it we
can prove very little of what we want to prove about numbers. Let C be
an inductive formula; our intuitive feeling is that if z is a number, then
Clz] should hold. Now the formula C® respects all of the function symbols
of @} and the defining axiom of <, by REL. All of the other nonlogical
axioms of Q) are open, so it automatically respects them as well. In other
words, the entire theory @} can be relativized by C®. We can replace our
concept of number (any z) by a more refined concept of number (any =
such that C*|z]). We can read C*[z] as “z is a number” (leaving open the
possibility of formalizing an even more refined concept of number at some
time in the future). We can ask, if z s a number does C|z] hold? Since C*
is stronger than C by REL, the answer is yes, if z is a number then C[z].
This satisfies our intuition. But now we can ask, does the formula C hold
Jor numbers? This is a different question. It means: if in C3|z] — Clz]
we replace the quantifiers Jy in the formula C, which refer to the domain
of discourse before we refined our concept of number, by Jy(C3|y] & ...),
which can be read as “there exists a number y such that ...”; in short, if we
relativize C by C3, is the relativized formula correct? This is the crux. This
is the point that impredicative arithmetic takes for granted, by postulating
an affirmative answer in the induction principle. In predicative arithmetic
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we examine the relativized formula to see whether we can prove it.

Let us give an example of an inductive formula C for which we can
indeed prove that C holds for numbers. Consider the first example of
Chapter 1: Let C be 3m SSO0-m = n-(n + S0). Then C is inductive in Q].
Consider its relativization by C3:

C?ln] — 3m(C*m] & SSO-m = n - (n + S0)).

Suppose C®n|. Then C|n], by REL, so there exists m such that $S0-m =
n-(n+80). Since SSO0-m = m + m, we have m < n-(n+ S0). But we have
C3[0], C3[S0], C*n + S0], C3[n - (n+ SO)], and C3[m/, all by REL. Thus the
displayed formula holds. It can be read “if n is a number, then there is a
number m such that 2-m =n-(n+1)”.

If now we let C be

Im(m #0& Vk(k#0& k<n— 3jk-j=n)),

which is the second example of Chapter 1, then C is inductive in @} but
there seems to be no way to prove its relativization by C3. We do not
have a way of predicating a concept of number such that whenever n is a
number, there exists a non-zero number m that is divisible by all numbers
from 1 to n.



Chapter 6

Interpretability in Robinson’s
theory

For the pleasure of working from minimal assumptions, let us show
that we can drop the axioms (3.8)-(3.12). We will extend the relativiza-
tion scheme of the preceding chapter by building into the construction the
necessary associativity, etc., and then use this to show that @, is inter-
pretable in Qg (and so in Robinson’s theory @). The reader who wishes to
skip this chapter can simply substitute @, for @ in later statements about
interpretability in Q.

For this chapter, and this chapter only, we make the abbreviations:

a for VaVy (z+y)+z=z+ (y + 2),

B for VaVy (afz] mz-(y+2)=z-y+z-2),

v for VaVy (afz] & Bly] = (z-y) - 2=z (y- 2)),
6 for Vy(0+y=2—oy=2).

Then the following are theorems of Q.
6.1 Thm. a0].
Proof. We have (z +y)+0=z+yand 2+ (y+0) =z +y by (3.3).

16
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6.2 Thm. a[z| — a[Sz].

Proof. Suppose (z +y) +2 = £+ (y+ 2). Then (z +y)+ Sz =
S((z+y)+2) =8S(z+(y+2) =z+S(y+2) =z+ (y+ Sz) by (3.4).
Thus (6.2).

6.3 Thm. afz] — a[Pz].

Proof. Suppose z = 0. Then Pz = 0 by (3.7), and thus z = 0 — {6.3).
Suppose 2 # 0 & (z +y) + 2z = z + (y + 2), so that S((z + y) + Pz) =
(z+y)+SPz=(z+y)+2=x+(y+2) =z+ (y+SPz) =z+S(y+Pz) =
S(z + (y + Pz)) by (3.4) and (3.7). Then (z+y) + Pz = z + (y + P2)
by (3.2). Thus z # 0 — (6.3}, and so (6.3).

6.4 Thm. a|z| & afz] — alz; + z).

Proof. Suppose alz1] & alz;]. Then (z+y) + (a1 + 22) = ((z + y) +
A)tz=(z+(y+z21))+2z2=z+((y+2)+2)=z+(y+(z1+2)), and
thus (6.4).

6.5 Thm. Bl0].

Proof. Wéhave:c-(y+0)=z-yand zy+z-0=z-y+0=1z-y
by (3.3) and (3.5).

6.6 Thm. B[z] — B[Sz]|.

Proof. Suppose az] & z-(y+2) =z-y+ -2z By (3.4) and (3.6),
z-(y+8Sz) =z-S(y+2) =z-(y+z)+z = (z-y+z2)+z=z-y+(z-24+z) =
r-y+z-Sz Thus (6.6).

6.7 Thm. ~[0].

Proof. We have (z-y)-0=0and z-(y-0) = z-0 =0 by (3.5).
6.8 Thm. ~[z] — ~[Sz]. A

Proof. Suppose a|z] & Bly| & (z-y) -z = z-(y-2). By (3.6), (z-y)-Sz =
(z-y) z+zy=z-(y-2)+z-y=z-(y-z2+y) = z-(y-S2), and thus (6.8).
69 Thm. t+y=0—-z=0& y=0.

Proof. Suppose £+ y = 0, and suppose y = 0. Then z = 0 by (3.5),

and thus y = 0 —» z = 0, so suppose y # 0. Then S(z + Py) =0 by (3.4)
and (3.7), which is impossible by (3.1), and thus y = 0. Thus (6.9).
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6.10 Thm. 60].
‘ Proof. Suppose 0 + y = 0. Then y = 0 by (6.9), and thus (6.10).
6.11 Thm. 6|z| — 6[Sz|.

"Proof. Suppose é|z] & 0+ y = Sz. Suppose y = 0. Then 0 = Sz
by (3.3), which is absurd by (3.1), and thus y # 0. By (3.7), SPy = .
Hence 0 + SPy = Sz, so that S(0 + Py) = Sz by (3.4) and 0+ Py = z
by (3.2). Since é[z|, we have Py = z, so that SPy = Sz, i.e. y = Sz, and
thus (6.11).

6.12 Thm. 60 +z] »z=0+z.

Proof. Suppose 60 + z]. Since 0+ z = 0+ z, we have z = 0 + z.
Thus (6.12). O

Let C be a unary formula. We make the following abbreviations:
C° for Clz] & a|z] & Blz] & ~|z] & 6]z,
C! for VyVz (y+2 =z & ofz] — C%y)),
¢* for vy (C'y] — C'ly + ),
& for %] & vy (€fy] — Cly-2)).

Metatheorem 6.1 Let T be an extension of Qo and let C be a unary
formula of T. Then the following i1s a theorem of T:

REL. C[0] & Vz(C|z] — C[Sz]) —
(C*z] - Clz)) &
C’lo] &
(C*lz] — C*[Sz]) &
(C*[z] - C*Pz]) &
(C*lm] & COlzy] — CPlzy + 1)) &
(C¥lz1] & CPlzp] — C3[xy - z2)).

Demonstration. We prove (ﬁEL) in T as follows. Suppose hyp(ﬁEL).
We state and prove a number of claims.

1. C°[0]. This holds by (6.1), (6.5), (6.7), and (6.10).

2. C%z] — C°[Sz], by (6.2), (6.6), (6.8), and (6.11).
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3. Clz] — C°z]. Suppose Cl[x] It follows from (3.3) and (6.1) that
z+0 =z & a|0], and consequently C°[z]. Thus (3).

4. C'[0]. Suppose y + 2 = 0. Then y = 0 by (6.9), and so C°[y] by (1).
Thus (4).

5. Cl[:c] — CSz]. Suppose C'[z] & y + z = Sz & afz]. We need to
show C[y]. Suppose z = 0. Then y = Sz by (3.3). By (3) we have ¢z
and from (2) we obtain C°[Sz], i.e. C°ly]. Thus z = 0 — C°[y], so suppose
2z #0. Then SPz = 2z by (3.7), and so S(y+ Pz) =y +SPz =y + 2z = Sz
by (3.4). Consequently y + Pz = z, by (3.2). But since a[z] we have a[Pz]|
by (6.3), and since C'[z] we have C°[y]. Thus z # 0 — Cy], and so Co[y]
Thus (5).

6. Clz] & u+v = z & afv] — C'[u]. Suppose hyp (6) & y+2z = u & alz].
We need to show C°[y]. We have (y + z) + v = z, and since a|v] we obtain
y + (2 + v) = z. But afz + v] by (6.4), and since C![z] we get C°[y|. Thus
hyp (6) — C'[u], i.e. (6).

7. C¥z] — Cl[a:l Suppose C?[z]. We have C![0] by (4), so we have
Cl[O+zl Therefore C°[0+ z] by (3), and hence 6{0+z|. By (6.12),z = 0+=z
and so C'[z]. Thus (7).

8. C?[0], by (3.3).

9. C?[z] — C?Sz). Suppose C?z) & € [ ]. We need to show C![y +Sz].
But C![y + z], and so C![S(y + z)] by (5). By (3.4) we find C'[y + S|, and
thus (9).

10. C?[z) & u+ v = £ & afv] — C?[u]. Suppose hyp (10) & C'[y]. We
need to show Clly + u]. But (y +u) +v = y+ (u+ v) since afv], and

so (y+u)+v=y+z. Wehave Clly + z], since C?[z] & C!'ly], and we
have afv]. Hence Cl[y+ u] by (6), and thus (10).

11. C¥zy] & C2[zg} — C?|zy + 74). Suppose C?[z;] & 02[121 & Clly).
We need to show Clly + (z; + z,)]. But by (7) and (3) we have C°[z,] and
therefore a[z,], so that y + (z; + z2) = (y + 1) + 75- We get Clly + =4
from C?|z,], and therefore we get C![(y + z;) + z,] from C?[z,]. That is,
Cly + (z1 + z2)|. Thus (11).

12. C3[ ] — C?[z], by definition.

13. C3[0] by (8) and (3.5).

14. C‘"’[z] C3[sz). Suppose C3[z]. Then C?[Sz] by (12) and (9).
Suppose Cz[y] We need to show C?ly - Sz]. But y-Sz =y -z+y by (3.6),
and we have C[y - zJ, so by (11) we get C*[y -z + y), i.e. C¥[y - Sx] Thus
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C?y] — C2{y Sz], and thus (14).

15. C"[:c] — C3[Pz]. We have z = 0 — (15) by (3.7), so suppose
z # 0 & C®z]. First we need to show C?[Pz]. But Pz + S0 = S(Pz + 0) =
SPz = z by (3.4), (3.3), and (3.7), and «[S0] by (6.1) and (6.2). By (12)
we have Cz[z] By (10) applied to Pz + SO = z we have C?[Pz]. Now
suppose Cz[y} We need to show C?[y - Pz]. Buty-Pz+y=y-SPz=y-z
by (3.6) and (3.7). Since Cz[yj we have C°[y| by (7) and (3), and so aly].
Since C3|z] & C?[y|, we have C?[y-z|. By (10) applied toy-Pz+y=y-z
we have C?[y - Pz]. Thus C*|y] — €%y - Pz|, and thus z # 0 — (15).
Consequently we have (15).

16. Cs[zl] & C3z3) — C%[z; + z,). Suppose hyp(16). Then we have
G2z, & 02[1‘2] by (12), so C¥[z; + z,] by (11). Suppose Cz[y] We need
to show C?[y - (z; + z2)]. By (7) and (3) we have C°[y] and Co[zz] so that
oly] and B[z;]. Hence y- (21 + z2) = y - 21 + y - 7. We have C?[y - ;] and
Cz[y 23], so by (11) we have C?|y - z; + y - z,], i.e. C?[y - (z; + 2)]. Thus
C¥lzy + T3], and thus (16).

17. Cs[xl] & C3¥z5] — C3zy - z4). Suppose hyp(17). By definition of s,
we have C’[z,] and, since C%[z,), we have C? 21 2,]. Now suppose C?[y); we
want to show C[y-(z;-z;)]. We have C°|z,], C°[z,], and C°Jy] by (12), (7),
and (3). Therefore 7[z], 8[z], and aly], so that y - (z1 - z2) = (y - 1) - 72
From C3[z,] we get C¥[y- z1], and then from C3[z,] we get C?[(y - 1) - z2),
i.e. Cy - (zy - 22)]. Thus C?y] — Cy - (z: - 72)], and thus (17).

We have C3|z] — Clz] by (12), (7), and (3), so by (13),.(14), (15), (16),
and (17) we have established con(REL). O

Whenever we encounter an open formula of Qg that is inductive in one
of its variables, we can use REL to refine our concept of number and adjoin
the formula as a new axiom, obtaining an open theory that is interpretable
in Qo, and the process can be iterated. This observation is expressed in
greater detail in the following two metatheorems.

Metatheorem 6.2 Let T be an open extension of Qy with the same lan-
guage, and let A be an open formula that is inductive in x in T. Then T[A]
1s tnterpretable in T.

Demonstration. Let C be A/,. Then cs respects each function symbol

(0,S,P, +, and -) of T, by REL. It respects all of the axioms of T begause
they are open, and it respects A because C? is stronger than A, by REL.



6. INTERPRETABILITY IN ROBINSON’S THEORY 21

Consequently, T{A] is interpretable in T via the interpretation associated
with C%. O

Let éo be the formal system with the same language, formulas, and
axioms as Qo, but with an additional rule of inference (open induction):

Ol. If A is open and x occurs in A, infer A from 1nd; A.

Metatheorem 6.3 Let By,...,B, be theorems of @0. Then the theory
Qo[B1, ..., Bs] is interpretable in Q.

Demonstration. Let B be B, & ... & B,, so that B is a theorem of @0.
Let Aq,..., A, be the open formulas occurring in the proof in QO of B that
are inferred by OI, in the order of their occurrence, and let x;,...,x, be
the corresponding variables. Let T; be Qo[A4], let Ty be Qo[A1,A.], ...,
and let T, be Qo[A4,...,A,]. Then

Fo, tndy, Ay, b1, indy, Ag, ..., br,_, tndy, A,.

By Metatheorem 6.2 applied v times, T, is interpretable in Qq, T, is inter-
pretable in Ty, ..., and T, is interpretable in T,_,. By the Interpretation
Theorem of [Sh,§4.7], T, is interpretable in Qo and, since By,...,B, are
theorems of T,, the theory Qo[B,,...,B,] is interpretable in Q.

Metatheorem 6.4 Q) is interpretable in Q.

Demonstration. { is an extension by definitions of Q;, and Q, is
equivalent to an extension by definitions of @, so it suffices to show that
Q, is interpretable in @,. To do this it is enough, by Metatheorem 6.3, to
prove (3.8)-(3.12) in Q. We do this now.

We have (3.8) by (6.1), (6.2), and OI. We have (3.9) by (3.8), (6.5),
(6.6), and OI. We have (3.10) by (3.8), (3.9), (6.7), (6.8), and OL

We claim that 1: 0+ z = z.. We have 0 + 0 = 0 by (3.3). Suppose
O0+z=z. Then0+ Sz =8(0+z) =Sz by (3.4), and thus 0+ z = z —
0 + Sz = Sz. By OI we have (1). We claim that 2: Sy + z = S(y + z).
We have Sy + 0 = Sy = S(y + 0) by (3.3). Suppose Sy + z = S(y + z).
Then Sz + Sy = S(Sy + z) = SS(y + z) = S(y + Sz) by (3.4), and thus
(2) — (2):[Sz]. By OI we have (2). We claim that (3.11), namely z + y =
y +z. We have £+ 0 = 0+ z by (3.3) and (1). Suppose £+ y = y + z. By
(2) and (3.4) we obtain Sy + z = S(y + z) = S(z + y) = z + Sy, and thus
(3.11) — (3.11),[Sy]. By OI we have (3.11).
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We claim that 3: 0-z = 0. We have 0-0 = 0 by (3.5). Suppose 0-z = 0.
Then 0-Sz = 0-z+0 = 0-z = 0 by (3.6) and (3.3), and thus (3) — (3),[Sz].
By OI we have (3). We claim that 4: Sz-y=z-y+y. We have Sz-0=0
by (3.5) and £-0+0 = z-0 = 0 by (3.3) and (3.5), so that Sz-0=z-0+0.
Suppose Sz-y = z-y +y. Then by (3.6), (3.8), (3.4), and (3.11) we obtain
Sz-Sy=Sz-y+Sz=(z-y+y)+Sz=z-y+(y+Sz)=z-y+S(y+z) =
z-y+S(z+y)=z-y+(z+Sy) =(z-y+z)+Sy =z-Sy+Sy. Thus
(4) — (4)y[Sy]. By OI we have (4). Finally, we claim that (3.12), namely
z-y=y-z. Wehave O-y = y-0 by (3) and (3.5). Suppose z-y = y-z. By
(4) and (3.6),Sz-y = z-y+y = y-z+y = y-Sz. Thus (3.12) — (3.12).[Sz].
By OI we have (3.12).



Chapter 7

Bounded induction

In this chapter we define the notion of bounded formulas and show that
induction can be used on them.

The initial occurrence of Ix in a part IxB of A is called manifestly
bounded in case B is of the form x < a & C where a is a term not contain-
ing x. The formula A is called manifestly bounded in case each occurrence
of an existential quantifier in A is manifestly bounded. (Recall that inside
each universal quantifier there lurks an existential quantifier.) Formulas
are built up from atomic formulas by means of -, Vv, and existential quan-
tifiers Ix (see [Sh,§2.4]). In the same way, manifestly bounded formulas are
built up from atomic formulas by means of —, V, and manifestly bounded
occurrences of existential quantifiers 3x.

Metatheorem 7.1 Let T be a theory containing the binary predicate sym-
bol <, and let C be a unary formula of an extension U of T that respects
all function symbols of T and is hereditary. Let A be a manifestly bounded
formula of T. Then .

Fu C(freeA) — (A <« Ac).

Demonstration. For the purposes of this demonstration, call a formula B
good in case it is a formula of T and Fy C(freeB) — (B « Bg). Atomic
formulas of T are good. Suppose B is good. Since C(free—B) is C(freeB)
and (-B)¢ is -(B¢), the formula -B is good. Thus 1: if B is good then —-B
is good. Suppose B; and B, are good. Since

23

’
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C(free(B; VvV B;)) — C(freeB;) & C(freeB,)

is a tautology or the empty expression, and since (B; VB;)¢ is Bic VBsc, we
have that B, VB, is good. Thus 2: if B, and B; are good then B, VB, is good.
Suppose D is good and B is 3x(x < a & D) and a does not contain x. Then
every variable in a occurs free in B, and since C respects every function
symbol of T we have -y C(free B) — C[a]. Since C is hereditary,

Fy C(free B) — (3x(x < a & D) H/BX(C[X] & x <a & D)).

Since D is good and C(free B) & C[x] — C(free D) is a tautology (unless D
is closed, in which case the question does not arise),

Fu C(free B) — (3x(x < a & D) « 3x(C[x] & x < a & D¢)),

which is Fy C(free B) — (B < Bc). Thus 3: if D is good and a does not
contain x then 3x(x < a & D) is good. Starting from the atomic formulas
in A and applying- (1), (2), and (3) to each occurrence of -, V, or 3 in A,
we find that A is good.

Metatheorem 7.2 Let A be a manifestly bounded formula of Q) that is
inductive in one of its free variables x. Then Q}[A] is interpretable in Q.

Demonstration. Let C be A/. By REL, C® respects all function sym-
bols and nonlogical axioms of Q). Since C® is stronger than A/ by REL,
we have kg C*(free A) — A. Since C? is hereditary by REL, C® respects A
by Metatheorem 7.1. Therefore Q}[A] is interpretable in Q) via the inter-
pretation associated with C3. O

We construct a theory @, which is an extension of @) with the same
language, by adjoining as new nonlogical axioms all formulas of the form

MBI A.[0] & -3z(z < y & -A,[Sz]) = (z <y — A)
where A is a manifestly bounded formula in the language of @} and y does
not occur free in A.
Metatheorem 7.3 Let By, ..., B, be theorems of Q;. Then Q4{By,...,B,]
15 tnterpretable in Q). '

Demonstration. Each of the new nonlogical axioms (MBI) is manifestly
bounded. We claim that each (MBI) is inductive in y in Q}. To see this,
we argue in @) as follows.
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Since £ < 0 — z = 0 by (4.3), we have A,[0] — (z < 0 — A),
and therefore (MBI),[0]. Suppose (MBI) & hyp (MBI),[Sy]. Observe that
hyp (MBI}, (Sy] — hyp (MBI] since, by (4.4), z < y — z < Sy. Therefore
we have hyp (MBI), and since we have {MBI) we also have con (MBI),
namely 1: z < y — A. We need to show that 2: £ < Sy — A. But by (4.4),
z < Sy — z <yVz=Sy. By (1) we have £ < y — (2), so suppose z = Sy.
Since Ayp (MBI), we have—rewriting it in a more civilized notation—

A0] & Vz(z < y & A — A,[Sz]).

But y < y by (4.2), so A,[y] — A;[Sy]. Also because y < y, we have A,|y]
by (1). Hence A,[Sy], i.e. A, and thus (2). Thus (MBI} — (MBI),|Sy|, and
therefore ind, (MBI).

Since each (MBI) is manifestly bounded and inductive in y in @, the
conjunction B of all axioms of the form (MBI) occurring in the proofs
in Q; of By,..., B, is also manifestly bounded and inductive in y in Q. By
Metatheorem 7.2, Q}[B] is interpretable in Q). But B,,..., B, are theorems
of Q{|B], so by the Interpretation Theorem of [Sh,§4.7|, Q}[B1,...,B,] is
interpretable in Q). O

We will say that a theory T' is locally interpretable in a theory T in case
whenever By,...,B, are theorems of T’, then the theory whose nonlogical
axioms are By,...,B, (and whose nonlogical symbols are those occurring
in By,...,B,) is interpretable in T. By Metatheorems 7.3 and 6.4, the
theory @, is locally interpretable in Q. I promised in Chapter 3 that we
would work only in theories interpretable in Q; since only finitely many
axioms of @, will ever be used in this investigation, that promise will be
kept so long as we work in @2 or extensions by definition of Q. Moreover,
Pudlédk sketches a proof of the result that Q; is globally interpretable in Q
(Theorem 2.7 of [Pu], attributed to A. Wilkie). It would be awkward
always to write formulas in manifestly bounded form. For example, neither
Ve{r <y — z < 2) nor Jzy({z < z & y < 2z & z # y) is manifestly
bounded, though they are respectively equivalent to the manifestly bounded
formulas ~Jr(z <y & < z)and Iz(z < z & Jy(y < z & = # y)}. We
use

A:xy <ag,...,x, <a,

as an abbreviation for A < A’, where A' is the formula obtained by replac-
ing each part of A of the form Ix,B by Ix,(x, < a, & B), for all u from
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1 to v. Let T be a theory containing <, let A be a formula of T, and
let x;,...,%, be the variables that occur bound in A. We say that A is of
bounded form (or of bounded form in T) in case there are terms a,,...,a,
such that for all 4 from 1 to v, the variable x, does not occur in a,, and
Fr A:x; <ay,...,x, < a,. Then the formula A’ defined as above is mani-
festly bounded, and A is equivalent to A’ in T. An extension T' of T is called
" a bounded extension of T in case it is an extension by definitions of T such
that for each defining axiom px;...x, < D of a predicate symbol, D is of
bounded form, and for each defining axiom fx;...x, = y « D of a function
symbol, JyD is of bounded form. A nonlogical symbol, term, or formula
of an extension U of T is called bounded over T in case it is a nonlogical
symbol, term, or formula of bounded form of a bounded extension T' of T
(such that U is an extension of T').

Let T be a theory containing <, 0, and S. We say that T is a bounded
theory in case for every formula A of bounded form in T, b1 ind, A — A.

Metatheorem 7.4 Q4 ts a bounded theory.

Demonstration. Let A be a formula of bounded form in @, so that it
is equivalent to the manifestly bounded formula A'. Then we argue in @,

as follows.
Suppose indy A’; that is, AL[0] & Vx(A’' — A![Sx]). Then

Al0] & ~Ix(x <y & A' & ~A}[Sx]).

Here y is a variable distinct from x and all variables occurring in A'.
By (MBI} we have x <y — A’. Therefore x < x — A’, and so A’ by (4.2).
Thus ind, A’ — A’, and so ind, A — A.

Metatheorem 7.5 Let T be a bounded theory and let T' be a bounded
extension of T. Then T' is a bounded theory.

Demonstration. Suppose first that T' is obtained by adjoining a single
symbol, and let A be a formula of bounded form in T'. Then the translation
A* of A into T (see [Sh,§4.6]) is a formula of bounded form in T, so that
Fr tndg A¥ — A*. But b A* & A, and so by ind, A — A. Thus the
result holds in this case. To obtain the result in general, apply this resulit
step by step to each new nonlogical symbol. [

It might appear simpler to argue in the general case directly, by consid-
ering the translation A* into T. But our metamathematical arguments are
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intended to apply to actual formulas that one writes down. The metathe-
orems are intended to be correct statements about what one can actually
do, and the demonstrations are intended to show how to actually carry out
the constructions they assert to exist. With even a rather modest exten-
sion by definitions T' of T, if we try to construct the translation A* of a
formula A of T' all the way into T, we may find ourselves in the plight
of the legendary caliph who promised to give one grain of wheat for the
first square of a chessboard and to double the number for each successive
square.

Metatheorem 7.6 Let U be an extension of Q2 and let A be a formula
of U that 1s bounded over Q5. Then

Bl ind, A — A
15 a theorem of U.

Demeonstration. By Metatheorems 7.4 and 7.5. O
We refer to Bl as bounded induction.

Metatheorem 7.7 Let T be a theory containing < and 0, let T' be a
bounded extension of T, and let U be an extension of T'. Let C be a unary
formula of U that is hereditary and respects each nonlogical aziom and

function symbol of T. Then C respects each nonlogical aziom and function
symbol of T'.

Demonstration. Suppose first that T' is obtained from T by adjoin-
ing the new predicate symbol p with defining axiom px; ...x, < D, where
D is a formula of bounded form in T. Then D is equivalent to the mani-
festly bounded formula D' of T; we may assume that D' contains no free
variables other than x,,...,x,, for if it did, we could substitute O for
them. By Metatheorem 7.1, C respects px;...x, +» D', and so C respects
PX1...%, <« D. Thus the result holds in this case.

Suppose next that T' is obtained from T by adjoining the new function
symbol f with defining axiom fx,; ...x, =y «» D, where JyD is a formula of
bounded form in T. Then D is also a formula of bounded form in T, and so is
equivalent to the manifestly bounded formula D' of T; we may assume that
D’ contains no free variables other than x,,...,x,,y. By Metatheorem 7.1,
C respects fx;...x, =y + D', and so C respects fx;...x, =y « D. Now
JyD is equivalent to a formula Jy(y < a & Do), where a is a term of T
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not containing y; we may assume that a contains no variables other than
X1,...,X,. By the uniqueness condition,

fx)...x, =y oy <a& D
But since C respects each function syfnbol of T, we have
Fu Clxi) = --- = Clx,] — Cla,

and- since C is hereditary it respects f. Thus the result holds in this case.
To obtain the result in general, apply these results step by step to each
new nonlogical symbol.



Chapter 8

The bounded least number
principle

The least number principle is a form of the induction principle that is
useful in many proofs. Used indirectly, it is equivalent to proof by infinite
descent or complete induction. Here we formulate a predicative version of
the least number principle.

For a formula A and variables x;,...,x,, let y;,...,y, be in alphabetical
order the first v variables not occurring in A and distinct from xy,...,x,;
then we write

miny, x, A
for

A&-Jy,. ..y, <x & - &y, <x, &
(Y1 :/éxlv VY #xu) & Axl...x.,[YI---yu])-

Metatheorem 8.1 Let U be an extension of Q; and let A be a formula
of U that is bounded over Q,. Then

BLNP. 3x;---3x, A — 3x; -+ - 3x, min,, ,, A

1S a theorem of U.

Demonstration. Consider first the case that v is 1. We use the abbre-
viations

29
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o for Ix(x; <z & A),
A for 3x;(x; <z & min,, A),

where z is a variable distinct from x; and y, that does not occur in A. Then
we argue in U as follows. We claim that 1: a — . Suppose a,[0]. Then
there exists x; such that x; < 0 & A. By (4.3), x; = 0 and so min,, A. Thus
(1).]0]. By (4.2) and {4.5) we have 2: § — 3,[Sz]. Suppose ¢,[Sz], so that
there exists x; such that x; < Sz & A. By (4.4}, x; <z V x; = Sz. We have
x; <z — a. Suppose —a. Then x; = Sz. Suppose —(min,, A),,[Sz]. Then
there exists y; such that y; < Sz & y; # Sz & Ay, |y1)- By (44), y1 <z, s0
that a, a contradiction. Thus (miny, A)y,[Sz]. By (4.2), Sz < Sz, and thus
—a — f3,[Sz]. Thus 3: ,[Sz] — aV $,[Sz]. By (2) and (3),

(e — B) & a;[Sz| — B.[Sz],

so that (1) — (1),[Sz]. By BI we have (1). Consequently a,[x;] — B,[x1],
but since x; < x; by (4.2), we have 3x;A — Ix;min,, A. This proves the
result when v is 1.

Now consider the general case. Let zy,...,z, be distinct, be distinct
from x4,...,%,,¥1,--.,¥,, and not occur in A. We argue in U as follows.
Suppose hyp(BLNP). Then there exist zy,...,2, such that A,, 4 [z;...2,].
Write

v for x;, <z, & --- &x, <z, & A.
By (4.2), 7x,.x.[21 ...2,]. By the result when v is 1, applied v times,

there exists x, such that miny, 3x5--- 3x, 7,

there exists x; such that min,,3x3--- 3x, 7,

there exists x, such that min, 7.

Suppose —miny, , A. Since -y, we have A, so there exist y;,...,y, such
that
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n<x& &y, <, EMmEXRV-VYFEX) &
Ax, ..... x,,[Ylv---;Yu]-

For some p with 1 < u < v we have y, # z,, but this contradicts
miny, 3X,41 -+ - 3%, y. Thus miny, 4, A, and thus (BLNP). O

We will write “3x; ---3x,A. By BLNP there exist minimal such x;, ...,
and x,” for “Jx;---3x,A. By BLNP there exist x, ..., and x, such that
miny, x,A” (with the appropriate change in grammar or punctuation when
vis1or2).



Chapter 9

The Euclidean algorithm

Until further notice we will work in bounded extensions of Q;. At one
point in the proof of REL we quoted five axioms to show that one times z
equals z. This sort of thing might become tiresome if continued much
longer, so let’s stop doing it. The development picks up from where we left
off at the end of Chapter 4, but now we have BT and BLNP available.

91 Thm. z1 +y=2+y — 2, = 2z3.

Proof. Clearly {9.1),]0]. Suppose (9.1) & z; + Sy = 2z, + Sy. Then
21 +y =2z +yand so 23 = z2. Thus ind, (9.1}, so by BI we have (9.1).
9.2 Def. 1~y =z — z+y = z, otherwise z = 0.

The uniqueness condition holds by {9.1). We have 3z rhs(9.2):z < z,
so (9.2) is the defining axiom of a bounded function symbol. Put less
formally. this function symbol is bounded because we do not need to search

through all numbers to see whether there is a z with z + y = z, but only
through all numbers < z.

93 Thm. y#0& 2z-y=0—2=0.

Proof. Supposey # 0& z-y =0& 2z # 0. Then 2 = SPz,s0 SPz-y = 0,
Pz-y+y =0, and y = 0, which is a contradiction. Thus (9.3).

94 Thm. y#0& 2z, y=23-y — 2, = 2.

Proof. Suppose 32,32,—(9.4). By BLNP there exist minimal such z,
and z,. Of course, —(9.4) — hyp(9.4), so we have hyp(9.4). By (9.3),

32
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z; # 0 and z; # 0. Hence SP2z, -y = SP2; -y, Pzy-y+y =Pz -y +y,
and Pz;y = Pz, - y by (9.1). By the minimality assumption, Pz; = Pz,.
Therefore SPz; = SP2; and we have z; = 23, a contradiction. Thus (9.4).

95 Thm. y#0—-2z2<z-y.

Proof. Supposey #0. Then z-y=2-SPy=2-Py+z,s0z< z-y.
Thus (9.5).

96 Def. z/y=2 < 2z-y=1 & y # 0, otherwise z =0.

The uniqueness condition holds by (9.4), and we have 3zrhs(9.6):2 < z
by (9.5).
9.7 Thm. z <yVy<uz

Proof. We have (9.7),(0] since 0 < y by (4.2). Suppose y < z. Then
there exists z such that y + z=z,s0 y+ Sz = Sz. Thusy <z — y < Sz.
By (4.2),y = ¢ — y < Sz, so suppose £ < y & z # y. Then there exists z
suchthat z+ 2 =y & 2 # 0,so that z+SPz =y, Sz+ Pz = y, and Sz < y.
Thus ind, (9.7), so (9.7) by BL
98 Thm. z<y&y<z—-z=y.

Proof. Suppose z < y & y < z. Then there exist w and z such that
z+w=y& y+z=2z. Hencez+ (w+2z)=z+0,and w+z=0 by (9.1).
Consequently w <0, so w = 0 and z = y. Thus (9.8).

99 Def. Max(z,y) =z (z<y & z=y)v{y<z & z =1}

The existence condition holds by (9.7), the uniqueness condition holds
by (9.8), and we have 32rhs(9.9):2 <z + y.

By the way, a nonlogical symbol beginning with a capital letter will

always be a function symbol (and conversely if the symbol begins with a
letter).

910 Def. z<y—z<y&z#y.

Q11 Thm. y#0&z=y-g+né&n<y&zrz=y-gt+rnlry—
n=q&rn=r.

Proof. Suppose hyp(9.11) and suppose ¢; < go. There exists w such
that ; = g1+t w & w#0. Theny-qy+r1 =z =y-q +y-w+rs, so
rn=y-w+ry. By (9.5), y <y-w < ry, which contradicts r, < y by (9.8).
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Thus —(g; < ¢;), and similarly —(g; < q,}, so that ¢; = ¢, by (9.7). By (9.1),
ry = rp. Thus (9.11).

912 Thm. y#0—> Jg3r(z=y-q+r & r <y).

Proof: We have (9.12):q < z,r < y. Since0 =y-0+0& (y # 0 —
0 < y), we have (9.12),[0]. Suppose z = y-q+r & r < y. There exists w
suchthat r +w =y & w #0,s0r +SPw =y, Sr + Pw = y, and Sr < y;
that is, S» < yvS8r =y. Then Sr <y - Sz =y-q+r & Sr < y, and
Sr=y—>Szr=y-Sq¢+0& 0<y. Thus ind, (9.12), so (9.12) by BL

9.13 DCf Qt(y,I):QHar(x:yq+r&r<y)v(y:0&q:0).

The uniqueness condition holds by (9.11), the existence condition holds
by (9.12), and we have J¢rhs (9.13):q < z,7 < y, and similarly for the next
defining axiom.

9.14 Def. Rm(y,z) =r - gz =y-q+r&r<y)v{y=0& r=0).
9.15 Def. 1 = SO.

9.16 Def. 2 = S1.

9.17 Def. 3 = S2.

9.18 Def. 4 = S3.

9.19 Def. 5 = S4.

9.20 Def. 6 = S5.

9.21 Def. 7 = S6.

9.22 Dej. 8 = ST.

9.23 Def. 9 = S8.

9.24 Def. Dec{z,y) = z-5S9+ y.

The constants 0, 1, 2, 3, 4. 5, 6, 7, 8, and 9 are called decimal digits. Ii
e, es,...,€,_1,¢e, are decimal digits, v is at least 2, and e; is not 0, then we
write ejey...e,_1¢, for Dec(Dec(...Dec{e;,e;}...e,-1),e,). A term that
is of this form or is a decimal digit 1s called a decimal. If ¢; and e, are
decimal digits, one can find decimals a and b such that - e; +e; = a and
ey -e; =b. The two hundred theorems of this form can conveniently be
tabulated as addition and multiplication tables; if decimals e;...e, anc
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€] ...e, are given, these tables make it easy to find decimals ¢ and d such
that Fe;...e, + € ...e, =cande;...e, -€...€, =d.

925 Def. z|y—3dzz-2=1y.
We have rhs(9.25):z < y.
926 Thm. z |y & y#0 -z <y.

Proof. Suppose hyp(9.26). There exists z such that z -z = y. Then
z# 0,50 £ < y by {9.5). Thus (9.26).

927 Thm. a=b+c& zla&z|b—z]|c

Proof. Suppose hyp(9.27). There exist v and v such that z-u =
a& z-v=b,sox-u=zx-v+c. Supposez =0. Thenec=0=0-0and
thus £ = 0 — z | ¢. Suppose z # 0. Then v < u, so there exists w such
that v+w=wu. Thenz-v+z-w==z-u,s0z-w=cby(91). Thusz|c
and thus (9.27).

0.28 Def. pisaprime «» p# 1 & Vz(z |p—-z=1Vz=p).

We have p # 0 - ths(9.28):z < p. Also,2 |[0& 2 # 1 & 2#0, so

p =0 - rhs(9.28):z < 2. Consequently we have rhs(9.28): z < Max(p, 2).

» We will frequently introduce predicate symbols containing words, but

we use these predicate symbols formally. For example, “~(0 is a prime)” is

a theorem, but “0 is not a prime” is not even a formula. If **x is obtained

by forming the plural of a noun in —, then we write (omitting the comma
if vis 2) “aj, ..., and a, are x+” for “a;isa — & --- & a,isa—".

9.29 Thm. pisaprime & pla-b—plaVvp]|b.

Proof. Suppose pis a prime & p|a-b& —(p|a). By (9.12) there
exist g and r such thata = p-g+r & r < p. Also, 0 < r since ~(p | a). We
havea-b=p-qg-b+r-b,sop|r-bby (9.27). By BLNP there exists rg
such that min,, (0 < ro < p & p | ro-b). There exist ¢; and r, such that
p=ro-g+r&ry<r. Sincep-b=ry-q-b+r,-bwehavep|r -b
By the minimality assumption, r; = 0. Hence p = ry- ¢; and rq | p. Since
ro < p and p is a prime, ro = 1. Therefore p | b, and thus {9.29).



Chapter 10

Encoding .

In the last chapter we copied the usual proofs, observing that only
bounded inductions are involved. But now we come to a fork in the road.
Arithmetic is too limited unless it can express notions such as finite sums
and products, exponentiation, etc. The usual semi-formal treatment of such
notions is based on a pun on the word “number”, confounding the formal
notion of number as a term of a theory with the genetic notion of number
used in counting. For example, when one writes

if(i) =1f(1) + - + {(n),

one is trying simultaneously to use n as a term of a theory and to speak of
n terms of that theory. Godel overcame this difficulty by finding a way to
represent recursive functions within Peano Arithmetic. The first require-
ment is for a means of encoding a finite set of numbers by a single num-
ber. Godel does this by means of his beta function (see [G&] or [Sh,§6.4]).
This method is impredicative; in fact, it relies precisely on the induction
giving n(n) discussed in the second example of Chapter 1. Mostowski,
Robinson, and Tarski showed (see [MRT,pp.56-59]) that recursive func-
tions are representable in @, but this does not meet our needs for two rea-
sons: first, the methods are impredicative (theirs is a result about @ proved
in a stronger theory) and second, recursive functions are represented only
extensionally in @, whereas we desire, where possible, an intensional repre-

36
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sentation (see [Fe]) allowing us to prove properties of the functions within
the theory. Therefore we will seek a different route.

The encoding method that we will use is this: take a number a, write
it in base four notation, and consider the set of all numbers whose base
two representation occurs in the base four representation of a immediately
preceded and followed by the base four digit 2; then we regard a as encoding
this finite set of numbers. For example, the number a whose base four
representation is 202112 (i.e., 2198 in decimal notation) encodes the pair
of numbers whose base two representations are 0 and 11 (i.e., 0 and 3 in
decimal notation). We need to show that this encoding can be expressed
within our theory. This is not immediately clear; for example, one can
speak of the first, second, or third binary digit of a number (counting from
the right), but how can one speak of its k*® binary digit? We will get around
this problem by speaking instead of the binary digit in the ¢’s place, where ¢
is a power of two. '

10.1 Def. g is a power of two < Vp(pis a prime & p| ¢ — p = 2).

We have ¢ # 0 — rhs(10.1):p < gq. Also, 3 is a prime & 3|0 & 3 # 2,
so that rks (10.1): p < Max(q, 3).
10.2 Def. g is a power of four «» g is a power of two & drr.r=gq.

We have rhs(10.2):7 < g. Let us agree to stop giving bounds on for-
mulas when they are obvious.

10.3 Def. power(b,q) «» (b =2 & ¢ is a power of two) V (b =4 & g is a
power of four).

10.4 Thm. power(b, ¢q1) & power(b, gz) — power(b, q1 - ¢3).

Proof. Suppose hyp(10.4), so that b = 2V b = 4, and suppose p is a
prime & p| gi-¢g2. By (9.29),p| ¢1Vp | ¢2. But g, arid g; are powers of two,
so p = 2. Thus ¢, - q; is a power of two, and therefore b = 2 — con (10.2).
Suppose b = 4. Then there exist r, and r, such that ry-7; = q; & r2-79 = ¢o,
so (ry -7z}« (ry-72) = q1 - g2 and thus b =4 — con (10.4). Thus (10.4).

10.5 Thwn. power(b,q) & g # 1 — power(b, q/b).

Proof. Suppose hyp (10.5) and observe that —(0 is a power of two), so
that 1 < ¢ & ¢ | g, so by BLNP there exists p such that min,(1 <p & p| g).
Suppose = | p. Then z | ¢, so by the minimality of p we have z =1V z = p.
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Thus p is a prime, and p | ¢, so p = 2. That is, 2| ¢, so that ¢ = (¢/2) - 2.
Suppose y is a prime & y | (¢/2). Then y | g, s0 y = 2. Thus ¢/2 is a
power of two, and consequently b = 2 — con (10.5). Suppose b = 4. Then
there exists r such that r - r = ¢q. Since 2 is a prime and 2 | g, we have
2| r by (9.29),s04-(r/2) - (r/2) = q. Hence 4 | g, and (r/2) - (r/2) = ¢/4.
Suppose z is a prime & z | (¢/4). Then z | ¢, s0 2 = 2. Thus ¢/4is a
power of four, and thus b =4 — con (10.5). Thus (10.5).

10.6 Thm. power(b,q;) & power(b, g;) & ¢1 < g, — power(b, g,/¢,).

Proof. Suppose 3¢;3¢.—(10.6). By BLNP there exist minimal such
¢1 and ¢;. Then ¢; # 1. By (10.5), power(b, ¢1/b), so by the minimality
assumption we have power(b, ¢/(q1/b)). That is, power(b, (g2-b)/q:). Since

q1 < gz, we have (g, - b)/g; # 1. By (10.5) again, power(b, ({g: - b)/q:1)/b)-
That is, power(b, ¢2/¢;), which is a contradiction. Thus (10.6).

10.7 Thm. power(b,q1) & ¢; <z < ¢;-b & power(b,q;) & g2 <z < g2 - b—
a1 = q2.

Proof. Suppose hyp (10.7) & g1 < ¢g;. We have g3 < g1 - b, 50 ¢2/q1 < b
and ~(b | (g2/q1))- By (10.5), g2/g1 = 1, s0 g1 = ¢3. Thus ¢y < g, — (10.7),
and therefore ¢, < q; — (10.7), so that (10.7).

10.8 Def. |z|, = g +» power(b,q) & £ # 0 & ¢ <z < g-b, otherwise g = 1.

The formulas in what follows will be easier to read if we bear in mind
that, for a base b and g a power of b, the base b representation of z is
that of Qt{g,z) down to and including the ¢’s place, followed by that of
Rm(q, z). Using these scissors we can snip out any desired portion of the
representation of z. For example, the base b digit in the ¢’s place of z is
Rm(b,Qt(q, z)). It is intuitive that repeated snipping does not change the
value of any digit (though perhaps its location may change}, and the next
theorem is a result of this sort.

10.9 Thm. power(b,¢q1) & power(b,q) & ¢1 < g2 — Rm(b,Qt(q;,z)) =
Rm(b, Qt(q1, Rm(gs, z))).

Proof. Suppose hyp (10.9). We claim that
l.z= Qt(q2,I) * g2 + RII](Q2,.’I}),
2' Rm(‘]z, .'E) = Qt(thm(qZ?z)) gy + Rm(thm(anI))a
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3.z =Qt(q:1,7) - @1 + Rm(qs,7),

4. z = (Qt(g2,7) - (¢2/@1) + Qt(q1, Rm(gz, 7)) - &1 + Rm(qs, Rm(qz, 7)),

5. Qt(q1, z) = Qt(gz, z) - (¢2/ 1) + Qt{q1, Rm(gz, 2)).
We have (1), (2}, and (3) directly from the defining axioms for Qt and Rm,
(4) is a consequence of (1) and (2), and (5) is a consequence of (3) and (4).
But ¢; < g2, 50 b | (g2/¢1) and (5) gives con (10.9). Thus (10.9). O

The next two theorems show that the first significant digit of z occurs
in the |z|,’s place.
10.10 Thm. power(b,q) & |z|, < ¢ — Rm(b, Qt(g,z)) = 0.

Proof. Suppose hyp (10.10). Then z < g, so Qt(g,z) = 0 and therefore
Rm(b, Qt(g,z)) = 0. Thus (10.10).
10.11 Thm. z#0& (b=2Vvb=4) - 0 < Rm(b,Qt(|z]s,z)) =
Qt(lzfp, z) <

Proof. Suppose hyp (10.11). Then |z|, < = < |z|, - b, so that we have
0 < Qt(|z]s, z) < b, and hence con (10.11). Thus (10.11). O

Next we show that two numbers with the same base b representation
are equal. We do this by the method of infinite descent (predicatively),

snipping off the first significant digit to get a pair of smaller numbers with
the same base b representation.

10.12 Thm. (b = 2V b = 4) & VYg{power(b,q) — Rm(b,Qt(g,z;)) =
Rm(b, Qt(g1,22))) — z1 = z2.

Proof. We have (10.12):q < Max(|z1|p, [z2[s) by (10.10). Suppose
Jz;3z,-(10.12). By BLNP there exist minimal such z; and z,. Suppose
z; = 0. Then Rm(b, Qt(|z2]s,z2)) = 0, so z; = 0 by (10.11). Hence z; = z,,
a contradiction, and thus z; # 0. Similarly, z; # 0. By (10.10) and (10.11},
|z1]s = |z2s. Let go = |z1)s, let ¥y = Rm(go, 1), and let y; = Rm(go, z2).
Then y; < z; and y; < 4, and

71 = Qt(qgo, Z1) - 9o + Y1,
z2 = Qt(go, Z2) - o + ¥2.

We have Rm(b, Qt{go, z1)) = Rm(b, Qt{go, z;)), so by (10.11) we obtain
Qt(go,z1) = Qt(go,z2). Since z; # z, we have y; # y,. We use the
abbreviation
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a for scopey,(10.12),,,,[y1¥2]-

By (10.10), go < ¢ — « and by (10.9), ¢ < go — . Therefore Vg , which
contradicts the minimality assumption. Thus {10.12). [J

The ¢ - ¢’s place in base four corresponds to the ¢’s place in base two.
Next we show that for any number z there is a number z whose base four
representation is the same as the base two representation of z. :

10.13 Thm. 3zVq(q is a power of two —
Rm(2, Qt(g,z)) = Rm(4,Qt(g - g,2))).

Proof. We have (10.13):z < |z|; - |z]2 - 4,9 < |z|z by (10.10). Suppose
Jz—(10.13). By BLNP there exists a minimal such z. Suppose z = 0

and let z = 0. Then (10.13), a contradiction, and thus = # 0. Let y =
Rm(|z]|s, z), so that y < z. By the minimality of z, there exists w such that

Vgq(g is a power of two - Rm(2,Qt(g,y)) = Rm(4, Qt(q- ¢,w))).

Let z = |z|,-|z|,+w, and write a for scopey,(10.13). By (10.9), ¢ < |z|; — «
and by (10.10), |z|; < ¢ — a. By (10.11) we have 0 < Qt(|z|;,z) < 2, so
Rm(2, Qt(|z|z,z)) = 1. But Qt(|z|;,y) = 0, so

Rm(4,Qt(|z]z - |z}, w)) = Rm(2,Qt(|zl:,y)) = 0.
Hence Rm({4,Qt(}z|; - |z]z,2)) = 1, so that ¢ = |z|; — «. Consequently
Vg a, and so (10.13), a contradiction. Thus (10.13).

10.14 Def. Encz = z < Vg(qis a power of two — Rm(2,Qt(g,z)) =
Rm(4, Qt(q - ¢, 2)))-

The uniqueness condition follows from (10.12), the existence condition
is (10.13), and we have Jzrhs (10.14): 2 < |z|; - |z|; - 4,¢ < |z|;. This is the
function symbol that we need for encoding.

10.15 Thm. Encz; = Enczy, — z, = z,.
Proof. By (10.12).

10.16 Def. enc(qy,q2,z,a) <> ¢, and g, are powers of four &
Rm(4, Qt{g:,a)) = Rm(4,Qt(gz,a)) =2 & g, =4-|Enczls-4-q; &
Rm(q2/(q1 - 4),Qt{g1 - 4,a)) = Encz.

10.17 Def. z € a «<» I¢q13qz enc(q1, g2, 2, a).
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We have rhs(10.17):q; < a,¢ < a.

We need another scissors lemma, to verify that if two different numbers
z and y are encoded in a, then they are encoded in a non-overlapping way.
This is used to prove that if z is encoded in a, then there is a b, smaller by
at least a factor of 2, such that every other number encoded in a is encoded
in b.

10.18 Thm. power(b,q;) & power(b,q) & power(b,¢q;) & ¢; < ¢ < g, —
Rm(b, Qt(q/q1, Rm(gz, Qt(g1,2)))) = Rm(b, Qt(q, a)).

Proof. Suppose hyp (10.18). We claim that

1. a = Qt(q1,a) - 1 + Rm(q1,a),

2. Qt(q1, @) = Qt(g2, Qt(q1,@)) - g2 + Rm(qs, Qt(g1,0)),

3. Qt(q/q1,Qt(g1,a)) = Qt(gz, Qt(q1,a)) - ((g2 - @) /q) +
Qt(q/q:, Rm(qz, Qt(q1, a))),

4. Qt(g/q1, Qt{g1,a)) = Qt(g, Qt(q1,a) - ¢1),
5. Qt’(qut<qlaa) - ql) = Qt(qa a)a
6. Qt(g2, Qt(g1,a)) ((92-91)/9) +Qt(q/ g1, Rm{gs, Qt(g1,a))) = Qt(gy,a).

We have (1) and {2) directly. Since (¢/g¢1) | ¢2, (3) follows from (2), and (4)
is obvious. Since ¢; < ¢ and Rm(q1,a) < g1, (5) follows from (1). By (3),
(4), and (5) we have (6). But b ((g2-¢1)/q) since ¢ < gz, so con (10.18).
Thus (10.18).

10.19 Thm. enc(q;,qs,z,a,) & enc(gs,q4,y,0) & = # y —
G <@<g3<qV gs<gs<q <qa

Proof. Suppose hyp {10.19), and suppose (¢ = qsVq = q4) & ¢ < ¢ < g3.
We have (q2/(q; - 4),Qt(a:1 - 4,a)) = Encx, so by (10.18) we obtain
Rm(4,Qt(¢/(q: - 4), Encz)) = Rm(4,Qt(g,a)) = 2.

But since ¢/(g1 - 4) is a power of four, there exists r such that r is a power
of two and 7-r = ¢/(q1 - 4), so
Rm(4,Qt(g/(¢q1 - 4), Enc z}) = Rm(2,¢(r,z)) < 2,

a contradiction. Thus



42 10. ENCODING

L (g1 < g3 < q) & (g1 < g4 < q2),

and similarly

2. (¢3<q1<qs) & ~(g3< g2 < q4).

Suppose ¢; = g3, s0 that g3 < ¢; and ¢ < ¢4. By (1), ¢z < g4 and by (2),
g2 = q4. Consequently Encz = Ency and so z = y, a contradiction. Thus
@1 # ¢s. Suppose ¢1 < gs, so that g1 < gs < g4. By (1) we have ¢; < g3,
and thus ¢, < ¢s — con(10.19). Similarly, ¢s < ¢ — con (10.19), and
thus (10.19).

1020 Thm. z€a — W(2-b<a & Vyly#z & y€ a — y € b)).

Proof. Suppose z € a, so there exist ¢; and ¢, such that enc(qy, ¢2, %, a).
Let b = Qt(gz2,a) - ¢; -4+ Rm(q; - 4,a). {That is, b is obtained from a by
deleting Enc z.) Since ¢;-4-4 < g2, Rm(q1-4,a) < ¢1-4, and Qt(gz,a)-¢; < a,
we have 4 -5 < 2 :a, so that 2-b < a. Suppose 1: y # z & y € a,
so there exist g3 and g4 such that enc(gs, gs,y,a). By (10.19), ¢ < ¢z <
93 < ¢4V g3 < g4 < g < ga. Suppose 2: ¢; < q2 < ¢35 < ¢4. Then
enc(gs/|Enc z|4, ¢4 /|Enc z|4,y,b), and thus (2) — y € b. Suppose 3: g3 <
g4 < g1 < g2. Then enc(gs,q94,y,b), and thus (3) — y € b. Therefore y € b,
and thus (1) — y € b. Thus (10.20). ‘

10.21 Thm. z€a — 1 < a.

Proof. Suppose z € a. Then Encz < a. But 0 = Enc0,1 = Encl, and
2<z—-z<]|z];:-2< |z|]p-|z|]s = |[Encz|y < Encz, so z < Encz < a.
Thus (10.21).

10.22 Def. ais a set «— =3b(b < a & Vz(z € @ — z € b)).



Chapter 11

Bounded separation and
minimum

Let @) be the current theory; that is, the extension of @, obtained by
adjoining the defining axioms up to the present.

Metatheorem 11.1 Let T be an extension of Q), let A be a bounded
formula of T, and let x, y, and z be distinct variables such that z does not
occur tn A. Then

BSD. {x€y:A} =2z o min,Vx(x €y & A — x €z}

is the defining aziom of a bounded function symbol. (The variables in the
term {x €y : A} are y and the variables distinct from x that occur free in
A.) The following is a theorem of T[(BSD)]:

BS. {xcy:A}isaset & {x€y:A} <y &
(xe{xey:A} oxcy & A).

Demonstration. The uniqueness condition for (BSD) holds by (9.8) and
the definition of min in Chapter 8. By (10.21),

FTVX(XEY&A_*XGZ):XS)”

and of course
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Fr JzVx(x €y & A - x € z).
Therefore, by BLNP we have the existence condition for (BSD), and
b Jzrhs (BSD):z <y,x <y.

Hence (BSD) is the defining axiom of a bounded function symbol. To
prove (BS) in T[(BSD)], we argue as follows.

Wehave {x €y: A}isaset & {x € y: A} <y from the defining axioms
(10.22) and (BSD). Let z = {x € y : A}. Clearly

l.xey& A—-x€z
Suppose x € z & —(x € y & A). By (10.20) there exists z; such that
71 <z & Vxi(x; #Fx & X1 €2 > X9 € 74).

(Here z; and x; are distinct, and are distinct from x, y, z, and all variables
occurring in A). Suppose x; € y & A4[x1]. Then x; # x, and x; € z by (1),
so X3 € z;. Thus

Vxi(x1 €y & Ayfx1] — x5 € 74),

which contradicts the minimality of z. Thus (BS). O
Given a formula A and a variable x, let y be the first variable in alpha-
betical order distinct from x and all variables in A. Then we write

maxy A for A & -3Jy(x <y & ALly]).
(We could also define maxy,. x, A in the obvious way, but it does not seem
likely that we would ever have occasion to use it.)

Metatheorem 11.2 Let T be an extension of @, let A be a formula of T,
and let x, y, and z be distinct variables such that z does not occur in A.
Then

MIND. Minx(x <y & A) =z < min,(z <y & A[z]),
otherwise z = 0,

MAXD. Maxx(x <y & A) =z « max,(z <y & A,[z]),
otherwise z = 0
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are defining azioms of bounded function symbols. (The variables in these
terms are y and all variables distinct from x that occur free in A.) The
following are theorems of T[(MIND)| and T[(MAXD)] respectively:

MIN. x <y & A - Minx(x <y & A) <x & A [Minx(x <y & A)},
MAX. x <y & A - x < Maxx(x <y & A) & A Maxx(x <y & A)].

Demonstration. The uniqueness conditions hold by (9.7) and the defi-
nitions of min and max. We have

Fr 3z rhs (MIND):z <y,

and similarly for (MAXD), so these are defining axioms of bounded function

symbols.
To prove (MIN) in T|(MIND)] we argue as follows. Suppose x <y & A.
By BLNP there exists z such that

min,(z <y & A,[z]),

so that Minx(x <y & A) =z. Then z < x & A,[z]. Thus (MIN).
To prove (MAX) in T|[(MAXD)] we argue as follows. Supposex <y & A.
Theny — x <y & A\ly — (v — x)]. By BLNP there exists z such that

min,(z <y & Ay —zl),

so that y —z = Maxx(x <y & A). By MIN, z <y —x & A,y — z|. Thus
(MAX). O '

Whenever a term of the form Minx(x < a & A), Maxx(x < a & A}, or
{x € a: A} occurs, it is understood that the corresponding defining axiom
has been adjoined to the theory.

If all occurrences of Minx in B are in the term Minx(x <a & A), we
write

scopeyin B for x <a & A,

and similarly with Minx replaced by Maxx. We sometimes omit x and
write scopey;,B.



Chapter 12

Sets and functions

Although conceptually simple, the encoding procedure is laborious. In
this chapter we will develop an elementary theory (in the mathematical
sense of a collection of theorems) of certain finite sets of numbers, and
afterwards we can hopefully forget the details of the encoding procedure.

12.1 Thm. O is a set & —(z € 0).
Proof. Clearly 0 is a set. By(10.21), —~(z € 0).

12.2 Thm. a and b are sets & Vz{z € a >z € b) — a =b.
Proof. Suppose hyp{12.2). Then a < b < a. Thus (12.2).
123 Def. {z} ={y€2-|Encz|y-4-4+Encz-4+2:y = z}.

124 Thm. {z} isaset & (y € {z} < y = z).
Proof. By BS, {z} is aset & (y € {z} — y = z}. We have
enc(1,|Encz|,-4-4,z,2 - |Enczl;-4-4+ Encz -4+ 2),
soz € {z}.
12.5 Def. aub={zca-by-4+b:z€aVvzeb}
126 Thm. auUbisaset & (z€aUbeoz€aVzEd).

Proof. By BS,aUbisaset & (€ aUb > z € avzebd) Let
c =a-lbly-4+b (We do not claim that ¢ is a set.)  Suppose z € a.
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Then there exist g, and g, such that enc(g;,92,2,a). Let g5 = ¢, - [b], -4
and let g4 = g5 - |b4 - 4. Then enc(gs,g4,%,¢), so that zEcand z € aU b.
Thus £ € @ —» z € a Ub. Suppose = € b. There exist ¢; and ¢ such that
enc(q1, g2, Z,b), and we also have enc(g;,¢2,%,¢). Thus z € b— z € aU b,
and so (12.6). '

12.7 Def. anb={z € a: z€b}.
12.8 Def. a Cb— Vz(z € a > z € b).
129 Thm. aisaset &a Cb—a<b.

Proof. Suppose hyp(12.9). Then it follows from BS that we have a =
{zca:z€a}={z€b:zea} <b. Thus (12.9).
12.10 Def. (z,y) = (z+ y) - (z+ y) + y-

Notice that the ordered pair {zr,y) need not be a set, but it has the
following crucial property:

12.11 Thm. <.’El,y1> = <.’Z2,y2> — I =2, & Yy = yo.

Proof. Suppose hyp(12.11) and suppose £;+y; < Z,+y;. There exists z
such that £, + y; + 2 = 23 + y; & 2 # 0. Then

(Z,y2) =(T+n+2) (m+y+z)ty=
(Zi+y) (m+n)+2-z-n1+2- 221+ 22+ y,

so (1,y1) < (T2,y2), a contradiction. Thus z; + y2 < z; + y;, and similarly
z; + 4 < z3 + ys, so that z; + y, = z; + y2. By hyp(12.11) and (9.1) we
have y; = ys, and so z; = z,. Thus (12.11).

1212 Thm. z < (z,y) & y < (z,y).
Proof. Clearly y < (z,y). Also, z < z-z < (z,y.
12.13 Def. f is a function < fisaset & Vw(w € f — Jz3y(z,y) = w)
& VzVy Yy ((z,91) € f & (z,3) € f » 1 = 1)
12.14 Def. f(z) =y « [ is a function & (z,y) € f, otherwise y = 0.

The uniqueness condition follows from (12.13). In addition, we have
Jyrhs(12.14):y < f,so (12.14) is the defining axiom of a bounded function
symbol. Notice that it is a binary function symbol; f(z) is a term with two
variables, f and z.
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12.15 Def. z is in the domain of f « f is a function & 3Jy(z,y) € f.
12.16 Def. y is in the range of f « f is a function & 3z(z,y)€ f.

12.17 Thm. f and g are functions & f(j) = ¢(y) &
Vi{7 is in the domain of f « 1 is in the domainof ¢ &« j <31 < k) &
Vij<i<k& f()=g() > f(i+1)=g(i+1) - f =g

Prooj. Suppose hyp(12.17). By (12.2) we need only establish that
Vw(w € f < w € g), so we need only show 1: Vi f(z) = g(¢). Suppose —(1).
By BLNP there exists ¢ such that min; f(z) # g(¢). Clearly y < ¢ < k. Since
f(7) = g(J), we have 1 # 5. Therefore j < ¢—1 < k, and by the minimality
of 7 we have f(i — 1) = g(¢ — 1). Hence f(i) = g(), a contradiction, and
thus (1). Thus (12.17). D

Let us try to construct bounded function symbols Dom and Ran to ex-
press the domain and range of a function. It is intuitive from the encoding
procedure that the domain or range of a function is smaller than the func-
tion, but to establish this we need to refer to the details of the encoding
procedure—let us hope for the last time.

12.18 Thm. z < y — Encz < Ency.

Proof. Suppose 3z3y—(12.18). By BLNP there exist minimal such z and
y. Clearly z # 0 and y # 0. Let u = Rm(|z|,,z) and let v = Rm(ly|s,y).
By (10.11), Qt(lzfs,z) = 1 = Qt(lyl2,y), so z = |z|s + v and y = |y|2 + v,
where v < |z|; and v < |y|;. We have Encz = |z|; - |z|; + Encu and
Ency = lyl2 - [yls + Encv. Also, |z]; < |y|;- Suppose |zj; < lyj,- Then
Encz < Ency, a contradiction, and thus |z|; = |y|;. Consequently u < v.
By the minimality assumption, Encu < Encv, so that Encz < Ency, a
contradiction. Thus (12.18).

12.19 Thm. [ is a function & ais aset &

ViVy(z €a & yca & z#y— f(z)# f(y) &
Vz(z€a—z< f(z) & f(z) €b) - a<b.

Proof. Suppose 3a3b—(12.19). By BLNP there exist minimal such a
and b. Clearly a # 0,50 3z € a by (12.12). Let

¢1 = Max ¢i(q1 < b & 3¢;3z(z € a & Enc (q1, 92, f(2),0)))

By MAX there exist ¢; and z such that z € a & Enc (g1, g2, f(z),b). Let
ao = {t € a:t# z}. Then ao is a set and, by (10.22), ap < a. Let b, =
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Rm(q, -4,b). Then by < b. Suppose zy € ag. Then z¢ # z, so f(z) # f(z).
Since f(zo) € b, there exist g; and ¢4 such that enc(gs,qs, f(20),b). By
(10.19) and the definition of ¢; we have g3 < g4 < ¢; < ¢;. Consequently
f{zo) € by. Thus, by the minimality assumption, ap < by. Observe that

2-Encf(z)ls-q1-4-4+Encf(z) g -4-by <V,
and let

a1 =2-Encz|y - q;-4-4+ Encz-q -4+ ap.
Since z < f(z) we have a; < b by (12.18). Since |agls < ¢1 we have
enc(qy, |[Encz|y-¢,-4-4,1,0a,), so that = € a;. Also ap C a,, so that a C a;.
Since a is a set we have ¢ < a; by (12.9). Hence a < b, a contradiction.
Thus (12.19). O

This result is not useful at present because we have no replacement

principle to produce functions. Function symbols are much easier to come
by than functions. Let @} be the current theory.

Metatheorem 12.1 Let T be an extension of Q4 and let f be a bounded
(1 + v)-ary function symbol of T. Then the following is a theorem of T:

FS.ais aset &
VeVylcCa & yca & z#y > fzzy...z, £fyz,...2,) &
Vz(z €a -z <fzzy...z2, & f22,...2,Eb) 5 a < b

Demonstration. To obtain a proof of (FS), replace. in the proof of (12.19),
each occurrence of (12.19) by (FS) and each occurrence of f(x) by fxz;...z,.
12.20 Def. Graph(z, f) = (z, f(z)).

12.21 Thm. ais a set & Vz(z € a -» z is in the domain of f) — a < f.

Proof. We have z # y — Graph(z, f) # Graph(y, f) by (12.11), and
z < Graph(z, f) by (12.12), and z is in the domain of f — Graph(z, f) € f.
Suppose hyp(12.21). By FS we have a < f. Thus (12.21).
12.22 Def. Dom f = Maxa(a < f & aisa set & VYz(z € a — z is in the
domain of f)).

12.23 Thm. z € Dom f < z is in the domain of f.

Proof. Since scopemaxa(12.22),4]0], we have lhs (12.23) — rhs(12.23) by
MAX. Suppose rhs(12.23) & -lhs(12.23), and let @ = Dom f U {z}.
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Then a is a set and Vz;(z; € @ —» z; is in the domain of f),s0 a < f by
(12.21). By the maximality of Dom f we have a < f, which is impossible
since Dom f Ca & Dom f # a. Thus (12.23).

12.24 Def. Hparg(y, /) = (Mina(z < f & f(z) = y).,9).
12.25 Thm. ais a set & Vy(y € a — y is in the range of f) — a < f,

Proof. We have y, # y2 — Hparg(ylvf) # Hparg(yg,f), and y <
Hparg(y, f). Also, y is in the range of f — Hparg(y, f) € f by MIN.
Suppose hyp(12.25). By FS we have a < f. Thus (12.25).

12.26 Def. Ranf = Maxa(e < f & aisaset & Vy{y € a — yis in the
range of f}).

12.27 Thm. y € Ran f < y is in the range of f.

Proof. The proof is almost identical with that of (12.23). O

The notions of set and function are very useful, but we must take care
not to use properties that have not been established. In particular, we do
not have the set of all numbers < n, and we do not have power sets.

The intuition that the set of all subsets of a finite set is finite—or more
generally, that if 4 and B are finite sets, then so is the set B# of all
functions from A to B-—is a questionable intuition. Let A be the set of
some 5000 spaces for symbols on a blank sheet of typewriter paper, and
let B be the set of some 80 symbols of a typewriter; then perhaps B4 is
infinite. Perhaps it is even incorrect to think of B# as being a set. To do so
is to postulate an entity, the set of all possible typewritten pages, and then
Lo ascribe some kind of reality to this entity—for example, by asserting that
one can in principle survey each possible typewritten page. But perhaps it
simply is not so. Perhaps there is no such number as 80°%°%; perhaps it is
always possible to write a new and different page. Many ordinary activities
are built up in a similar way from a rather small set of symbols or actions.
Perhaps infinity is not far off in space or time or thought; perhaps it is while
engaged in an ordinary activity-—writing a page, getting a child ready for
school, talking with someone, teaching a class, making love—that we are
immersed in infinity.



Chapter 13

Exponential functions

In this chapter we prove some familiar properties of exponentiation by
assuming as given a function f that is exponentiation (¢ + z') on the
domain of all z < k.
13.1 Def. exp{z,k,f) < f is a function & f(0)=1 & Vi(t € Domf «
1<k)&Vi(i <k— f(i+1) =z f(i)).

We have rhs (13.1):7 < Max(f, k).
13.2 Thm. exp(z,k, f) & exp(z,k,g) — f =g.

Proof. By (12.17).

13.3 Thm. exp(z,k, f) & exp(y.k,g) & exp(z-y,k,h) — h(k) = f(k) -g(k).

Proof. Suppose hyp(13.3). We will show that in fact 1: ¢+ <k — h(1) =
f(7)-g(?). Suppose 31—(1). By BLNP there exists a minimal such ¢. Clearly
¢ # 0. Therefore h(t — 1) = f(¢ — 1) - g(¢ — 1), and so h(z) = f(7) - g(¢),
contradiction. Thus (1), and thus {13.3).

13.4 Thm. exp(z,k, f) & exp(z,l,9) & exp(z,k +1,h) — h{k+1) = f(k)-
g(l).

Proof. Suppose hyp(13.4). We will show that 1: ¢ < k — h{t +1) =
f(2)-g(l). Suppose 3i-(1). By BLNP there exists a minimal such ¢. Clearly
i # 0. Therefore h(t —1+1) = f(i — 1) -g(l), and so h{z +1) = f(7) - 9(I),
contradiction. Thus (1), and thus. (13.4).
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13.5 Def. Rstr(f,7) = {w e f:353({J,y) = w & j <1)}.
13.6 Thm. f is a function — Rstr(f,7) is a function & () < ¢ —
Rstr(f,7)(5) = f(4))-
Proof. By BS.
13.7 Thm. exp(z,k, f) & 1 < k — exp(z,1,Rstr(f,1)).
Proof. By BS.
13.8 Thm. exp(z,k, f) & exp(f(k),!,9) & exp(z,k-1,h) — h(k-1) = g(l).

Proof. Suppose hyp(13.8). We will show that 1: ¢ <! — h(k - 1) = g(3).
Suppose J3:~(1). By BLNP there exists a minimal such 7. Clearly ¢ # 0.
Therefore h(k - (i — 1)) = g(¢ — 1). By (13.7) and (13.4),

Rstr(h,k - ©)(k - ) = Rstr(h,k - (: — 1))(k - (¢ — 1)) - Rstr(h, k)(k),

so by (13.6), h(k-v) = h(k-(—1))-h(k). That is, h(k-7) = g(¢—1)-h(k). But
by (13.7) and (13.2), Rstr(h,k) = f, so by (13.6), h(k) = f(k). Therefore
h(k-1) = g(¢ = 1) - f(k). But g(¢ — 1) - f(k) = ¢(1), so h(k - 1) = ¢(i), a
contradiction. Thus (1), and thus (13.8).

13.9 Thm. £ # 0 & exp(z,k, f) & 1 < k — f(1) #0.

Proof. Suppose 31-(13.9). By BLNP there exists a minimal such s.
Clearly ¢ # 0, s0 f(z — 1) 5 0 and f(¢) # 0, a contradiction. Thus (13.9).

13.10 Thm. 2 < z & exp(z,k, f) & 1 < j < k — f(z) < f{J).

Proof. Suppose 35(13.10). By BLNP there exists a minimal such j.
Clearly j # 0,50 f(i) < f(j —1) Vi =j — 1, and hence f(i) < f(5 —1).
But f(5 - 1) #0by (13.9),s0 f(i) < f(5 —1) <z-f(5—1) = f(§), a
contradiction. Thus (13.10).

13.11 Thm. 2 < £ & exp(z,ky, f1) & exp(z, k2, f2) & fi(ki) = fa(ks) —
ki=k & f1=f2-

Proof. Suppose hyp(13.11) and suppose k; < k;. By (13.7) we have
exp(z, ki, Rstr(fs, k1)), so by (13.2), Rstr(fs, k1) = fi. By (13.6), fa(ky) =
f1(ky), but by (13.10), fa(k;) < fa2(ks). Hence fi(k;) < fi(ks), a contra-
diction, and thus k, < ky. Similarly, k; < k,, so that k; = k;. By (13.2),
f1 = f2. Thus (13.11}.
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13.12 Thm. exp(2,k, f) & i < k — f(i) is a power of two.

Proof. Suppose 3:—(13.12). By BLNP there exists a minimal such 1.
Clearly ¢ # 0, so f(i — 1) is a power of two and hence f(z) is a power of
two, a contradiction. Thus (13.12).

13.13 Thm. exp(2,k, f) & = < f(k) — (Il < k & |z], = f(1)).

Proof. Suppose hyp(13.13) and suppose z < 1. Then |z|, = 1 = f(0),
and thus £ < 1 — con (13.13). Suppose 2 < z. Then |z|; < z, so |z|; <
f(k). By BLNP there exists ! such that min [z|; < f(I). But |z|; # 1, so
[ #0and hence f(l —1) < |z]; < f(I)=2- f(l - 1). By (13.12), f(I - 1)
and |z|; are powers of two, so by (10.6) we obtain 1 < |z|,/f(l — 1) < 2.
Hence |z|; = f(I). Thus con (13.13), and thus (13.13).

13.14 Thm. exp(z,k, f) & exp(y,k,9) & z <y — f(k) < g(k).

Proof. Suppose 3k3f3g—(13.14). By BLNP there exist minimal such &,
f,and g. Clearly k # 0. Let f; = Rstr(f,k— 1) and let g; = Rstr(g,k — 1).
By the minimality assumption, f,(k—1) < g,(k—1). Therefore f(k) < g(k),
a contradiction. Thus (13.14).



Chapter 14

Exponentiation

Let Q3 be the current theory. Notice: in this chapter we will work in
unbounded extensions of @Q}'. (When I say that something is unbounded,
I mean merely that I do not claim that it is bounded.) We mark with “”
the defining axiom of any unbounded symbol. The “!” serves as a warning
that we may not use Bl (or BLNP, BSD, BS, MIND, MIN, MAXD, MAX,
or FS) on formulas containing the symbol.

14.1 Def! e(k) < Vz3f exp(z, k, f).
14.2 Thm. ind;e(k).

Proof. We have Vzexp(z,0,{(0,1)}) and so £(0). Suppose exp(z,k, f)
and let g = f U {(Sk,z - f(k))}. Then exp(z,Sk,g), and thus (14.2). O

Recall from Chapter 5 the abbreviations C!, C?, and C3, where C is a
unary formula. If p is a unary predicate, we write p'(a) for p(k)'{a], p*(a)
for p(k)*(a], and p®(a) for p(k)*[a. ’

14.3 Thm. (k) — e(k)) & (3(k) & ¢ < k — (1)) & €3(0) &
(e3(k) — €3(Sk)) & (%(k) & €3(1) — 3k + 1) & (k- 1)).

Proof. By (14.2) and REL.

14.4 Def! 21k = z & (k) & 3f(exp(z,k, f) & f(k) = z), otherwise
z = 0.

The uniqueness condition holds by (13.2). It is convenient to have a
symbol T for exponentiation, but we also use the abbreviation a° for a 1 b.

54



14. EXPONENTIATION 55

Let us use semantics to discuss the picture of the number system that
is emerging. The discussion will be informal; we will not distinguish be-
tween a model and its universe, or between individuals and their names (see
[Sh,§2.5]). Let T be the theory whose nonlogical axioms are (3.1)-(14.4) to-
gether with all formulas of the form (BSD), (MIND), and (MAXD) tacitly
used in these formulas (but not the axiom scheme (MBI)), and whose non-
logical symbols are those occurring in these formulas. Let M be a model
of T. For u a nonlogical symbol of T, let us also denote the corresponding
predicate or function of M by u. Let C be an inductive formula of T and
let Mg = {¢£ € M : C3[¢]}. This becomes a model of T if we make the fol-
lowing definitions. Each nonlogical predicate symbol p of T is introduced
in an axiom of the form px;...x, « D; for £&,...,£, in Mg, we say that
pc(&1,.-., &) holds in case Dca[fl,...,f,,] holds. The set M¢ contains 0
and is closed under S, P, +, and -. Every other function symbol f of T is
introduced in an axiom of the form fx; ...x, =y < D; for £,..., £, in Mc
we let fo(&,...,&,) be that element n of Mc such that Dcs[ﬁl,. €y
holds. Now for p a bounded predicate symbol (i.e., for p a predicate symbol
other than ¢), pc is simply the restriction of p to Mc, and for f a bounded
function symbol (i.e., for f a function symbol other than 1), fc is simply
the restriction of f to Mg. A bounded predicate symbol does not change
its meaning; a bounded function symbol does not change its values. It is
different for € and 1. Suppose we have an individual « in Mg such that
e(x) holds. Then for all £ in M, and so certainly for all £ in Mg, there is
a ¢ such that exp(¢, &, @) holds—but nothing guarantees that ¢ € M¢ even
when ¢ and «k are in Mc. But ec(k) holds only if ¢ € Mc, so that ()
and ec(k) may mean different things. Similarly, for £ and « in M¢ we may
have £ T ¥ = ¢ with ¢ & Mc. In this case £ T¢ & = 0, so that ¢ T k and
& Tc k may have different values.

Now if the inductive formula C is bounded, then C holds in the model
Mg¢; this is the method we have been using to successively refine our concept
of number. Each time we perform a bounded induction the model becomes
smaller, and closer to our intuitive idea of what the number system should
be. But for an unbounded C this need not be so. For example, consider
the inductive formula €(«), which we call e for short, and form M,. We
have (k) for all kx in M., but this does not mean that we have a model of
T|Vk e(k)]. We can iterate this process: introduce ¢;,€3,... by
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e1(k) < Vz(e3(z) — 3f(e3(f) & exp(z, k, f))),

e2(k) © Vz(el(z) — 3f(61(f) & exp(z,k, f))),

In this way we obtain successively smaller models,
MQMC QMH QZ_DME., 2 Y

but none of these relativizations helps one whit to establish Vk e(k).

Semantics tells us that there is an intersection M, of these models and
that M., is closed under exponentiation. This seems to be beyond the reach
of syntax, as is the minimal model N. The minimal model is a model of I,
since for any inductive C we have N¢c € N and so N¢ = N. This N is the
legendary standard model of Peano Arithmetic. But how can we express
what membership in N means? The concept of the finite in mathematics
is subtle and elusive.

Semantics is a picturesque metaphor to illustrate syntax, but like all
metaphors it depicts more than may have been intended. A nominalist
distrusts semantical reasoning that involves syntactically inexpressible con-
cepts.

14.5 Thm. 3(k) & €3(l) — (z-y)* = z*-y* & 2F = 2% . 2! & %! = (24)'.
Proof. By (14.3), (13.3), (13.4), and (13.8).

14.6 Def! z is a power of b < Jk(e*(k) & bF = z).

14.7 Thm. z is a power of 2 — z is a power of two.

Proof. Suppose z is a power of 2. Then there exist k£ and f such that
exp(2,k, f) & f(k) = z. By (13.12), z is a power of two. Thus (14.7). O

What about the converse to (14.7)—can we show that 1: z is a power of
two — z is a power of 2? If z is a power of two, we want a k such that 2% = z.
This k& will be much smaller than z, so this does not seem too much to ask.
But we cannot use BLNP to prove (1) because 2¥ = z is an unbounded
formula. This suggests, not that there is an arithmetical obstacle, but
that our formalism is inadequate. The problem of establishing (1) is a
test -problem; the motivation for attacking it is to obtain more powerful
methods. The difficulty is that the objects used to express the relationship
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2% = z, in particular the function f such that exp(2,k, f} & f(k) = z, are
big. We can obtain a bound on f of the form 2¢**, where C is a constant,
but this cannot be polynomially bounded in terms of z (that is, 2¥). Let
us try to go beyond polynomials and use the function # that on powers
of 2 satisfies 2F #2' = 2¥!. Then powers of 2 behave with respect to 1,
multiplication by 2, -, and # like numbers with respect to 0, S, +, and -,
so we should be able to adapt the relativization scheme of Chapter 5 to
include #.

14.8 Def! A(z) & 3k z < 2%,

We would hope to establish that A(z) holds universally, but let us first
investigate the universe of numbers z that do satisfy A(z).

14.9 Thm. A(0) & (AM(z) — A(Sz) & A(Pz)) & (A(z) & AMy) — Az +y)
& Az-y) & (Mz) & w <z — Mw)).

Proof. Clearly A(0). Suppose z < 2* & y < 2! & w < z. Then
Pz < Sz < 2¥*! so A(Pz) and A(Sz). We have z +y < 2 1 (Max(k,!) + 1),
so A(z +y). We have -y < 2% 5o A(z - y). Finally, A(w) is obvious.
Thus (14.9).

14.10 Def! Logoz = k « |z]; = 2¥, otherwise k = 0.
The uniqueness condition holds by (13.11).
14.11 Thm. &*(Log z).

Proof. We have Log, z = 0 — (14.11) since €*(0), so suppose Log, z # 0.
Since |z|; # 0 we have €3(Log, z) from (14.4), and thus (14.11).

14.12 Thm. X(2%).
Proof. From (14.8).
14.13 Thm. A(z) — |z|; = 2Leses = lowolslz,

Proof. Suppose A(z). Then there exist k and f such that €3(k) &
exp(2,k,f) & =z < f(k). By (13.13) there exists | such that I < k &
|z]2 = f(I). We have €*(l). Also, exp(2,!,Rstr(f,!)) and Rstr(f,)({) =
f(l) = z|3, so that |z]; = 2" and | = Logy z = Logy |z],. Thus (14.13)

14.14 Def! x#y = 2o z-Logoy



58 14. EXPONENTIATION

14.15 Thm. Mz #0y).
Proof. By (14.12).

14.16 Thm. z#oy = |z #oyls = |zl #0 Y]z = |zl #oy = = #0 |yl2-
Proof. We have

T#oy =21 (Logoz - Logoy) =
2 1 (Logo |z|2 - Logo ly]2) = |z|2 #o |Yl2-

By (14.11) and (14.3) we have £*(Logo z - Logo y), so by {14.7), z#oy is a
power of two. Hence z #oy = |z #0ylz. Since ||z|3]2 = |z|2 we have {14.16).
14.17 Thm. z#¢1 = 1.

Proof. We have z#01 =21 (Logoz - Logg1) =210=1.
14.18 Thm. A(z) — z#02 = |z|5.

Proof. We have z #0,2 = 2 1 (Logo z-Logo 2) = 2 1 Logo z, so by (14.13)
we have (14.18).

14.19 Thm. z#0y = y#o z.

Proof. We have c#,y = 2 1 (Logoz - Logoy) = 2 1 (Logoy - Logo z) =
y#Hoz.
14.20 Thm. Log (z #0y) = Logo = - Logg y.

Proof. By (14.16), [z #0yls = z#0y = 2 T (Logo z - Logg y), so (14.20).
14.21 Thm. (z #0y) #o2 = x #0 (y #0 2).

Proof. By (14.20) we get (z#oy) #02 = 2 1 (Logo (z#0y) - Logo z) =
27 (Logo z - Logoy - Logo z) = 2 1 (Logo = - Logo (y #0 2)) = = #o (y #0 2)-
14.22 Thm. Ay) & A(z) — z#0 (lyl2 - |2]2) = (2 #o ly]2) - (T #0o |2]2).

Proof. Suppose A(y) & A(z). By (14.13), |yl2 = 2 T Logo|y|z and
|z|]2 = 2 1 Logo |z|2, so that |y|; - |z|]z = 2 T (Logo ly|2 + Logo |z]2) and so
Logo (|yla - |2|2) = Logo |yl2 + Logo |2|;- Hence

z#o(|ylz - |2l2) = 2 T (Logo z - (Logo |ylz + Logo |2[2)) =
(21 (Logo z - Logo |y|2)) - (2 T (Logo z - Logg |2]5)) =
(z #0yl2) - (= #0]2]2)-
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Thus (14.22).
14.23 Thm. Mz) — (y < z > z#oy < z#0 2).

Proof. Suppose A{z) & y < z. Then A(y), and by (14.13) and (13.10)
we have Logyy < Logo 2. By (13.10) again, z#,y = 2 1 (Logo z - Logo y) <
21 (Logo z - Logo z) = = #0 2. Thus (14.23).



Chapter 15

A stronger relativization
scheme

We concluded Chapter 14 by proving some properties of #g, but some
of these held only conditionally, subject to A(x) for certain z. What we can’t
prove, we can postulate. Let Qs be the theory obtained from Q) (this is
the bounded extension of @, defined at the beginning of Chapter 14) by
adjoining a binary function symbol # and the following nonlogical axioms:

151 Az. z#ty = |z#yle = |zl # |yls = [z #y = z# |yl2,
15.2 Az. z#1 =1,
15.3 Az. t#2 = 2,
15.4 Az. z#y =y #z,
155 Az. (z#y)#z2z=z# (y#2z),
15.6 Az. z# (|yl2 - [zl2) = (z# [yl2) - (z# |2]2),
157 Az. y<z »zH#Hy< zH#z.
Metatheorem 15.1 Qs 1s interpretable in Q,.

Demonstration. Let T be the (unbounded) extension by definitions of Q,
obtained by adjoining all of the symbols and defining axioms through the
end of Chapter 14. We construct an interpretation I of @3 in T. Let the
universe of I be A. For each nonlogical symbol u of @3 other than #, let u
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be u, and let #; be #,. By (14.9), A is hereditary and respects 0, S, P, +,
and -. Also, X respects each nonlogical axiom of @,: the nonlogical axioms
of @, because they are open, the defining axiom of < because A is hered-
itary, and the axioms (MBI) by Metatheorem 7.1. By Metatheorem 7.7,
A respects each nonlogical axiom and function symbol of QY. By (14.15)
we have Fr A(z) & Aly) — A(z #1y). The interpretations of the axioms
(15.1)-(15.7) are theorems of T by (14.16)-(14.19) and (14.21)-(14.23). O
If C is a unary formula, we write

C* for Vy(C?ly] — C?ly#z)).

Metatheorem 15.2 Let T be an extension of Q3 and let C be a unary
formula of T. Then the following is a theorem of T:

SREL. C|0] & Vz(C|z] — C[Sz]) —
(CHlz) — Ola]) &
(Cz] & w<z— Cluwl]) &
C*lo] &
(C*z) — C*[Sz] & C*[Pz]) &
(CHzq] & CHza] — Clzy + z2] & CHzy - 23] & CHlzy # 12)).

Demonstration. We prove (SREL) in T as follows. Suppose hyp(SREL).
Suppose C*[z]. We have C?2] by REL, and consequently C*[2#z]. By
(15.4) and (15.3), 2# z = {z|,, and so C3||z|;]. But z < |z|; -z, so by REL,
C3[z] and hence C|z]. Thus C*{z] — C|z]. Suppose C*|z] & w < z & C3y].
Then C?ly # z]. But y# w < y# z by (15.7), so C®ly # w| by REL. Thus
Clz] & w <z — C*w]. By (15.1) and (15.2), y #0 =y # 0], = y#1 =1,
and C![1] by REL. Hence C*[0]. Let a = |z;];-2-|z2;-2. Since Sz; < |z1];-2
we have Sz; < a, Pzy < a, and z; - 23 < a; and since z; + o < ;-2 V
Ty + 2 < 22+ 2 we also have z; + 25 < a. Suppose C*|z,] & C*|z;] & C3[y].
Now

y#a=(y#nl) (y#2) (v#[zh) W#2)=

(y# ) lyla- (y# z2) - lyle < (y#21) - SPy - (y# z5) - SPy
by (15.6), (15.1), and (15.2). But we have C*[y # ;] and C3[y # z,], so by
REL we C3ly #a]. By (15.7) and REL we have C3|y # Sz,], C?[y # Pz,],
C3ly # (z1+12)], and C3|y # (z:-72)]. Finally, we have C*|y # z,] and hence
C3|(y # z1) # 72, so we have C*|y # (z; # z2)] by (15.5). Thus con(SREL),
and thus (SREL). O
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This relativization scheme is also due to Solovay; see |[PD| and [Pu].

Metatheorem 15.8 Let A be a manifestly bounded formula of Q3 that is
inductive in one of its free variables x. Then Qs[A] is interpretable in Qs.

Demonstration. Let C be A /. By SREL, C* is hereditary and respects
0, S, P, +, and -. Also, C* respects each nonlogical axiom of Q,: the
nonlogical axioms of @, because they are open, the defining axiom of <
because C* is hereditary, and the axioms (MBI) by Metatheorem 7.1. By
Metatheorem 7.7, C* respects each nonlogical axiom and function symbol
of Q3. By SREL, C* respects #, and it respects (15.1)-(15.7) because they
are open. Finally, C* respects A by Metatheorem 7.1. Therefore Q;]A] is
interpretable in Qs via the interpretation associated with C*. O

We construct a theory @4, which is an extension of @3 with the same lan-
guage, by adjoining as new nonlogical axioms all formulas of the form {MBI)
(see Chapter 7) where now A is a manifestly bounded formula in the lan-
guage of Q3.

Metatheorem 15.4 Let By,...,B, be theorems of Q4. Then the theory
@3(Bi, ..., B.] is interpretable in Qs.

Demonstration. In the demonstration of Metatheorem 7.3, replace each
occurrence of @, by @y, each occurrence of Q] by @, and the reference to
Metatheorem 7.2 by a reference to Metatheorem 15.3.

Metatheorem 15.5 Q4 15 a bounded theory.

Demonstration. In the demonstration of Metatheorem 7.4, replace each
occurrence of @Q; by Q..

Metatheorem 15.6 Let U be an extension of Q4 and let A be a formula
of U that is bounded over Q4. Then

Bl. ind,A — A

1s a theorem of U.

Demonstration. By Metatheorems 15.5 and 7.5. O

Until possible further notice, when we say that a formula, nonlogical
symbol, or term is bounded, we mean that it is bounded over Q4. We have
BLNP (Chap. 8), BSD, BS, MIND, MIN, MAXD, MAX (Chap. 11}, and FS
(Chap. 12) for bounded formulas. We will work in extensions by definition
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“'”

of @4, marking with each defining axiom of an unbounded symbol. To
start with, we adjoin the symbols and defining axioms of Chapter 14.

Putting all of our interpretability results together, and using the fact
that an extension by definitions of a theory containing a constant is inter-
pretable in it (see [Sh,§4.7]), we see that any extension by definitions of Q4
is locally interpretable in Q.

Why could we not have settled at the beginning on a theory, called
Predicative Arithmetic, with all of the necessary axioms? We would like
to have a formula A in the language of @ be a theorem of Predicative
Arithmetic if and only if @{A] is interpretable in Q. Perhaps this is possible,
but I do not know the answer to the following compatibility problem: if Q[A]
and Q|[B] are interpretable in @, then is Q[A, B] interpretable in Q? In the
absence of a positive solution to the compatibility problem, it is necessary
to take care, as we have, that our methods for adding a formula to the
growing list of predicatively established formulas do not interfere with any
previously established formula.



Chapter 16

Bounds on exponential
functions

Now we take up the question of how big f is when exp(z,k, f) holds.
16.1 Thm. {z} < 146 - (SPz)%.

Proof. From the defining axioms of the function symbols involved, we
find that |zl, < SPz and Encz < SPz - SPz -4, and so we have {z} <
2-(SPz-SPz-4)-4-4+ (SPz-SPz-4)-4 + 2 < 146 - (SPz)%.

16.2 Thm. aUb < 5-SPa- SPbh.
Proof. We have aUb < a-SPb-4+b6<5-SPa- SPb.
16.3 Thm. (z,y) < 5-(Max(z,y))%

Proof. We have (z,y) = (z+ y)? +y < 4 - (Max(z,y))? + ¢* <
5- (Max(z,y))%

16.4 Def. K = 18250.

16.5 Thm. fU {{z,y)} < K-SPf - (SPMax(z,y))*.
Proof. By (16.1), (16.2), and (16.3).

16.6 Thm. 2 < z & exp(z,k, f) & i < k — 1 < f(3).

Proof. Suppose 3¢1—(16.6). By BLNP there exists a minimal such 1.
Clearly ¢ # 0. Therefore 1 — 1 < f(z — 1), and f(i — 1) # 0 by (13.9), so
1<z f(i—1) = f(i), a contradiction. Thus (16.6).

64
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16.7 Thm. 2 < z & exp(z,k, f) - f < K-Rstr(f,k — 1) - f(k)*.

Proof. Suppose hyp (16.7). Then f = Rstr(f,k — 1) U {(k, f(k))}, so
con (16.7) by (16.5), (16.6), and (13.9). Thus (16.7).

16.8 Thm. a# (2-b) = |a|z - (a#b).

Proof. We have a#(2-b) = a#2-bly = a#(2-b];) = (a#2)-

(a# [bl2) = a]2- (a# b).
169 Def. >y o y <.
16.10 Thm. 2 <z > K- 2* <K # (2 2).

Proof. Suppose 2 < z. Observe that 2° = 512 < K. Then K# (2-2) =
Ko+ (K#2) > [Klo - (2°#2) = [Klo - [2]; = [K|2 - 22 - ([2]})* = K- 2%
Thus (16.10).

16.11 Thm. 2 < z & exp(z,k, f) = f <K#(2- f(k)) # (2- f(k)).

Proof. Suppose 3k3f—(16.11). By BLNP there exist minimal such k
and f. Suppose k = 0. Then f = {{0,1)} = {(0+1)2+1} = {2} < 146-4 =
584, but K# 2 #2 = |K|; = 16394, so con (16.11), a contradiction. Thus
k # 0 and therefore

Rstr(f,k = 1) SK#(2-f(k 1)) #(2- f(k - 1)) < K# f(k) # [ (k).

)
By (16.7) and (16.10), f < (K# (2- f(K))) - (K # f (k) # f (k). But
(2-

) #

f
K (2- f(k)#(2- f(k)) = [K# (2 f(k))]2- (K (2 f(k)) # f(k))
= (K#(2-J(k)) - (K# (2 f(k))# (k)
by (16.8), so con (16.11), a contradiction. Thus (16.11).
16.12 Thm. z is a power of two — 3k3f(exp(2,k,f) & f(k) = z).

Proof. We have (16.12):k < z,f < K# (2 -z)# (2 z) by (16.6) and
(16.11). Suppose 3z—(16.12). By BLNP there exists a minimal such z.
Since exp(2,0,{(0,1)}) and {(0,1)}(0) = 1 we have = # 1. Therefore z/2 is
a power of two, and there exist k; and f; such that exp(2,k;, f;) & f,(k;) =
z/2. Let k =k;+1andlet f = fiU{(k,z)}. Thenexp(2,k,f) & f(k) ==z
a contradiction. Thus (16.12). O

This does not yet solve the test problem of Chapter 14 because we
need €*(k) in order to have 2* = r.
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16.13 Thm. (k) < €'(k).

Proof. Clearly ¢'(k) — (k). Suppose exp(z,k,f) & ¢ < k. Then
exp(z,1, Rstr(f,7)) and thus (k) — €'(k). O

We need some sort of bound on f when exp(0, k, f) or exp(1, k, f) holds.
16.14 Thm. exp(0,k,f) & 0 <i <k — f(i) =0.

Proof. Suppose hyp(16.14). Then f(:) =0- f(i — 1) = 0. Thus (16.14).
16.15 Thm. exp(l,k, f) & 1<k — f(i) = 1.

Proof. Suppose 3i—(16.15). By BLNP there exists a minimal such i.
Clearly 1 # 0. Therefore f(¢ — 1) = 1, so f(¢) = 1, a contradiction.
Thus (16.15).

16.16 Def. Proj; z = £ « Jy(z,y) = 2, otherwise £ = 0.
16.17 Def. Proj,z = y — Iz {z,y) = 2, otherwise y = 0.
16.18 Def. Rple(z,g) = (Proji 2, g(Proj; 2)).

16.19 Thm. 7, < 25 & y1 < 42 = (21,31) < (22,92).

Proof. Suppose hyp (16.19). There exist v and v such that =, + u = =,
& y1+v = y;. Therefore (z2,y2) = (z1 +u+ 1+ )2+ +v = {z1, 1) +
(u+v)*+2-(u+v):(z1+ ) +v. Thus (16.19).

16.20 Thm. z < 2 & exp(z,k, f) & exp(2,k,9) — f < g¢.

Proof. Suppose hyp(16.20). Then 1: 2z € f & 20 € [ & 21 # 2z, —
Rplc(z;, g} # Rplc{zs, g), since hyp (1) — Proj; 2; # Proj; z;. Also, z € f
— z < Rple(z,9) & Rple(z,g) € g by (16.19). By FS (see Chapter 12) we
have con (16.20). Thus (16.20).

16.21 Thm. exp(2,k, f) — Ifoexp(0,k, fo) & If1exp(1,k, f1).

Proof. Now (16.20) gives (16.21): fo < f, fi < f. Suppose 3k3f—(16.21).
By BLNP there exist minimal such k and f. Clearly ¥ # 0. Therefore
exp(2,k — 1,Rstr(f,k — 1)), and there exist go and g; such that we have
exp(0,k — 1,90) & exp(1l,k —1,¢1). So now we let fo = go U {(k,0)} and
let fi = g1 U{(k,1)}. Then con (16.21), a contradiction, and thus (16.21).

16.22 Thm. 2 < z & exp(z,k, f) & exp(z,l,g9) — Fhexp(z,k + |, h).

Proof. Observe that (16.22):h <K # (2- f(k)-g(k)) # (2- f(k)-g(k)) by
(16.11) and (13.4). Suppose 3k3f-(16.22). By BLNP there exist minimal
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such k and f. Obviously k¥ # 0. We have exp(z,k — 1, Rstr{f,k — 1)), so
there exists h; such that exp(z,k—1+1, hy). Let h = hyU{{k+1, f(k)-g9(1))}.
Then exp(z,k + I, h), which is a contradiction. Thus (16.22).

16.23 Thm. e(k) < £*(k).

Proof. Clearly e2(k) — e(k) (or if it is not clear, see the proof of REL).
Suppose e(k) & £(I). We claim that 1: 3hexp(z,k + [, k). Suppose z < 2.
There exist f and g such that exp(2,k,f) & exp(2,1,9), so by (16.22)
there exists h; such that exp(2,k +1,h;). By (16.21) we have (1), and thus
z < 2 — (1). Suppose 2 < z. There exist f and g such that exp(z,k, f)
& exp(z,l,g), so by (16.22) we have (1). Thus (1), and thus e(k) & ¢{l)
- e(k + ). By (16.13) we have ¢(k) — £%(k), and so (16.23).

16.24 Thm. 2 <z & exp(z,k,f) & exp(z,l,9) & exp(z,k-I,h) &
J<U—hlk-j) <z#a# f(k)#g(j)
Proof. Suppose hyp (16.24),[0]. Then h(k-0) = 1 and

cHAH () #a(0) = zH4# (k) #1=1.

Thus (16.24),]0]. Suppose (16.24) & hyp (16.24),(S7]. Let

a=z#44 f(k)#4()).
Then h(k-Sj) = h{k-7) - h(k) = h(k-5) - f(k) < a- f(k). But

z# 44 f(k)#9(S5) 2 z# 44 (k) #(2-9(s)) =
a-(z# 44 [(k)#2) > a-(2#4# f(k)#2) =a- (44 f(k)) =
a-|f(k)} = a- f(k).

Thus ind; (16.24), and by BI we have (16.24).
16.25 Thm. 2 < z & exp(z,k, f) & exp(z,l,9) — Jhexp(z, k-1, h).

Proof. Let a = z#4# f(k)#g(l). By (16.24) and (16.11) we have
(16.25):h < K#(2-a)# (2 - a). Suppose 3k3f—(16.25). By BLNP there
exist minimal such k and f. Clearly &£ # 0. As a consequence, we have
exp(z, k—1,Rstr(f,k— 1)), so there exists hy such that exp(z, (k—1)-, k).
Since exp(z,l,g) and k-1 = (k — 1) - | + I, we conclude from (16.22) that
Jhexp(z,k -1, k), a contradiction. Thus (16.25).
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16.26 Thm. e(k) « €*(k).

Proof. We have £%(k) — e(k) by REL. Suppose (k) & ¢(I). We
claim that 1: Jhexp(z,k -1, h). Suppose < 2. There exist f and g such
that exp(2,k,f) & exp(2,l,9), so by (16.25) there exists h; such that
exp(2,k - I, hy). By (16.21) we have (1), and thus z < 2 — (1). Suppose
2 < z. There exist f and g such that exp(z,k,f) & exp(z,l,g), so by
(16.23) we have e(k) — €*(k), and so (16.26).

16.27 Thm. exp(2,k, f) & exp(z,k,g9) & 1 < k — ¢(3) < (2-z) # f(7).

Proof. Suppose 3:—(16.27). By BLNP there exists a minimal such .
Clearly 7 # 0. Consequently, g(1 — 1) < (2-z)# f(i — 1), s0

2-D)#f(0)=2-2)#(2-f-1)) =
2.zl (2-2)# f(i-1)) 2z-9(t—1) = g(s).

This is a contradiction, and thus {16.27).
16.28 Thm. exp(2,k, f) & 2 < z — Jgexp(z,k,g).

Proof. Leta = (2-z) # f(k). By (16.27) and (16.11) we have (16.28): g <
K# (2-a)#(2-a). Suppose Jk3f—(16.28). By BLNP there exist minimal
such k and f. Clearly k # 0. We have exp(2,k — 1, Rstr(f, k — 1)), so there
exists g; such that exp(z,k — 1,1). Let g = gy U{(k,z - g1(k —1))}. Then
con (16.28), a contradiction, and thus (16.28).

16.29 Thm. exp(2,k, f) — (k).
Proof. By (16.28) and (16.21).
16.30 Thm. z is a power of two — z is a power of 2.

Proof. By (16.12), (16.29), and (16.26). O

This is a positive solution of the test problem of Chapter 14. It is
more than just a test problem, because using it we can show that all of
the nonlogical symbols of Chapter 14, except for € and T, are equivalent to
bounded symbols, and it will be essential in the sequel to have a bounded
function symbol for the logarithm.

16.31 Thm. A(z).
Proof. By (16.30), 3k |z| -2 = 2*. But z < |z|, - 2, so (16.31).
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16.32 Def. Logz =k < 3f(f < K#(2-|z|s) # (2-]z]s) & exp(2,k,f) &
f(k) = |zl2)-

The existence condition holds by (16.30) and (16.11), and the uniqueness
condition holds by (13.11).

16.33 Thm. Logyz = Log z.

Proof. By (14.11), (16.26), and (16.11).
16.34 Thm. z#qy =z #y.

Proof. Write o for

If(f<K#(2-z-y)#((2-z-y) &
exp(2,Logz - Logy, f) & f(Logz-Logy) = z#y).

Then (16.34) < «, by (16.33), (14.11), (14.3), (16.26), and (16.11). Sup-
pose Jy—(16.34). Then 3y—a, so by BLNP there exists y such that min, -e,
ie, mingz#oy # z#y. Since zH#Hey = z#o|ylz and z#y = z# |yla,
we have y = |y|; by the minimality assumption, so that y is a power of
two. Clearly y # 1 and y # 2. Therefore z#¢y = z#,((y/2) - 2) =
(z#0(y/2)) - (z#02) = (z # (y/2)) - (x #2) = z# y, again by the minimal-
ity assumption. This is a contradiction, and thus (16.34). O

Thanks to (16.31), (16.33), and (16.34), we will have no further use for
the symbols A, Logy, and #,. The next result shows that “z is a power
of 0" is also equivalent to a bounded formula.

16.35 Thm. zisapowerofb— (b=0& (z=0vz=1))V (b=1&z=1)
VIkIf(k<z & f<K#(2-2)#(2-2) & exp(bk,f) & f(b) = z).
Proof. By (14.11), (16.26), and (16.11). O
We conclude this chapter by giving the defining axiom for superexpo-
nentiation. The uniqueness condition holds by (12.18).
16.36 Def! z 1 k = z <> 3f(f is a function & Vi(t € Dom f « i <k) &
F0O)=1 & Yii <k < e(f(s) & fe+1) =271 f(:)) & flk) =2),

otherwise z = 0.



Chapter 17

Bounded replacement

Let @) be the current theory.

Metatheorem 17.1 Let T be an eztension of QYy, and let D be such that
JyD is a bounded formula of T and zy,...,z, are the variables distinct
from z and y occurring free in D. Then

BR. ais aset & Vz(z € a — JyD) —
3f(f is a function & Dom f =a & Vz(z € a — D,|f(z)]))

ts a theorem of T, and

BRD. {(z,y) : 2 € a & min,D} = f « [ is a function &
Dom f =a & Vz(z € a — (min, D),[f(z}]), otherwise f = 1

is the defining aziom of a bounded function symbol. (The variables in the
term {(z,y) : £ € a & min, D} are a,z;,...,1,.)

Demonstration. Introduce the bounded function symbol f with defining
axiom

frzy...r, =y < miny D, otherwise y = 0.

We will suppress the variables zy,...,z, from now on, and we will write fx
for fxz,...z,. To prove (BR), we argue in T as follows.
We claim that

70
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1. 3z(z € a) — Jz(z € a & Yw(w € a — fw < {z)).

For suppose Ja—(1). By BLNP there exists a minimal such a. There exists
z such that z € a. Let b= {t € a : ¢t # z}. By (10.20), b < a; so by the
minimality of a there exists z; such that z; € b & Yw(w € b — fw < fz).
Suppose fz; < fz and let z = z. Then we have a contradiction, and thus
fr < fz;. Let z = 2;. Again we have a contradiction, and thus (1).
Introduce the bounded function symbol Maxm; with defining axiom

Maxmsa = z < min, (2 € a & Yw(w € a — fw < {z2)),
otherwise z = 0,

and the bounded function symbol Bd; by
Bd;a = [K - (SP Max(a,f Maxms a))*|, - 2.
Then we claim that

2. aisaset - 3f(f <{Bdta)#a & f is a function &
Dom f = a & Vz(z € a — f(z) =1{z)).

Suppose Ja—(2). By BLNP there exists a minimal such a. Suppose ¢ = 0
and let f = 0. Then (2), a contradiction, and thus a # 0. Since a is a set,
there exists zo such that 7o € a. Let b= {t € a : t # z5}. By (10.20),
2-b < a. By the minimality of a there exists g such that scopes;(2)a[gb].
Let f = g U{{(zo,fzo)}. Then f is a function, Dom f = a, and Vz(z € a —
f(z) = fz). By (16.5) we have

By (1) we have Bd¢b < Bd; a, so by (16.8) we find
f < (Bdea)- ((Bdra) #b) = (Bdra) # (2-8) < (Bdra) #a.

Hence we have con (2), a contradiction, and thus (2).

Now suppose hyp (BR). There exists f such that scopes; (2). Suppose
z € a. Then 3yD, so by BLNP we have 3y min, D. Thus z € a — D,[f(z)],
and thus (BR).

The uniqueness condition for (BRD) holds by (12.2), and we have
3f rhs (BRD): (Bdia) #a,z2 < a. O

Whenever a term of the form {(z,y) : £ € a & min, D} occurs, it is
understood that the corresponding defining axiom of the form (BRD) has
been adjoined to the theory. We will write
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{{z,y) :z € a & D} for {(z,y):z € a & min, D},

though we usually use this abbreviation only when - D < min, D. Also,
we write

{{z,b):z € a} for {{z,y):z€a &y =D}

where y is the first variable in alphabetical order distinct from z and a and

not occurring in b.



Chapter 18

An impassable barrier

Let us pause to examine from an impredicative point of view what we
are doing. Take a strong theory T containing O and S, say an extension
by definitions of Peano Arithmetic I or even of ZFC (Zermelo-Fraenkel set
theory with the axiom of choice). Let T be the theory obtained by adjoining
a unary predicate symbol ¢ and the axiom

Fin. ¢(0) & (#(z) — 6(Sz)).

This adjunction does not increase the power of the theory in any way;
we can for example interpret ¢{z) by z = z. If T is an axiomatization of
arithmetic, say an extension by definitions of I, then by a specific number we
mean a variable-free term b of T; if T is an extension by definitions of ZFC
containing the constant w denoting the set of all natural numbers, then by
a specific number we meapn a variable-free term b of T such that Fr b € w.
We say that a specific number b is a finite number in case -4 ¢(b).

Now consider a specific number b, such as 10000 or 10 T 10 1 10, and
try to prove ¢(b). The initial reaction of some mathematicians to such
a problem is a failure to see the difficulty: they suggest proving ¢(b) by
induction. But even if the induction principle is an axiom scheme of T,
we do not have induction available for ¢(z), because the axioms of T say
nothing about formulas containing ¢. A second reaction is that the problem
is trivial because there is an obvious proof in b steps. This observation
manages to be both meaningless and incorrect; meaningless because of the
ubiquitous pun confusing the formal and genetic concepts of number, and

73
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incorrect because there are specific numbers b for which one can show that
there is no proof in T of ¢(b). That is, there is a specific number that is
not a finite number.

To see this, we will let T be an extension by definitions of I. We as-
sume that I is consistent; otherwise there is indeed a proof in T of ¢(b).
Consider Godel’s construction of a closed formula ¥YnC|r| that is unprov-
able even though C[0],C[1],C]2], ... are all provable. Let D be the unary
formula Cin| — Vn Cin|. Then 3n Dn| is provable, since it is equivalent to

the tautology Vn C[n] — Vn C|n], but D[0], D[1}, D[2], ... are all unprov-
able, since from a proof of one of them and the proof of the corresponding
theorem among C[0], C[1], C[2], ... we would immediately obtain a proof

of Vn C|n]. Now consider the constant N with the defining axiom
1. N =n < Dn| & Ym(m < n — -D|m|).

The existence condition holds by the least number principle and the unique-
ness condition is obvious. We assume that (1) is an axiom of T. We claim
that ¢{N) is not a theorem of T. To see this, take a model of the consistent
theory obtained by adjoining -D{0], =D{1], =D|2], ... to T and represent ¢
by membership in the smallest subset of the universe of the model contain-
ing the individual representing 0 and closed under the function represent-
ing S. Then ¢(N) is not valid in the model, so ¢(N) is not a theorem of T.
I am grateful to Simon Kochen for this example.

Now consider a specific number b of the form f(0,....0). where f is
a function symbol representing in T the primitive recursive function F.
All mathematicians apparently believe that it is meaningful to speak of
the number p such that if p is the term S:--S0 with p occurrences of S,
then b1+ p =b. To the Cantorian, p exists in a Platonic world; the in-
tuitionist is convinced that p can in principle be constructed; the finitist
accepts p because it is finite. But the argument that b is a finite number
because there is a proof of ¢{b) in p steps is circular—the number p is itself
given as F(0,...,0), and how do we know that the putative proof will ever
terminate? Consider the example that b is SSO {# SSSSS0. What does it
mean to speak of the termn S---SO with 2t 5,0r 2727212712, or 265936
occurrences of S? This involves the genetic concept of number. But if one
produces occurrences of S at the rate of one every 10™2* seconds, which is
about the time it takes light to traverse the diameter of a proton, and if
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the age of the universe is taken to be twenty billion years, then it will take
more than 10'°%8 ages of the universe before 2 f 5 occurrences of S have
been produced (and by the same token, what genetic meaning can 101%68
have?). The point is that to regard 2 { 5 as standing for a genetic number
entails a philosophical commitment to some ideal notion of existence. To
a nominalist, 2 f} 4 stands for a number, 65536, to which one can count,
but 2 {} 5 is a pair of arabic numerals with a vertical double arrow between
them, and there is not a scintilla of evidence that it stands for a genetic
number. There is a story of a bank employee who was told to count a
bundle of bill to verify that there was actually a thousand of them. The
employee began to count them: 1,2,3,...,61,62,63—and then stopped,
being convinced that since it had checked perfectly all that way it must be
correct.

There are more efficient ways of using the axiom (Fin) than step by step
as a rule of inference, and we can actually prove ¢(b) for specific numbers b
much bigger than those we can actually count to. For example, let

ag =2, a; = ag-ap, a2 = aj-ay, ..., aje = a5 * 415,

so that I a;s = 2 1+ 5. Form ¢3(z). Then ¢*(z) respects multiplication and
is stronger than ¢(z), so one quickly obtains proofs of

¢3(30), ¢3(al)a ¢3(32), cees ¢3(3-16)’ ¢3(2 ﬂ5)a

and so of ¢(2 f} 5). Encouraged by this success, one might expect that for
every construction of a function symbol f representing a primitive recur-
sive function, one could constuct an inductive predicate symbol ¢' stronger
than ¢ to be used in proving ¢'(f(0,...,0)) and so ¢(f(0,...,0}}, but this
is not so. The reader may enjoy seeing how to construct proofs of the for-
mulas ¢(2 1 6),$(2 1 7),...,6(2 ft 2 1 4) in extensions by definition of T.
But there are limits to such methods; no one will ever prove ¢(2 # 2 f 5).
Proofs ordinarily involve the use of quantifiers, and Hilbert and Ackermann
showed how to eliminate quantifiers from a proof. When all quantifiers have
been eliminated, we are reduced to using (Fin) step by step as a rule of
inference, and so a proof of ¢(b) with quantifiers eliminated must have at
least p steps, whére 1 p = b. But one can estimate the increase in the
length of a proof when quantifiers are eliminated, and so obtain a lower
bound on the length of the original proof. As one can see from this de-
scription, the argument involves accepting rather large formal numbers as
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standing for genetic numbers. The arguments given in this chapter to es-
tablish Assertions 18.1 and 18.2 are finitary, but no claim is made that they
can be carried out predicatively.

By the rank of a formula we mean the number of occurrences of I
in it. In the following Assertions we will use proof (in a theory T) to
mean a sequence of formulas of T each of which is an axiom of T, is a
tautological consequence of preceding formulas, or can be inferred by 3-
introduction from a preceding formula (see the discussion of induction on
theorems in [Sh,§3.1]), and a proof of A is a proof whose last formula
is A. By the rank of a proof we mean the maximal rank of the formulas
in it. Let Z be the theory whose nonlogical symbols are 0 and S, and
whose nonlogical axioms are (3.1) and (3.2); i.e.,, Sz # 0 and Sz = Sy —
z = y. Then tz p; # p, whenever p; is unequal to p,. We use various
arithmetical symbols metamathematically, including T for exponentiation
and 1} for superexponentiation.

Assertion 18.1 Let T be a consistent open extension of Z, and let b be
a variable-fregterm of T suchthat b1 b # p for all p withp < 2 ft u. Then
any proof in T of ¢(b) of rank 7 has at least 2 f} (g — 2 -7 — 3) formulas.

Argument. Refer to the proof of the Consistency Theorem in [Sh,§4.3].
Assume that we are given a proof in T of ¢(b) of rank 7 with 5 formulas.
By Lemma 1 of [Sh,§4.3], ¢(b) is a tautological consequence of formulas
in A('i‘) Let us examine the proof of Lemma 1 to see how many are
required. Let F be the smallest function such that for any proof with
A formulas of a formula A in a theory U, any closed instance of A is a
tautological consequence of F(X) formulas in A(U). Then we have from
the proof of Lemma 1 that ‘

F(1)=1 and F(}) < max (il F(f),1 + max F(ﬂ))
#=1

(according as A is an axiom, is a tautological consequence of preceding
formulas, or is inferred by 3-introduction from a preceding formula). Hence
F()) < 2*— 1, and so ¢(b) is a tautological consequence of 27~! formulas
in A(T). Let U be the theory T[~¢(b)]; then U is an open inconsistent
theory, and there is a special sequence (that is, a sequence of formulas
such that the disjunction of their negations is a tautology) of 27 formulas
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in A,(U). We let K(v) be the minimal number of formulas in a special
sequence all of whose formulas are in A,(U). Then K(r) < 27. Since
2 (p—2-7—3) =Log(2ft (r—2-7—2)) and Log K(7) < n, it suffices
to show that 2 1t (p — 2 -7 — 2) < K(7).

We claim that 2 ff ¢ < K(0). From a special sequence containing K(0)
formulas in Ag(U) we obtain, upon deleting the instances of identity axioms
and equality axioms, a quasi-tautology —A; V---V -A,, where each A,
for a from 1 to A is an instance of a nonlogical axiom of U, and A <
K (0). Since T is consistent, T is consistent, because we can interpret ¢(z)
by £ = z. Therefore the axiom —¢@(b) of U must be one of the A,. Let the
other formulas among the A, that contain ¢ be (Fin)[b,],...,(Fin)/b,], so
that v < K(0), and let Ty be

T[(Fin)[by],. .., (Fin){b,]].
Then we have

1. Fp, ¢(b).

Let B, be the formula by =pVv---Vb, =p. Since T is a consistent ex-
tension of Z, at most v of the formulas B, are theorems of T. Suppose
v < 24 p. Then there is a p with p < 2 f} ¢ such that we can consistently
adjoin -B, to T. But then there is an interpretation I of Ty in T[-B,] in
which

or(z) s z=0vz=80V---Vz=p;
in fact, for 8 =1,...,7v we have

FT[ﬁBy]bﬁ:OVbﬁ:SOV---\/bﬁ:f)“’
Sbg = 0V Sby =S0V .-V Sbg

since | p,] bg # p. Using (1) we obtain a proof in T[-B,| of ¢(b), i.e. of
b=0vb=S80V---Vb=p, which is impossible. Thus 2 § ¢ <~ < K(0),
which establishes the claim.

Consider a special sequence of x formulas. In the proof of Lemma 2
of [Sh,§4.3|, the special sequence is divided into three portions: A; for
i = 1,...,r; Byla;] » 3xB for j = 1,...,p; and 3xB — By]r|, so that

r+ p+ 1 = k. From this a new special sequence is obtained (with the
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formulas belonging to the special constant r eliminated), and the number
of formulas in it is r- (p + 1). Since r + (p + 1) = «, this is at most
Qt(4,k*). The next time we eliminate formulas belonging to a special
constant we get at most Qt(4,x*) (in fact, at most Qt(43,«*)) formu-
las, and when we have eliminated all formulas belonging to special con-
stants of maximal rank we get at most Qt(4,x 72 1 ) formulas. That is,
4-K(v—-1)< K(v) 1271 K(v). Let

L(v) = K(v) + Log(Log K(v) + 1) + 1.

Then4-K{r—1)<2127L(vr—1)and L(r—1) <2127 L(r). We have
already seen that 2 f} p < K(0). Therefore 2 {} (1 — 1) < L(0), so

20 (u—3) < L(1),...,2 0 (- 2-7—1) < L(r),

and hence 2 f} (4 — 2-7 — 2) < K(7), as was to be shown. OJ

Earlier I said rather dogmatically that no one will ever prove the formula
¢(2 2 11 5). Assertion 18.1 gives some evidence for this. Suppose we try
to prove ¢(2 {} 2 # 5) starting from a consistent extension T of Z to which
we adjoin (Fin). The theory T may not be open, but by Skolem’s Theorem
(see [Sh,§4.5]) it has a conservative open extension T°, and each axiom
of T can be proved rather quickly from the corresponding axiom of T°.
However, in Assertion 18.1 we used a restricted notion of proof. There
are various devices, discussed in Chapters 3 and 4 of [Sh], that shorten
a proof: use of extensions by definition, the Deduction Theorem, special
constants, and so forth. One has the impression on reading about these
devices that they shorten proofs by at most exponential factors, which
are quite negligible in comparison to the bound of Assertion 18.1. This
impression is worth studying in detail; we will do so later on. For the
present, let me summarize by saying that I can count to 2 ft 4 but not 2 4 5,
and I can prove ¢(2 1 2 1 4) but not (2 1 2 1 5).

Now we turn to the consequences of Assertion 18.1 for the predicative
theory of arithmetic that we are developing. The reader may have wondered
why we did not extend the relativization scheme to incorporate 7 instead
of #. If one looks at the proof of REL in Chapter 5, the natural next step
would seem to be to let C* be an abbreviation for Vy(C3ly] — C3ly 1 zJ),
and then try to establish the further claims
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16. C4z] — ¥z,

17. CYo],

18. C*z] — C[Sz],

19. CYz] & u <z — CYul,

20. 64[11} & C“[zz] — C“[xl + z2],

21. CYz,] & Clzy) — Ctz; - 34,

22. Ctz;] & CYzy] — Czy 1 7).
The trouble in trying to establish (22) is that T (unlike +, -, and #) is
not associative. We cannot in this way extend the relativization scheme to
incorporate . This raises the question as to whether some other scheme
might work, but the following Assertion is that there is no relativization
scheme incorporating 1 for the generic inductive formula ¢. See also [PD].

Assertion 18.2 Let T be a consistent extension of Q. 1: No inductive
formula of T is stronger than ¢(z) and respects 1. 2: No inductive formula
of T is stronger than ¢(2 4 ).

Argument. Suppose C, is an inductive formula of T that is stronger
than ¢(z) and respects 7, and let C; be C;{2 {} z]. It is easy to see that
210=1,20z£0—-20Sz=21(2fz),and2fz=0—-218z=0
are theorems of Q. Therefore C, is inductive and stronger than ¢(2 {} ).
Thus to establish (1) it suffices to establish (2).

Suppose C, is an inductive formula of T that is stronger than ¢(2 1 ).
Let T® be an open conservative extension of T; this exists by Skolem’s
Theorem (see [Sh,§4.5]). The formula C% respects addition, so that

Fa Cilz] - Cllz + 2.

Hence the number of formulas in a proof in TO of o(2 1 (21 p)) grows
only linearly with p while the rank remains constant, which contradicts
Assertion 18.1. Thus Assertion 18.2 holds. O]

This result may serve to deepen one’s mistrust of the induction principle.
There is a barrier separating the predicative from the impredicative, a
barrier as absolute as that between the genetic and the formal, and more
sharply delineated than the debatable demarcation between the finite and
the infinite.

As syntactical methods for establishing certain inductions have failed,
we may be tempted to turn to semantics and appeal to the set w of all
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natural numbers. Of course it is a theorem of axiomatic set theory that
formalized Peano Arithmetic is consistent, but this is not what people have
in mind who argue that Peano Arithmetic is consistent because its axioms
are true statements about w. What is at issue here is not the familiar
construct of formal mathematics, but a belief in the existence of w prior
to all mathematical constructions. What is the origin of this belief? The
famous saying by Kronecker that God created the numbers, all else is the
work of Man, presumably was not meant to be taken seriously. Nowhere
in the book of Genesis do we find the passage: And God said, let there be
numbers, and there were numbers; odd and even created he them, and he
said unto them, be fruitful and multiply; and he commanded them to keep
the laws of induction. No, the belief in w stems from the speculations of
Greek philosophy on the existence of ideal entities or the speculations of
German philosophy on a priori categories of thought. An appeal to w to
justify the induction principle is no more secure than are these philosophical
systems, and yet it is hard to relinquish. We are creatures (Kronecker had
it backwards), not too much older than an infant in a crib, and we still feel
the urge to count on something when we count. The infant counts on its
fingers, the mathematician counts on w—but the infant at least knows its
fingers to exist. The mathematician’s attitude towards w has in practice
been one of faith, and faith in a hypothetical entity of our own devising, to
which are ascribed attributes of necessary existence and infinite magnitude,
is idolatry.

We now have an extensive development of predicative arithmetic and
some idea of its limitations. These limitations were found using the Consis-
tency Theorem. The proof of the Consistency Theorem is finitary; in fact,
it was devised with the laudable aim of defending formal mathematics from
the attacks of the intuitionists. But can the Consistency Theorem itself be
established predicatively? More generally, which results of mathematical
logic can be established predicatively? Using our stringent test of predica-
tivity as interpretability in @, we can study this question by arithmetizing
syntax within our predicative theory of arithmetic and seeking predicatively
to prove arithmetizations of the fundamental results of finitary mathemat-
ical logic. Let us do this, following [Sh] in shameless detail. It is a long
journey. Before setting out we may remark that it is doomed to failure.
The Consistency Theorem can be used to prove the consistency of @, so if
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we could establish, within our theory, both it and Gédel’s theorem on the
impossibility of self-consistency proofs, then we would have a contradiction.
This indicates that at least one of these two pillars of finitary mathemati-
cal logic, the Hilbert-Ackermann Consistency Theorem and Gédel’s Second
Theorem, makes an appeal to impredicative concepts.

In addition to philosophical objections to impredicative methods, one
may have mathematical misgivings about their use. Perhaps the place to
look for possible trouble is not in the upper branches of set theory, but
rather at the very roots in arithmetic where impredicativity first appears.



Chapter 19

Sequences

In this chapter we will predicatively arithmetize the basic syntactical
notions of juxtaposition, substitution, and occurrence.

19.1 Thm. 3zVw f(w) < f(z).

Proof. We have (19.1):2 < f,w < f. Suppose 3f-(19.1). By BLNP
there exists a minimal such f. Suppose —(f is a function) v f = 0, and let
z = 0. Then (19.1), a contradiction, and thus f is a function & f # 0.
By (12.2) there exists t such that ¢ € f, and there exist z and y such that
(r,y) = 1. Let ¢ = {s € f : s # t}. By the minimality of f there exists
z; such that Ywg(w) < g(z;). Suppose f(z1) < f(z) and let z = z. Then
(19.1), a contradiction, and thus f(z) < f(z1). Let z = z,. Then (19.1), a
contradiction, and thus (19.1).

19.2 Def. Maxm f = z + min, Vw f(w) < f(2).

The existence condition holds by (19.1) and BLNP, the uniqueness con-
dition is obvious, and we have Jzrhs (19.2):2z < fiw < f.

19.3 Def. Sup f = f(Maxm f).

19.4 Def. u is a sequence < u is a function & 3n¥i(7 is in the domain of
v 1<i<n).

19.5 Def. Lnu = n < u is a sequence & Vi(7 is in the domain of u «
1 <1 < n), otherwise n = 0.

19.6 Def. Chopu = {z € u:z # (Lnu,u(Lnu))}.

82
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19.7 Thm. u is a sequence & u # 0 — Chop u is a sequence & Ln Chopu+
1=Lnu & 2-Chopu < u.

Proof. Suppose hyp(19.7). Then Chopu is a function and Vi{7 is in
the domain of Chopu < 1 < ¢ < Lnu — 1), so Chopu is a sequence and
LnChopu + 1 = Lnu. We have 2 - Chopu < u by (10.20). Thus (19.7).

19.8 Thm. Lnu < Logu.

Proof. Suppose Ju—{19.8). By BLNP there exists a minimal such u.
Suppose —(u is a sequence) V v = 0. Then Lnu = 0 and so (19.8), a
contradiction. Thus u is a sequence & wu # 0. By the minimality of u
and (19.7), Ln Chop v < Log Chop u. Since 2 - Chopu < u we have Lnu =
LnChopu + 1 < LogChopu + 1 < Logu. Hence (19.8), a contradiction,
and thus (19.8).

19.9 Thm. Jalaisaset & Vi[icao 1< logz) &
a < (730 - (Log z)?) # z).

Proof. Suppose z = 0 and let a = 0. Then (19.9), and thus (19.9).[0].
Suppose (19.9). Then there exists a such that scopes,(19.9). We have
Log (z + 1) = Logz — (19.9).[Sz], so suppose Log (z + 1)} # Logz. Then
Log(z+ 1) = Logz+1and |z + 1|2 = |2 z|;. Let a; = a U {Logz}. Then
ay is a set and Vi(i € a; < ¢ < Log(z + 1)). Let ¢ = 730 - (Log (z -+ 1))>.
By (16.2), (16.1), and (16.8),

a; <5-SPa-146 - (Logz)? <

730 - (Log z)* - ((730 - (Log z)*) # z) <

leiz-(c#z)=c#(2-2) =c#2-zh=cH# e+ 1= c#(z+1)
Thus (19.9),{Sz], and thus ind, (19.9). Hence (19.9) by BL
19.10 Def. Setlogz = a <« aisaset & Vi(1 € a « 1 < Log z).

The uniqueness condition holds by (12.2), and by (19.9) we have the
existence condition and Jarhs (19.10): a < (730 (Log (z + 1))?) # (z+1),
1 < Max(a, Log z).

19.11 Def. Explogin(z,y) = f < exp(z,Logy, f).
The existence condition holds by (14.11) and the uniqueness condition

holds by (13.2). Suppose exp(z,Logy, f). Let z = Max(z,2). There exists
g such that exp(z,Logy.g). We have f < g by (16.20) and we have g <

K#(2-g(Logy)) # (2 - g(Log y)) by (16.11). But
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g(Logy) = 2T Logy <27 ((Logz + 1) - Log y) <
(2-2)#y=Max(2-z,4) #y.

Thus we obtain that 3frhs(19.11): f < K# (2 - (Max(2 - z,4) #vy)) #
(2 (Max(2- z,4) #y)).

19.12 Def. Explog(z,y) = Explogfn(z,y)(Logy).

19.13 Thm. Explog(z,y) = z™8V.

Proof. By (16.26). O

The point is that although the term z 7 Logy contains the unbounded
function symbol 1, it can be written as a bounded function symbol applied
to z and y.

19.14 Def. Expln(z,y) = Explogfn(Ln y).
19.15 Thm. Expln(z,y) = .
Proof. By (19.8).
19.16 Thm. u is a sequence — u < (K- (Lnu - SP Sup u)*)lrx.

Proof. We have con (19.16) «— u < ExpIn(K - (Lnu - SP Supu)*, u).
Suppose Ju—(19.16). By BLNP there exists u such that min, —(19.16).
(I hope that no one will object that ( )* involves an unbounded function
symbol!) Clearly u # 0. Let n = Lnu and let v = Chopu. Then v <
(K-{(n~-1)-SPSupu)?)*!. We have u = v U {{n,u(n))}, so by (16.5) we
have con (19.16), a contradiction. Thus (19.16).

19.17 Thm. v is a sequence & Lnu < Logy & Supu <z —
u<(2-K-(Logy-SPz)*) #y.

Proof. Suppose hyp (19.17) and let w = K - (Logy - SPz)*. By (19.16)
we have v < w T Logy < 21 ((Logw + 1) - Logy) < (2 w) # y, and thus
(19.17). O

Let u, be either a unary function symbol or the empty expression, for
all u from 1 to v. We use

Arupx; <ag,...,ux, < a,

as an abbreviation for A — A’', where A’ is the formula obtained by replac-
ing each part of A of the form 3x,B by 3x,(u,x, < a, & B), for all u from
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1 to v. If all the u, are the empty expression, this agrees with our previous
notation (see Chap. 7).

If x occurs in A only in parts of the form Ix(x is a sequence & B)—or
more generally, if A is equivalent to the formula obtained by replacing each
part of A of the form 3xB by 3x(x is a sequence & B)—and if we have

A:Lnx < Loga,Supx <b

or
A:Lnx < Lna,Supx < b,

then it follows from (19.17) and (19.8) that
A:x < (2-K-(Loga- SPb)*) #a.

In showing a formula to be bounded, we will usually write one of the former,
leaving the latter to be inferred.
Now we introduce juxtaposition.

19.18 Def. u+v = {{i,y) : 1 € Setlog(u-v) & 1 <7 < Lnu + Lnv
& (1 <i<Llnu—>y=u(l)) & (Lnu+1 <7 < Lnu+ Lnv —
y = v(i — Lnu))}.

19.19 Thm. u + v is a sequence & Ln(u*v)=Lnu+ Lnw.

Proof. Clearly u xv is a function. We have Vi(7 is in the domain of u % v
— 1<7<Lnu+Lnv) since Lnu+ Lnv < Log (u - v) by (19.8).

19.20 Thm. {u*v) *w = u * (v * w).

Proof. Let | = (u*v) *w and let r = u x (v * w). We claim that
1: {(1) = (7). Suppose 2: 1 < ¢ < Lnu. Then (1) = (u * v)(¢) = »(:) and
r(¢) = u(7). Thus (2) — (1). Suppose 3: Lnu+ 1 <7 < Lnu+ Lnv. Then
1) = (w*v)(¢) = v(¢ — Lnu) and r(7) = (v *w)(7 — Lnu) = v(¢ — Lnu),
and thus (3) — (1). Suppose 4: Lnu+Lnv+1<¢<Lnu+ Lnv+ Lnw.
Then we obtain {(z) = w(¢ = (Lnu + Lnv)) = w(i — Lnz — Lnv) and
r{1) = (v+w)(i — Lnu) = w(¢ — Lnu — Lnv), and thus (4) — (1). Suppose
5:7=0VLnu+Lnv+Lnw < 7. Then [({) = 0 and r(z) = 0, and thus
{5) — (1). Hence {1), and by (12.2) we have (19.20).

19.21 Def. §um(u,v) < u and v are sequences & Lnu = Lnv &
v(l) =u(l) & Vi(1 <7¢<Lnu— v(i+1)=0v()+ult+1)).
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19.22 Thm. u is a sequence — Jv(sum(u,v) & Supv < Lnu - Supu).

Proof. We have (19.22):Lnv < Lnu,Supv < Lnu - Supu. Suppose
3u—(19.22). By BLNP there exists a minimal such u. Suppose u = 0 and
let v = 0. Then (19.22), a contradiction, and thus « # 0. Let n = Lnu
and let u; = Chopu. There exists v; such that sum(uy,vi} & Supv; <
(n—1)-Supu;. Let v = vy U {(n,v1(n — 1) + u(n))}. Then sum(u,v). We
have

Supu = Max(Supvy,vi(n — 1) + u(n)) <
(n—1)-Supu + Supu =n-Supu,
so that (19.22), a contradiction, and thus (19.22).
19.23 Def. > u = v < sum(u,v), otherwise v = 0.
The uniqueness condition holds by (12.17), and we have
Jvrhs(19.23):Lnv < Lnu,Supv < Lnu - Supv.
Notice that > u is the sequence of partial sums, and the total sum is
(X u)(Lnwu).

19.24 Def. prod(u,v) < u and v are sequences & Lnu = Lnv &
v(1) = u(l) & Vi(1 <i<Lnu—v(i+1)=0v() uli+1)).

19.25 Thm. u is a sequence — Jv(prod(u,v) & Supwv < Expln(Supu,u)).

Proof. Suppose Ju—(19.25). By BLNP there exists a minimal such w.
Suppose u = 0 and let v = 0. Then (19.25), a contradiction, and thus
u # 0. Let n = Lnu and let u; = Chopu. Then there exists v; such that
prod(uy,v;) & Supwv; < (Supu;)™ ', Let v = v; U {{n,v;(n — 1) - u(n))}.
Then prod(u,v). We have

Supv = Max(Sup vy, v,(n — 1) - u(n)) < (Supu)™~! - Supu = (Supu)?,

so that (19.25), a contradiction, and thus (19.25).
19.26 Def. [Ju = v < prod(u,v), otherwise v = 0.
19.27 Thm. €(n) « 3a(a is a set & Vi(i € a & ¢ < n)).

Proof. Suppose £(rn). Then there exists f such that exp(2,n,f). We
have n = Log f(n). Let a = Setlog f(n). Then rhs(19.27), and thus
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g(n) — rhs(19.27). Conversely, suppose a is aset & Vi{i € a — 1 < n).
Let u = {{i,z) : ¢ € a} and let f = [Ju. Then exp(z,n,f), and thus
(19.27). O

Let #*x be obtained from — by forming the plural of a noun in —, let a
be a term, and let x be the first variable in alphabetical order not occurring
in — or a. Then we write “a is a sequence of #*x” for

a is a sequence & Vx(1 <x < Lna— a(x)isa—).
Also, we write “a is a set of **%” for
aisaset & Vx(x€a—xisa—).

Let f be a bounded unary function symbol and let a be a bounded term.
Then we write

foa for {{x,f{a{x))):x € Doma}.

Now we shall introduce the juxtaposition of a sequence of sequences.
The following two function symbols locate the sequence, and the index in
that sequence, corresponding to an index in the juxtaposition.

19.28 Def. Locy(7,s) = j <> min,; ¢ < (3. Ln o s)(j), otherwise 5 = 0.
We have 35 rhs (19.28):7 < Lns.
19.29 Def. Locy(1,s) =1 — (3 Ln o s)(Loci (7, s} — 1).

19.30 Def. s* = {{i,y) : © € Setlog (s(Maxm(Ln o s))#s) & 1<:<
(Ln os)(Lns) & y= s(Locy(7,s))(Loc(z,5))}.

19.31 Thm. s is a sequence of sequences — s* is a sequence & Lns* =

(X Ln o s)(Lns}.
Proof. Suppose hyp(19.31). Clearly s* is a function. We have

(X Lns)(Lns) < Sup(Ln ¢os)-Lns =Ln(s(Maxm(Ln os)))-Lns <
Log (s(Maxm (Ln © s}}) - Log s = Ln {s(Maxm (Ln o s)) # s)
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by (14.20), and so Vi(¢ is in the domain of s* « 1 <1 < (3 Ln os)(Lns)).
Thus (19.31).
19.32 Def. (z) = {{1,7)}.

Now we introduce substitution and simultaneous substitution.
19.33 Def. Sub(u,z,v) = {{(t,y) : 1 € Domu & ({u(2)) #z — y = (u(?)})
& ((u(d)) =z —y=10)}"
19.34 Def. Ssub(u,w,s) = {{i,y) : 1 € Domu & -Jj(1 <j<Llnw &
{w(@)) = w(s) =y = (u(®)) & Vj(min; (1 <5 <Lnw & (u(s)) = w(s)
—y =)}
19.35 Def. ult,j] = {(k,u(t+k—-1)) : k€ {k € Domu:1<k <j—i+1}}.
19.36 Def. v occursinu « Fdj(1 <:<j<Lnu & v=ufi,j]).
19.37 Thm. v occurs in u — v < u.

Proof. Suppose v occurs in u. There exist 7 and j such that 1 <1 <
J<Llnu & v=uli,j]. Let

f={{z,w) 1 z€ v & w= (i + Proj; z — 1,Projs 2) }.

Then we have Vz(z € v — z < f(z)) by (16.19). By (12.19) we have v < u.
Thus (19.37). O

Notice that now that we have bounded replacement, we can dispense
with FS {Metatheorem 12.1) and use (12.19) instead.

The proof of (19.37) relies on the fact (16.19) that (z,y) is increasing
in both z and y. This property fails for the usual set-theoretic definition
of ordered pair—it takes a sudden dip when z = y. The result (19.37) will
often be used tacitly in arguments by BLNP.

19.38 Thm. uis a sequence & 1 <17 <Lnu — u|[l,7—1]*uli+1,Lnu] < u.
Proof. Suppose hyp (19.38). Let v = u[1,7 — 1] * u[¢ + 1, Lnu] and let

f={{z,w):2€6v& (Projiz<i-1—-w=2)&
(i < Proj, 2 — w = (Proj; z + 1,Proj, z}) }.

Then we have Vz(z € v — z < f(z)) by (16.19). By (12.19) we have v < u.
Clearly v # u, so v < u. Thus (19.38).
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19.39 Thm. w occurs in v & v occurs in ¥ — w occurs in u.

Proof. Suppose hyp(19.39). There exist 1, j, k, and ! such that v =
ult,j] & w = v[k,l]. Let i, = ¢+ k—1andlet jy = i +1— 1. Then
w = u[éy, f1). Thus (19.39).

19.40 Def. Reverse u = {{¢,u(Lnu +1—14)):7 € Domu}.



Chapter 20

Cardinality

A set has to be small in three ways: the formula, describing it must
be bounded, there must be a bound on its elements, and there must be a
logarithmic bound on its cardinality. We elaborate on this statement in
this chapter and the next.

20.1 Def. f is injective «<» VzVy(z € Domf & y € Domf & z #y —
f(z) £ f(y)-

We use the abbreviations “a is an injective sequence” for “a is injective
& aisasequence”, and “ais an injective sequence of *xx” for “a is injective
& a is a sequence of *#x*”,

20.2 Def. u is an injection into @ < u is an injective sequence & Ranu C a.
20.3 Thm. u is an injection into ¢ — Lnu < Loga.

Proof. Suppose Juda—(20.3). By BLNP there exist minimal such u
and a. Clearly u # 0. Let a; = {z € a:z # u(Lnu)}. Then 2-a; < a
by (10.20), and Chopu is an injection into a,, so Ln Chopuz < Loga; and
hence Lnu < Loga, a contradiction. Thus (20.3).

20.4 Def. Carda = n < min, Yu(u is an injection into @ — Lnu < n).

We have dnrhs(204): n < Loga, Lnu < Loga, Supu < a. The
existence condition holds by (20.3) and BLNP, and the uniqueness condition
is obvious.

90
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20.5 Thm. Carda < Loga.
Proof. By (20.3).
20.6 Thm. Ju(u is an injection into ¢ & Lnu = Card a).
Proof. From (20.4).
207 Thm. z€a& ay={y€a:y+#z} - Carda = Carda; + 1.
Proof. Suppose hyp(20.7), suppose 1: u is an injection into a, and
suppose 2: 1 < j <Lnu & u(jy) = z. Let

v={{i,y):1€Domu & 1<i<Llnu-1&
((<i—y=u() & G<i—y=ult+1))}

Then v is an injection into @¢; and hence Lnv < Card a,, so that 3: Lnu <
Carday + 1. Thus (2) — (3). Suppose 4: Vj(1 < j < Lnu — u(j) # z).
Then u is an injection into a,, so that Lnu < Carda,. Thus (4) — (3),
and thus (1) — (3). Therefore Carda < Carda; + 1. By (20.6) there
exists u, such that u, is an injection into @¢; & Lnwu; = Carda,. Let u =
uyU{{Lnuy +1,z)}. Then u is an injection into a and Lnu = Carda; + 1,
so Carda; + 1 < Carda. Thus (20.7).

20.8 Def. Bda =Maxz(z < a & z € a).
20.9 Def. Expcard(z,a) = Explo.gfn(:c,a)(Card a).
20.10 Thm. Expcard(z,a) = %99,
Proof. By (20.5).
20.11 Thm. a is a set — a < Expcard(730 - (SP Bd a)?, a).

Proof. Suppose 3a—(20.11). By BLNP there exists a minimal such a.
Clearly a # 0, so there exists £ such that z € a. Let a; = {y € a: y # z}.
Then a; < (730 - (SPBda,)?) 1 Carda. But a < 730 - SPa, - (SPz)? by
(16.2) and (16.1), so that

a < (730 (SPBda)?) - (730 - (SP Bda)?)Cda =
(730 . (SP Bd a)Z)Carda
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by (20.7). This is a contradiction, and thus (20.11).
20.12 Thm. f is a function — Card f = Card Dom f.

Proof. Suppose 3f—(20.12). By BLNP there exists a minimal such f.
Clearly f # 0, so there exists z such that z € f. Let ¢« = Dom/, let
h={tef:t+#z},and let gy = {s € a: s # Projz}. Then f; is a
function, Dom f; = a;, and f; < f, so Card f; = Card a,. But by (20.7) we
have Card f = Card f; + 1 and Carda = Card a, + 1, so Card f = Card a,
a contradiction. Thus (20.12).

20.13 Thm. anb =0 — Card (e U b) = Carda + Cardb.

Proof. Suppose 36—(20.13). By BLNP there exists a minimal such b.
Suppose —Jzz € b. Then a Ub = a and Cardb = 0, so con(20.13), a
contradiction. Thus there exists z such that z € b. Let b; = {t € b: t # z}.
Then aNb; = 0, so Card (a U b;) = Carda + Cardb;. By (20.7) we have
Card (aUb) = Card (aUb;) + 1 and Cardb = Card b, + 1, so con (20.13), a
contradiction. Thus (20.13).

20.14 Thm. Je(c is aset &
Vz(z €c Jzdy(zca & yeb & 2= (z,y))) &
Cardc = Carda-Cardb &
¢ < Explog(K - (Max(Bd a, Bdb))*,a # b)).

Proof. Suppose 3b—(20.14). By BLNP there exists a minimal such b.
Suppose =Jyo yo € b and let ¢ = 0. Then (20.14), a contradiction, and thus
there exists y; such that yo € b. Let b; = {t € b : ¢ # yo}. Then there
exists ¢; such that scopes. (20.14)]c1bq]. Let f = {(z,y0) : € a} and let
c=c,Uf. Now ¢; N f =0, so we have Cardc = Carda-Card b, + Card f =
Carda - Cardb; + Carde = Carda - Card b by (20.13), (20.12), and (20.7).
Clearly ¢ is a set and scopey, (20.14). Let k = (Max(Bda,Bdb))*. By
(16.3) we have Bd¢ < 5 - (Max(Bd a, Bd b))?, so that

c<(730-25 k)7 Carde = (K-k) ] (Carda- Cardb) <
(K-k) 1 {Loga-Logb) = (K-k) T Log(a#b) = Explog(K - k,a# b)

by (20.11), (20.5), and (14.20). Therefore we have (20.14), a contradiction,
and thus (20.14).
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2015 Def. axb=c«rcisaset & Vz(z€c o Jzdy(z€a & yeb &
z = (z,y))).

The uniqueness condition holds by (12.2) and the existence condition
and boundedness hold by (20.14).
20.16 Def. Occu = Ran {{k,v) : k € Domu x Domv & FIj(1<i<j<
Lnu & k= {(i,7) & ult,7]=v)}.
20.17 Thm. v occurs in v < v € Occ u.

Proof. From (20.16).
20.18 Thm. f is a function & @ = Dom [ —
f < Expcard(K - (SP Max(Bd a, Sup f))*, a).

Proof. Suppose hyp(20.18). It follows from (20.12) and (20.11) that
f < (730-(SPBd f)?) 1 Card a, so by (16.1) and (16.3) we have con (20.18).
Thus (20.18). O

If x occurs in A only in parts of the form 3x(x is a function & B)—or
more generally, if A is equivalent to the formula obtained by replacing each
part of A of the formm 3xB by 3x(x is a function & B)—and if we have

A:Domx < a,Supx < b,
then it follows from (20.18) and (20.5) that we have
A:x < Explog(K - (SP Max(a,b))*,a).

Similarly, if x occurs in A only in parts of the form 3x(x is a set & B)-—or
more generally, if A is equivalent to the formula obtained by replacing each
part of A of the form 3xB by 3x(x is a set & B)—and if we have

A:Bdx < a,Cardx < Logb,
then it follows from (20.11) and (20.5) that we have
A:x < Explog(730 - (SPa)?,b).

In showing a formula to be bounded, we will usually write one of the former,
leaving the bound on x to be inferred.

The following result shows that if we have a function r on a set (think
of r as a ranking function), then we can enumerate the elements of the set
in such a way that those of lower rank come first.



94 20. CARDINALITY

20.19 Thm. a is a set — 3u({u is an injection into ¢ & Ranu =a &
Vivj(1 <i<Lnu & 1<j<Lnu & r(u(s)) <r(u(y)) — ¢ <j)).

Proof. We have (20.19):Lnu < Loga, Supu < a by (20.3). Suppose
3a—(20.19). By BLNP there exists a minimal such a. Clearly a # 0. Let
ro = {z € r : Proj;z € a} and let z; = Maxmr,. Then z; € a. Let
~a; = {t € a:tF# z;}. By the minimality assumption there exists u, such
that scopes, (20.19),./u109). Let v = u; U {{Lnu; + 1,z)}. Then (20.19), a
contradiction, and thus (20.19).

20.20 Def. Enumer(a,r) = u < min, scopes, (20.19).

We have Jurhs (20.20):Lnu < Loga, Supu < Bda. The existence con-
dition holds by (20.19) and BLNP, and the uniqueness condition is obvious.

20.21 Def. Enuma = Enumer(a,0).



Chapter 21

Existence of sets

Metatheorem 21.1 Let Q) be the current theory, let U be an extension
of @y, let A be a bounded formula of U, and let a and b be bounded terms
of U not containing x or y. Then the following is a theorem of U:

SET. Vx(A - x <a) & Vy(vx(x € y — A) — Cardy < Logb) —
Jy(y is a set & Vx(x € y « A)).

Demonstration. We prove (SET) in U as follows. Suppose hyp (SET).
Write a for

v < Explog(730 - (SPa)%,b) & y is a set & Vx{x €y -» A},

and let y = Maxya. Clearly ay[0], so by MAX we have a. Suppose
A& xédy and let y; = yu{x}. (Here y, is distinct from x and y and
does not occur in A, a, or b.} By (20.11)} we have «,[y;]. a contradiction,
and thus Vx(x € y < A). Thus (SET). O

We have developed a certain amount of set theory, but it is only a small
portion of Cantorian set theory; see Figure 21.1. Different mathematicians
who study the foundations of mathematics incorporate different portions
of set theory into their metamathematical belief system. Platonists discuss
whether measurable cardinals exist, but they believe in R;. In some sense
intuitionists believe in w while finitists believe only in the elements of R,
though it is difficult to make a strict comparison.

.
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The ordinals are depicted on the vertical azis, and the portion of the figure
lytng strictly below the horizontal line through the ordinal o« depicts the
set R, of all sets of rank < «. Here i ts the first inaccessible cardinal and
m 1s the first measurable cardinal. The figure is not drawn to scale.

Figure 21.1: Cantor’s Paradise
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Set theory is abstract, but abstract beliefs affect concrete actions. Some-
one who believes in R; would consider it a waste of time to try to produce
a contradiction from the axioms of ZFC; similarly for R, and Zermelo’s
original axiomatic set theory with separation but without replacement; and
similarly for R,,; and Peano Arithmetic.

To a nominalist it is clear where to draw the line separating the real
from the speculative: Rs, which is a system of 65536 objects, exists—but R,
with its 2 f 5 members, is only a formal construct.



Chapter 22

Semibounded replacement

This chapter is a digression, and I do not intend to use it in the sequel
except in occasional remarks. The semibounded replacement principle dif-
fers from the bounded replacement principle of Chapter 17 in that 3yD is
no longer required to be bounded, though D itself is.

Metatheorem 22.1 Let D be a bounded formula of QY such that z1,...,z,
are the variables distinct from = and y occurring free in D. Consider the
formula

SBR.aisaset & VYz{z € a— JyD) —
3f(f is a function & Dom f = a & Vz(z € a — D,|f{x)])).

Then QY((SBR)] 1s interpretable in Q.

Demonstration. Let D; be min, D. We want to construct the function f
with domain a such that for z € a we have f(z) = y if and only if D;. How
do we know such a function exists? Write ¢[n] for

YaVz,---Vz,(aisaset & Carda<n & Vz(z € a — JyD)—
3f(f is a function & Domf =a & Vz(z € a — Dy))).

We claim that ind, ¢[n]. Clearly ¢[0]. Suppose

¢in] & aisaset & Carda=n+1 & Vz(z € a — JyD).
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There exists z such that 2 € a. Let ¢g = {t € a : t # z}. Then there
exists fo such that f, is a function & Domfy = ay & Vz{z € ay —
D,). Since z € a we have 3w D,,|{2w], so by BLNP there exists w such that
Digylzw]. Let f = fo U {(z,w)}. Thus ¢[rn] — ¢[n + 1], and the claim is
established.

Since ¢ is inductive, we can form ¢* and apply SREL of Chapter 15.
Then we have ¢*[a] — ¢*|Card a], and so ¢*[a] — ¢[Card a], since Card is a
bounded function symbol. Therefore we have

¢Yla] & aisaset & Vz(z €a— FyD) —
Af(f is a function & Dom f=a¢ & Vz(z € a — D))

and a fortiori

1. ¢*la] & aisaset & Vz(z€a— Fy(¢!ly] & D)) —
3f(f is a function & Dom f =a & Vz(z € a — Dy)).

Suppose hyp(1). Then there exists f such that scopes;con {1). By
(20.18) we have

f < Expcard(K - (SP Max(Bd a, Sup f))*, a).

But Sup f = f(Maxm f). Let z = Maxm f. Then z € q, so Jw(¢*|w] &
D.,|zw]), so there exists w such that ¢*{w] & Di,yfzw]. That is, ¢4[f(2)]
and so ¢*|Sup f]. Consequently we have ¢*[f], and thus

2. ¢*la] & aisaset & Vz{z € a— Jy(¢*ly] & D)) —
3f(¢*|f] & f is a function & Dom f=a & Vz(z € a — D)).

But (2) is equivalent to the relativization of (SBR) by ¢*.

Therefore we have an interpretation I of Q)|(SBR)| in Q} constructed
as follows. The universe Uj of 1 is given by Uin < ¢*[n]. For each bounded
symbol u of the theory, uj is u. For each unbounded symbol u of the theory,
uj is the symbol whose defining axiom is given by the relativization by ¢*
of the defining axiom of u. O

We can always introduce a function symbol by means of the defining
axiom
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SBRD! {(z,y) : z € ¢ & min, D} = f < f is a function &
Dom f =a & VYz(z € ¢ — (min, D),|f(z)]), otherwise f =1,

even if D is unbounded, since the uniqueness condition holds. If D is
bounded and we have SBR, such defining axioms are useful.

The theory obtained by adjoining all axioms of the form (SBR), with
D bounded, is locally interpretable in @, but we will continue to work only
in extensions by definition of Q4.



Chapter 23

Formulas

Now we are ready to begin to investigate which results of finitary math-
ematical logic can be established predicatively. We will follow the presen-
tation in {Sh| very closely. See [Sh,§2.4] in connection with this chapter.

It will be convenient to enlarge our stock of variables. We also let A,
B, C,and D- possibly with 0,1, 2, ... as a subscript—be variables, and if
X is a variable we let X’ be a variable. The notion of alphabetical order is
understood to be suitably redefined, with the relative order of the old vari-
ables being unchanged. Generally speaking, our notation in arithmetizing
syntax will correspond to the notation we have been using, following [Sh],
for metamathematical discussion, and we will often use primed variables to
suggest sequences of expressions, but formally all variables remain on an
equal footing.

We will introduce predicate symbols arithmetizing the syntactical no-
tions of variable, predicate symbol, formula, etc. There should be no con-
fusion between the formal use of these predicate symbols and the informal
use of the same terminology in talking about expressions.

Our first task is to introduce the various kinds of symbols.

23.1 Def. X,, = {(2,n}).

23.2 Def. z is a variable < dnz = X,,.

23.3 Def. Fom = ((3,{n,m))).

23.4 Def. f is a function symbol « dndm f = F, .
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23.5 Def. P, = ({4, (n,m))).

23.6 Def. p is a predicate symbol < Indmp = P, .
23.7 Def. = = ({5,0)).

23.8 Def. V = ((5,1)).

23.9 Def. 3 = ((5,2)).

23.10 Def. = = Pyg.

23.11 Def. u is a symbol — u is a variable V u is a function symbol V u is
a predicate symbol Vu =5V u=V VvV u=3.

We will tacitly use the theorem that these disjuncts are mutually exclu-
sive.

23.12 Def. u is a logical symbol «» u is a variable Vu == v u ==V
=V Vuy=3

23.13 Def. u is a nonlogical symbol < u is a symbol & —(u is a logical
symbol).

23.14 Def. e is a constant «— dme = Fg .
The index of a symbo! tells how many arguments it takes:

23.15 Def. Indexu =n <~ Imu=F,,vVImu=P,,V(u== & n=1)
V{e=V & n=2)V (u=3 & n=2), otherwise n = 0.

23.16 Def. u is an expression «» u is a sequence & Vi{1 <7 < Lnu —
(u(1)) is a symbol).

23.17 Thm. u is a symbol « u is an expression & Lnu = 1.

Proof. Suppose u is a symbol. By inspection of the defining axioms,
u is a sequence and Lnu = 1, so that v = (u(1)) and u is an expression.
Thus lhs (23.17) — rhs(23.17). The converse is clear. [J

Next we want to arithmetize the notion of a term. The usual definition
is a generalized inductive definition: an expression is a term in case it is
a member of the smallest set of expressions containing the variables and
closed under the application of v-ary function symbols to v-tuples from the
set, for all . We can relativize this definition to the set of all expressions
occurring in a given expression, because to see whether an expression is
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a term it is not necessary to look beyond the expressions occurring in it.
This is a pattern that we will follow on several occasions.

23.18 Def. Termsu = Mins (s < Occu & (1) & (2)), where

1. Vz(z € Occu & z is a variable — z € ),

2. VfVo'(f is a function symbol & v’ is a sequence of expressions &
Index f = Lnv' & Ranv' Cs & f*v'™* € Occu — f+v'* €3).

23.19 Def. u is a term « u € Terms u.
23.20 Thm. v occurs in ©u — Termsv C Terms u.

Proof. Suppopse v occurs in v and let s; = Termswv N Terms u. Then
it follows that scopemin (23.18)su[s1v], so Termsv < s; < Termsv. Thus
(23.20).

23.21 Thm. ais a term — Vi(1 <7 < Lna — {(a(7)) is a variable v {a{1))
is a function symbol).

Proof. Suppose a is a term and let
s1 = {u € Termsa : con (23.21),ul}.

Then scopemin (23.18).4[51a], so s; = Terms a. Thus (23.21).

23.22 Thm. a is a term < a is a variable v 3f3a'(f is a function symbol
& da'is a sequence of terms & Index f = Lna' & a= f*a'").

Proof. Suppose a is a term and let
$1 = {u € Termsa : rhs (23.22),[u}}.

Then scopemin (23.18),,[51¢], and consequently we have s; = Termsa. Thus
lhs (23.22) — rhs(23.22). Conversely, suppose rhs(23.22). Clearly a is a
variable — @ is a term, so suppose scope 3,0 (23.22). By (23.20), Randa' C
Termsa. Thus a is a term, and thus (23.22).

23.23 Thm. Termsu = {a € Occu : a is a term}.

Proof. Let s = {a € Occu : a is a term}. Then scopey, (23.18), so
Termsu C s. Suppose a € s. Then a € Terms a, so a € Terms u by (23.20).
Thus s C Terms u, and so (23.23).
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23.24 Thm. ¢ is a constant — ¢ is a term.

Proof. Suppose € is a constant. Then scopes, (23.22)s,/(€0], and thus
(23.24).

23.25 Def. A is an atomic formula < Ip3a’(p is a predicate symbol & o
is a sequence of terms & Indexp=Lnd' & A= px*a™).

23.26 Def. Formulasu = Mins(s < Occu & (1) & (2) & (3) & (4)),
where
1. VA(A € Occu & A is an atomic formula — A € s),
2. VA(A€s&=S+A€Occu—T%xAEs),
3.VAVB(Acs& Bes& V¥ AxB€ Occu > Vi AxBEeEs),
4. VAVZ(A € s & zis a variable & F*xz* A € Occu — I+ z* A€ 5).

23.27 Def. u is a formula — u € Formulas u.
23.28 Thm. v occurs in ¥ — Formulasv € Formulas u.

Proof. Suppose v occurs in u and let s; = Formulas vnFormulas u. Then
Scopemin (23.26),,[5,v], so Formulasv < s; < Formulasv. Thus (23.28).

23.29 Thm. Ais a formula — A is an expression.

Proof. Suppose A is a formula and let
sy = {u € Formulas A : con (23.29) 4[ul}.

Then scopemin (23.26) 4|51 4], so s; = Formulas A. Thus (23.29).

23.30 Thm. Ais a formula — A is an atomic formula v 3B(B is a formula
& A==%B)v IB3C(B and C are formulas & A =V*BxC) Vv Jz3B(z
is a variable & Bisaformula & A =3+z*B).

Proof. Suppose A is a formula and let
sy = {u € Formulas A : rhs(23.20) 4|u|}.

Then scopemin (23.26),,[s1 4], so s; = Formulas A. Thus (hs (23.30) —
rhs (23.30). Conversely, suppose rhs(23.30). Clearly A is an atomic for-
mula — A is a formula, so suppose B and C are formulas & z is a variable
& (A==+BV A=V+BxCV A=3+z+B). By (23.28), A is a formula.
Thus A is a formula, and thus (23.30).
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23.31 Thm. Formulasu = {4 € Occu : A is a formula}.

Proof. Let s = {A € Occu : A is a formula}. Then scopemn, (23.26), so
Formulasu C s. Suppose 4 € s. Then A € Formulas A, so A4 € Formulas u
by (23.28). Thus s C Formulasu, and so (23.31).

23.32 Def. u is a designator «» u is a term V u is a formula.

23.33 Thm. u is a designator — Ju'(u' is a sequence of designators &
Index (u(1)) = Lnv' & u = (u(1)) * u"™).

Proof. By (23.22) and (23.30). O
We want to prove the uniqueness of u'; this is the formation theorem.

23.34 Def. u; and u, are compatible < u; and u, are expressions &
Ju(v is an expression & (ugz = uy % v V u; = uz * v)).

23.35 Thm. u; and u, are compatible «— u, and u, are expressions &
Vi(l <¢<Lnu; & 1<1i<Lnu; — ui(7) = ua()).

Proof. Clearly lhs(23.35) — rhs(23.25). Suppose 1: rhs(23.35) &
Lnu; < Lnuy, and let v = up|Lnu; + 1,Lnu,]. Then uy = u; * v, and thus
(1) — lhs(23.35). Therefore rhs(23.35) & Lnu, < Lnu;, — lhs(23.35),
and so (23.35).

23.36 Thm. u; * vy and u; * vy are compatible — u; and u, are compatible.
Proof. By (23.35).

23.37 Thm. u x v; and u * v, are compatible — v; and v, are compatible.
Proof. By (23.35).

23.38 Thm. u'is a sequence & Vi(1 <7< Lnu' — u'({) # 0) - Lnu' <
(Zu'){Lnu').

Proof. Suppose Ju’'~(23.38). By BLNP there exists a minimal such u'.
Clearly v’ # 0. Then Ln Chop v’ < (3 Chop «')(Ln Chop u'), so con (23.38),
a contradiction, and thus (23.38).

23.39 Thm. u' and v' are sequences of designators & Lnu' = Lnv' & u'*
and v'* are compatible — u' = v'.

(See Lemma 1 of [Sh,§2.4].) Proof. Suppose (23.39). Write a for
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~(23.39)pyr|uivy] & u}* occursin v &
v'* occurs in v'* & m =Lnu'*.
1 1

Observe that

Ju!3v} o« Lnu) < Lnu'*, Supu) < u'*,
Lnv} < Lnv'™, Supv) <v'*

by (23.28) and (19.31). We have Jm3u) v} o (let u} = ', let v} = v/, and
let m = Lnu'*), so by BLNP there exists m such that min,, 3u}3v} a, so
of course there exist u} and v} such that a. Let n = Lnuj, so that also
n = Lnv]. Let u, = Chopu} and let vj = Chopv]. Clearly n # 0. We have

rx 0% / tk 0¥k ' : )k 1k H
uy® = uy™ xuf(n) and v}* = vy* xvj(n). Since u}” and v{* are compatible,

ub* and v,* are compatible by (23.36). Since n # 0 we have Lnuy* <
m, so by the minimality assumption we have u) = v, and consequently
ub* = vh*. By (23.37), u}(n) and v}(n) are compatible. Let u = u}(n) and
let v = vi(n). By (23.33), there exist w' and z' such that w' and 2’ are
sequences of designators & Index{u(1)) = Lnw' & Index{v(1)) = Ln2'
& uw=(u(l))*w™ & v={(v(1))*2'*. By (23.36), (x(1)) and (v(1)) are
compatible, so that u(1) = v(1). By (23.37), w'* and 2'* are compatible.
Also, w'* occurs in v'* and 2'* occurs in v'*, and Lnw'* < m. By the
minimality assumption, w' = z' and so u = v; that is, uj(n) = vi{n). We
have already seen that u}, = vj; that is, Chopu]} = Chopu;,. Therefore
u} = v}, a contradiction, and thus (23.39).

23.40 Thm. (formation theorem) u is a designator — 3lu'(v' is a sequence
of designators & Index {(u(1)) = Lnu' & u = (u(1))*u'™).

Proof. We have the existence by (23.33). Suppose u is a designator &
u} and uj are sequences of designators & Index (u(1)) = Lnu} = Lnu,
& u=(u(1))*u}* = (u(1))+u}*. By (23.37), u|* and u}* are compatible,
so u} = uy by (23.39). Thus (23.39).

23.41 Def. Argu = u' <> uis a designator & u'is a sequence of designators
& Index (u(1)) = Lnv' & u = (u(1)) «u'*, otherwise v’ = 1.

The uniqueness condition holds by (23.40), and we have Ju'rhs (23.41):
Lnu' < Lnu, Supu' < wu.
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23.42 Thm. v and v are designators & u and v are compatible — u = v.

Proof. Suppose hyp(23.42). Then (u) and (v) are sequences of desig-
nators, Ln (u) = Ln (v) = 1, (0)* = u, and (v)* = v, so by (23.39) we have
{(u) = (v). Hence u = v, and thus (23.42).

23.43 Thm. u is a designator & 1 <7 < Lnu — i <j<Lnu &
ult, j] is a designator).

(See Lemma 2 of [Sh,§2.4].) Proof. Suppose JuJi—~(23.43). By BLNP
there exist minimal such u and ¢. Suppose ¢ = 1 and let j = Lnu. Then
con (23.43), a contradiction, and thus ¢ # 1. Let v/ = Argu and let vj =
{{(u(1))) *v'. Recall (19.28) and (19.29), and let k = Loc, (7, v}) and let 7; =
Locg(z,v}). Then v'(k) < v and ¢; < 7, so by the minimality assumption
there exists j; such that 7; < j; < v'(k) & v'(k)[iy, 1] is a designator. Let
J =1+71—1;. Then ult, j| = v'(k)[t1, 1] and so con (23.43), a contradiction,
and thus (23.43).

23.44 Thm. (occurrence theorem) u is a designator & 1 <1:¢<j < Lnu
& uli,j] is a designator — uli,j] = u vV 3k3;35(1 < k < LnArgu &
1 <4 <j <Ln((Argu)(k)) & uli,j] = (Argu)(k)lin, 7))

Proof. Suppose hyp(23.44). Suppose 1 = 1. Then u|¢,j] and u are
compatible, so ut, j| = u by (23.42). Thus ¢ = 1 — con (23.44), so suppose
i # 1. Let u' = Argu, let v/ = ((u(1))) * u', let £ = Loc,(¢,v’), and let
i1 = Locy(7,v). By (23.43) there exists j; such that 13 < 77 < Lunu'(k)
& u'(k)[i1, 7] is a designator. Then u|s,j| and u'(k)[d;, j1] are compatible,
so ult,j] = u'(k)[é1, 1] by (23.42). Thus ¢ # 1 — con(23,44), and thus
(23.44).

23.45 Def. ¢ is a bound occurrence of £ in A < z is a variable & A
is a formula & (A(7)) =z & 3B3j(Bisaformula & 1<j<1¢<
J+2+LnB<LnA & Alj,j+2+LnB]=3+%zx*B).

23.46 Def. 7 is a free occurrence of z in u «» r is a variable & u is a
deignator & (u(:)) =z & =(¢is a bound occurrence of z in u).

23.47 Def. z is bound in A « Ji(i is a bound occurrence of z in A).

23.48 Def. z is free in u «> Ji(7 is a free occurrence of z in u).
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When we substitute terms for variables in a formula, we do so only
for free occurrences of the variables, so we introduce the following defining
axioms:

23.49 Def. Subfr(u,z,a) = {{i,v) : ¢ € Domu & (—(¢ is a free occurrence
of zin u) — v = (u(?))) & (¢ is a free occurrence of z in u — v = a)}*.

23.50 Def. Ssubfr(u,z',a') = {(i,v) :71 € Domu & (-3j(1<j<Lnz &
i is a free occurrence of z'(j) inu ) — v = (u(?))) & VYj(min;{1 <j <Lna
& 1 is a free occurrence of z'(3) in u) — v = a'(j))}*.

23.51 Def. uz[a] = v <> (1) V (2), otherwise v = 1, where

1. u is a designator & =z is a variable & a is a term & v =
Subfr(u, z, a),

2. u is a designator & =z is an injective sequence of variables & a is
a sequence of terms & Lnz =Lne & v = Ssubfr(u,z,a).

23.52 Thm. u is a designator & ((z is a variable & a is a term) Vv
(z is an injective sequence of variables & a is a sequence of terms &
Lnz = Lna)) — (u;]a] is a term «> v is a term) & (u,[a] is a formula
— u is a formula).

Proof. Suppose JudrJa—(23.52). By BLNP there exist minimal such u,
z, and a. Let v’ = Argu and let

uy = {(k,u'(k).[a]) : k € Domu}.
Then by the minimality assumption we have
Vk(1 <k <Lnu — con(23.52),[u'(k)]).

Suppose (u(1)) is a variable. Then Index (u(1)) = 0, so Lnu = 1 and
u = (u(1)). But then u,[a] is a term, so con (23.52), a contradiction. Thus
-((u(1)) is a variable). Suppose (u(1)} # 3. Then u,[a] = (u(1)) * u}*
and so con (23.52), a contradiction. Thus (u(1)) = 3, so there exist y
and B such that y is a variable & B is a formula & u = 3*y=x B,
so that «'* = y * B. Suppose 1: (r is a variable & z # y) Vv (z is a
sequence of variables & y ¢ Ranz). Then again u,[a] = (u(1)) * u}*
and so con (23.52), a contradiction. Thus ~(1). Suppose 2: z = y. Then
uzfal = u, so con(23.52), a contradiction. Thus —(2). Therefore z is
a sequence of variables & y € Ranz. Then there exists j such that
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1<j<Lnz & z(j)=y. Letz; = z[1,7 — 1] *z[j + 1,Lnz| and let
a; = a[l,j — 1] xa|j + 1,Lna]. By (19.38), z; < z and a; < a, so by the
minimality assumption we have con (23.52),,,[Bz1a:1]. Since z is injective,
y ¢ Ranz;. Hence u,[a] = 3+ y* B, [a;], so con (23.52), a contradiction.
Thus (23.52).

23.53 Def. a is substitutable for z in A < a is a term &  is a variable
& Aisaformula & VyVBViVjVk(y is a variable & yoccursina & B
isaformula & 1<i<j<k<LnA & A[i,k]=3+y*xB > (jisa
free occurrence of z in A)).

23.54 Def. a' is simultaneously substitutable for =’ in A «— ' is a sequence

of terms & z'is an injective sequence of variables & Lnz' = Lnd &
Vi(1 <7< Lnz' — d'(7) is substitutable for z'(7) in A).

Now we introduce some function symbols that enable us to write for-
mulas more compactly.
23.55 Def. A =C < Aisaformula & C = =% A, otherwise C = 1.
23.56 Def. AVB = C « A and B are formulas & C = Vx Ax B, otherwise
C=1.

23.57 Def. JzA = C « zis a variable & Aisaformula & C = Jsz+ A,
otherwise C = 1.

23.58 Def. Yz A = 3z A.

23.59 Def. ASB = “AVB.

23.60 Def. ALB = ~(A=B).

23.61 Def. ASB = (ASB)&(BSA).
23.62 Def. a=b = C «» a and b are terms & C = = x a * b, otherwise
C=1.
23.63 Def. a#b = “(a=b).

We need to express iterated disjunctions, implications, and conjunc-
tions, associated from right to left.

23.64 Def. DisjA' = {({,u) :1 € DomA' & (i =LnA' - u = A'(Ln4'))
& (i<LnA'— u=Vx*A®)}".
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23.65 Def. Impl A' = {({,u) : 1 € DomA4' & (i =LnA" — u= A'(LnA4"))
& (i<LnA — u=Vx=xA())}*

23.66 Def. ConjA' = {(i,u):7€ DomA' & (1=LnA" — uv= A"(Ln4))
& ((<LndA —u==xVs=*A@)*=)}"
23.67 Thm. A’ is a sequence of formulas & A # 0 & A = A'(1)
& B' = A'2,LnA'l - DisjA4’, Impl A, and ConjA’ are formulas &
(LnA' = 1 — DisjA' = ImplA' = ConjA' = A) & (LnA' # 1 —
Disj A’ = AUDisj B' & ImplA' = AImpl B' & ConjA' = A&Conj B').

Proof. Suppose 3A'-(23.67). By BLNP there exists a minimal such
A'. Suppose Ln A' = 1. Then Disj A' = Impl A' = Conj A’ = (A)*, but
A is a sequence and so (A)* = A, a contradiction. Thus Ln A’ # 1.
Then Disj A’ = V *« A+ Disj B' = AVDisjB', and ImplA' = V x =+ A %
Impl B' = “AVImpl B' = ASImpl B', and ConjA = S+ V* = x A* = %
Conj B' =-»(A=%Con)B') = A&Conj B'. This is a contradiction, and
thus (23.67). O

Using this theorem, we see that if a 1s (A;) * {(Az) * -+~ % (A4,), then
we have: a is a sequence of formulas — Disja = A;VA,V..-VA, &
Impla = A4, -4, & Conja = AI&AZ&-'-&A,. Unless the
contrary is stated, a binary operation is associated from right to left when
restoring parentheses; for example, ASB=C is AS(B=C).

23.68 Def. u is variable-free «» u is an expression & Vi(1 <7 <Lnu —
= ((u(?)) is a variable)).

23.69 Def. A is a closed formula «» A is a formula & Vi(1 <7 <LnA —
—(7 is a free occurrence of (A(z)) in A)).



Chapter 24

Proofs

We give a predicative arithmetization of the predicate calculus. We
modify the treatment in [Sh,§2.6] by adopting tautological consequence as
a rule of inference; see the conclusion of [Sh,§3.1].

24.1 Def. B is a substitution axiom < J3A4dJz3a(a is substitutable for z in
A & B = A,[a]3zA).
24.2 Def. B is an identity axiom < 3z(z is a variable & B = z=z).
24.3 Def. Equals(z',y') = {{i,2'(1)=y'()) : « € Domz'}.
24.4 Def. B is an equality axiom « Zz'Jdy'(z' and y' are sequences of
variables & Lnz' = Lny & ((1) v (2))), where

1. 3f(f is a function symbol & Index f = Lnz' &
B = Impl (Equals(z', y') * (f*xz'* = f+y'™)}),

2. dp(p is a predicate symbol & Indexp=Lnz' &
B = Impl (Equals(z', y') * (pxz'* Spxy'™*))).
24.5 Def. B is a logical axiom «— B is a substitution axiom V B is an
identity axiom V B is an equality axiom.

24.6 Def. v is a truth valuation on u < Domv = Formulasu & Ranv C
{0yu{1} & VB(*B € Formulasu — v(=B) =1-v(B)) & VBVYC(BVC
€ Formulasu — v(BYC) = Max (v(B),v(C))).

24.7 Def. A is a tautology « A is a formula & Vv(v is a truth valuation
on A — v(A) =1).
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We have rhs (24.7): Domv < Formulas 4, Supv < 1.

24.8 Def. A is a tautological consequence of A' «» A is a formula & A'is
a sequence of formulas & Impl (A’ % (A)) is a tautology.

24.9 Def. C can be inferred from D by J-introduction «— Jz3AIFB(z is a
variable & A and B are formulas & —(zisfreein B) & D= ASB &
C = 3z(A=B)).

24.10 Def. l is a language «— [ is a set of nonlogical symbols.

24.11 Def. Nlsu = Ran{(7,v) : 1 € Domu & v = (u(¢)) & v is a nonlogical
symbol}.

24.12 Def. aisatermofl «» ais a term & Nlsa C .

24.13 Def. Ais aformulaof l — A is a formula & NisA C .

24.14 Def. t is a theory < Jlds(l is a language & s is a set of formulas
ofl & t={(,s)).

24.15 Def. Langt =1 < t is a theory & [ = Proj; ¢, otherwise [ = 1.
24.16 Def. Axt = s < tis a theory & s = Proj,t, otherwise s = 1.

The arithmetical nature of logic is revealed by the fact that Lang and
Ax determine a theory.

24.17 Def. D' is a proof in t of A < D' is a sequence of formulas of Lang¢
& D'#0 & D'(lnD')=A & Yi(l <7< LnD — A'(7) is a logical
axiom Vv A'(7) € Axt v A'(7) is a tautological consequence of A'[1,7 —1] Vv
J7(1 <j <7 & A'(?) can be inferred from A’(j) by 3-introduction)).
24.18 Def! A is a theorem of t « JD'(D' is a proof in t of A4).
Throughout this book I have been quibbling about exponential bounds
being unsatisfactory, but here is a predicate symbol that is utterly un-
bounded. This is the fascination of mathematics.
24.19 Def. f|, = {z € f: Proj; z € s}.
24.20 Thm. A'is a sequence of formulas & A' # 0 & v is a truth valuation
on DisjA' —» (v(DisjA') =1 « F(1 <:<LnA" & v(4'(s)) =1)).

Proof. Suppose 34'3v—(24.20). By BLNP there exist minimal such A’
and v. Let A = A'(7), let B' = A'[2,Ln A'], and let vy = Y|FormulasDisj B'-
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Clearly B' # 0, so we have con (24.20) 41,[B'vo]. But by (23.67) we have
v(Disj A') = Max (v(A), v(Disj B')), so con (24.20), a contradiction, and
thus (24.20).

24.21 Thm. A'is a sequence of formulas & A’ # 0 & v is a truth valuation
on Impl 4’ — (v(ImplA’) =1 & (1 <7 < Lnd" & v(4'(s)) =0) Vv
v{A'(Ln A")) = 1).

Proof. Suppose JA'3v—(24.21). By BLNP there exists minimal such A’
and v. Let A = A'(1), let B = A'[2,Ln A}, and let vy = ¥|FormulasImpl B'-
Clearly B' # 0, so we have con (24.21) 4,[B'vo]. But by (23.67) we have
v(Impl A') = Max (1 — v(A),v{Impl B')), so con (24.21), a contradiction,
and thus (24.21).

24.22 Thm. A'is a sequence of formulas & A'# 0 & v is a truth valuation
on Conj A" — (v(ConjA4') =1« Vil <7 <LnA — v(4'(7)) = 1)).

Proof. Suppose 34'3v—(24.22). By BLNP there exist minimal such
A" and v. Let A = A'(1), B' = A'{2,Ln A'], and let vy = | Formulas Conj B~
Clearly B' # 0, so we have con (24.22) 41,[B'vo]. But by (23.67) we have
v(Conj A') = v(A) - v(Conj B'), and so con (24.22), a contradiction, and
thus (24.22).

24.23 Thm. A'is a sequence of formulas & A is a formula — A is a
tautological consequence of A’ * (Impl (4’ * (A))).

Proof. Suppose hyp (24.23) and let B = Impl (A'+ (Impl (A'x(A))) *(A)).
Suppose v is a truth valuation on B & v{B) = 0. Then, by (24.21),
v(A) =0, Vi(1 < ¢ < LnA' — v(A'(z)) = 1), and v(Impl (4" *x (4))) = 1.
But this contradicts (24.21), and thus B is a tautology. Thus {24.23).

24.24 Thm. A'is a sequence of formulas & Ran A' C Occ C & v is atruth
valuation on C — Jug(vg is a truth valuation on Impl A’ & Vi(1 <7< LnA’
— vo(A'(2)) = v(4'(x)))). '

Proof. We have (24.24): Dom vy < Formulas Impl A’, Supvy < 1. Sup-
pose 3A4’-(24.24). By BLNP there exists a minimal such A'. Clearly
LnA'" > 2. Let A = A'(1) and let B' = A'[2,Ln A']. Then there exists
vy such that

scopesy, (24.24),,4:[v1 B'].
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By (23.67), Impl A’ = A=Impl B'. Let

vo = {(B,z) : B € FormulasImpl 4’ &
(B = Impl A" — z = Max (1 — v(A),v;(Impl B'))) &
(B=%A—-2=1-v(A)) &
(B € Formulas A — z = v(B)) &
(B € Formulas Impl B' — z = v;(B))}.

By the occurrence theorem (23.44), Domvy, = Formulas Impl A', and we
have con (24.24), a contradiction. Thus (24.24).

24.25 Thm. A is a tautological consequence of A' & B’ is a sequence of
formulas & Ran A' C Ran B' — A is a tautological consequence of B'.

Proof. Suppose hyp(24.25) and suppose v is a truth valuation on
Impl (B' * {4)) & wv(Impl(B' * (4))) = 0. By (24.21), v(4) = 0 and
Vi(1 < ¢ < LnB' — v(B'({)) = 1). Therefore Vi(1 < 7 < LnA4’ —
v(A'(1)) = 1). By (24.24) there exists vy such that vy is a truth valuation
on Impl (A'x (4)) & Vi(1 <i<LnA' — vo(4'(d)) =1) & wv(4) =0.
This contradicts (24.21), and thus con (24.25). Thus (24.25).

24.26 Thm. A is a tautological consequence of A’ & Vi(1 <7< LnA' —
D"(3) is a proof in t of A'()) & A is a formula of Langt — D"* x (A) is
a proof in t of A.

Proof. By (24.25). O

Using semibounded replacement, we can prove 1: A is a tautological
consequence of A' & Vi(1 <i < LnA — A'(¢) is a theorem of {) & A

is a formula of Langt¢ — A is a theorem of t. The proof goes as follows.
Suppose hyp(1). Using SBRD, let

D" ={{{,D"): i€ DomA' & minp (D" is a proof in t of A'(¢)}}.

By (24.26) we have con (1), and thus (1). We need semibounded replace-
ment to know that a sequence of theorems has a sequence of proofs!



Chapter 25

Derived rules of inference

The material in {Sh,§§3.2-3.5] is concerned with derived rules of infer-
ence. Straightforward arithmetizations of all of these results are theorems
of our theory. All of these derived rules of inference can be expressed by
bounded function symbols. All of the induction arguments in these sections
of [Sh] are bounded, with one exception—and an alternate predicative proof
can be given for it. The reader who is willing to accept these conclusions
should read on for a few paragraphs, where some notational conventions
are introduced, and then skip the remainder of this lengthy chapter.

Sometimes in the course of the proof of a theorem (&) we will write:
define y = a. We do this only when y does not occur in a and a is a
bounded term. Let xy,...,x, be the variables in a, in the following order:
first those occurring free in (&) in the order of their occurrence in (£) and
then the remaining ones in the order of their occurrence in a. Then we
regard “define y = a” as an abbreviation for

Def . yexy..x, =y y=a.

This is the defining axiom of a bounded function symbol y.. Within the
proof of (&) after the introduction of the function symbol y., we use y
as an abbreviation for the term ygx;...x,. This device, especially when
iterated, saves us from constantly having to display the arguments of the
function symbols. The theorem (£) itself may contain function symbols of
the form y,; this may seem odd, but it allows us to introduce the defining
axioms of the function symbols at the natural point in the exposition.
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Observe that if x and z do not occur in A, then
MIND'. Minx A =z < min, A,[z], otherwise z = 0

is the defining axiom of a function symbol, since the existence and unique-
ness conditions hold automatically. It may or may not be a bounded func-
tion symbol, and if it is a bounded function symbol then its defining ax-
iom (MIND') is equivalent to a defining axiom of the form (MIND). If we
ever have occasion to use this notation to introduce a function symbol for
which no claim is made that it is bounded, a “!” will indicate this, but
the intention is to use (MIND') to save writing obvious bounds explicitly.
Whenever a term of the form Min x A occurs, it is understood that the cor-
responding defining axiom of the form (MIND') has been adjoined to the
theory.
If x occurs in A only in the part 3xB, then we write

define x as in A

for

define x = Minx B.
We write “define y1 = ay,...,y, = a,” for “define y; = a;, ..., and define
v, = a,”. We write “define x4,...,x%, as in A” for “define x, as in A, ...,

and define x, as in A”.
If we have formulas labeled p for A < p < v, and termsa, for A < pu < v,
we write

definey = a, in case (u), for A < pu <wv
for
definey = Miny(((A) »y=a\) & - & ((v) =y = a,)).

25.1 Def. D': A'F A D'isa proof in (NIs A’ x A, Ran A') of A.

25.2 Thm. D': A'f A & Ais a formula of Langt & V(1 <:<LnA' —
C"(7) is a proof in ¢ of A'(¢)) — C"* x D' is a proof in t of A.

Proof. By (24.25). O




25. DERIVED RULES OF INFERENCE 117

Now we give some results on quantifiers, following [Sh,§3.2].

25.3 Thm. (V-introduction) A and B are formulas & =z is a variable &
-(z is free in A) — Dy (A, B,z): (A=SB) + A=VzB.

Proof. Define D' = (A B) (SB35 A) % (5B~ A) « (ASSVzB).

25.4 Thm. (generalization) A is a formula & =z is a variable —
Dy (A, z): (A) F VzA.

Proof. Define D' = (A) % (SASYzA) « (Jz5 AV A) + (VzA).
25.5 Thm. a is substitutable for z in A — Dl ;(a,z,A): (A) F A.la].
Proof. Define D' = (A) x Di (A,z) * (YzA) * (%A, [a]=T25A4) «

(VzAS A, [a)) * (4,[d)). O
Notice that (A) and (VzA) are already contained in D} ,(A, z), but this
redundancy makes the proof somewhat easier to read.

25.6 Thm. (substitution rule) a' is simultaneously substitutable for z' in A
— Dy o(d',2'A): (A) F Ap[a'].

Proof. Define

y' = {{t, Xatyz1444) 17 € Domz'},

Ay = {1, Azpi-y [/ [1,7 = 1]]) : 1 € Domz' U {Lnz' + 1}},

By = {@, zss(y( ), 2'(4), Ap(d))) : i € Domz'}*,

B = Au[y'],

Ay = {{i,Byp;-y[d'[1,i = 1]]) : 1€ Domy' U {Lny' + 1}},

By = {{i, D 5(a'(1),¥' (i), 41 (1)) : ¢ € Domy'},

D' = B+ B,
Suppose hyp (25.6). We have Vi(1 < 7 < Lnz' — y'(¢) is substitutable
for £'(7) in A}(Y) & d'(7) is substitutable for y'(7) in A4}(z)), so by (25.5)
we have Bl: (A) I B and B,: (B) F B,[d']. But By[d'] = Auld'], so
con (25.6) and thus (25.6).

25.7 Def. Ag is an instance of A « 3z'da'(d’ is simultaneously substitutable
forz'in A & Ag = Apld]).

25.8 Thm. Ao is an instance of A — Dl 5(Aq, A): (A) F A,.
Proof. Define z' and ' as in (25.7), and define D' = Dj; ((d', ', A).
25.9 Def. Exist z' = {{,3 % 2'(1)) : 1 € Dom z'}*.
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25.10 Def. Allz' = {{(i,=* I+ 2'(¢) + =) : 1 € Domz'}*.

25.11 Thm. z' is a sequence of variables & A is a formula — Existz'* A
and Allz' « A are formulas.

Proof. Suppose 3z'—(25.11). By BLNP there exists a minimal such z'.
Clearly Lnz' > 2. Let z} = z'[2,Lnz'|. Then Existz} * A and Allz} *
A are formulas, but Existz' + A = 3z'(1)(Existz, + A) and Allz' + A =
Yz'(1)(All Z, * A), so con (25.11), a contradiction. Thus (25.11).

25.12 Thm. Ais a formula & z is a variable — D) ,(A,z): 0 F YzASSA.

Proof. Define D' = (5A=33z%A) + (VA A).
25.13 Thm. (substitution theorem) a' is simultaneously substitutable for z’
in A — Cp;5(d’,2',A): 0F Ap[d'[Existz'+ A &
Dl 4(d',2',A): O F Allz' + A Ay [a].

Proof. Define

B' = {(i,Existz'|Lnz' — 1+ 2,Ln '] » A= Existz'|[Lnz' — 7 + 1] x A4) :
1 € Domz'},

C' = B'* Dy (d', 2, ASExistz'  A),

Bl = {{(i, D} ,,(Allz'[¢,Ln 2] * A,2'(z))) : ¢ € Domz'}*,

D' = B+ Dy o(a', ', Allz' + A5 A).
Suppose hyp(25.13). Then B € RanB' — Bisa substitutuion axiom, so
B': 0+ A=Existz' « A. By (25.12) and (24.25), B{: 0 - Allz' « A~ A. By
the substitution rule (25.6) we have con (25.13), and thus {25.13).

25.14 Thm. (distribution rule) A and B are formulas & =z is a variable —
Cis14(A,B,z): (ASB) - 3JzA=3zB &
w5 14(A, B,z): (ASSB) - VzASSVzB.

Proof. Define

C' = (A B) « (B=3zB)  (A=3zB) x (3zA~3zB), 3
_ D'= Dh (A, z) % (FzASA) + (A B) + (YzASB) * Dy (924, B, 1) *
(VzASVZB).

25.15 Def. Free A = Enum {z € Occ A : z is free in A}.
25.16 Def. Closure A = AllFree A « A.
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25.17 Thm. (closure theorem) A is a formula — Cy; ;,(A): (4) F Closure A
& Di;1;(A): (Closure A) F A.

Proof. Define ' = Free A,

C' = (A) * {(i, Di ,(AllZ'[1 + 1,Lnz'] x A,2'(z))) : 1 € Domz}*,
D' = (Closure A) * Djy; 1,(2', ', A) » (A). D

Now we take up the deduction theorem; see [Sh,§3.3].

25.18 Thm. B is a tautological consequence of B' & A is a formula &
C' = {(i,AB'(1)) : ¢ € Dom B'} —» A B is a tautological consequence
of C'.

Proof. Suppose hyp(25.18), let C = Impl(C' * (A3 B)), and suppose
v is a truth valuation on C. Suppose 1: v(B) = 1 V v(A) = 0. Then
v(AB) = 1, s0 v{C) = 1 by (24.21). Thus (1) — v(C) = 1, so suppose
v(B) =0 & wv(A) = 1. By (24.21) there exists v such that vg is a truth
valuation on Impl(B' x (B)}) & Vi(1 < ¢ < LnB' — v(B'()) = v(B'(1)))
& vy(B) = v(B). We have vo(Impl(B' * B)) = 1, so by (24.21) there exists
¢ such that 1 < ¢ < LnB' & wo(B'(f)) = 0. Hence v(B'(z)) = 0, so
v(A=B'(7)) = 0, and again by (24.21), v(C) = 1. Thus v(C) = 1, thus C
is a tautology, and thus (25.18).
25.19 Thm. A and B are formulas & B': A’ F ASB —
D5 10(A, B, B'): A'x (A) - B.

Proof. Define D' = (A) *+ B' * (B).
25.20 Thm. (deduction theorem) A is a closed formula &
B': A"+ (A)F B — Db (A, B'): A'F A™B.

Proof. Define C" = {{¢, ASSB'(3)) : 1 € Dom B'}. We distinguish three
cases:

1. B'() € Ran A’ v B'() is a logical axiom,

2. B'(1) = A v B'() is a tautological consequence of B'[1,7 ~ 1],

3. 3j3z3C3D(z is a variable & C and D are formulas & —(z is free
inD) & 1<j<i & B'(i)=C™D & B'(:) = 3zC>D).
Define 7, z, C, and D as in (3}, and define

D} = (BI(i)) » (ASB(),

D} = (A= B(1),
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Dl = (ASCSD) + (CSASD) + (3205 ASD) « (ASIz0=D),
Dy = D, in case (p), for 1 < p <3,

D' = {{i,D}) : i € Dom B'}*.
Suppose hyp(25.20), and suppose 1 < ¢ < LnB'. Observe that (3) —
32C5A3D can be inferred from C=SA=D by F-introduction, since (3)
— —(zisfree in ASD). Thus 1 <i < LnB' — D)): A'«C'[1,i—1]F C'(3),
and so con (25.20). Thus (25.20). O

How can one tell by looking at a finitary argument whether it admits a
predicative arithmetization? A typical finitary argument, used to show that
a certain kind of formula can be proved, introduces (perhaps implicitly) a
ranking of formulas and reduces the proof for a given rank to the case of
lower ranks, which are assumed to be already proved. To see whether such
a reduction to previous cases can be constructed predicatively, we must
examine the totality of previous cases and see if it is a set in the sense of
our theory. There are three possible obstacles:

i. A splitting of cases may arise, leading to an exponential (or worse)
growth in the total number of previous cases.

ii. There may be an exponential (or worse) growth in the size of the
objects involved in the previous cases.

iii. The formula that specifies the previous cases may be unbounded.

Each application of the deduction theorem increases the length of a
proof by a factor {which is < 4), so if we try to convert a proof of a formula B
from a sequence A' of n closed formulas into a proof of Impl(A' * (B)) by
induction on n, as in [Sh,§3.3], the length will grow exponentially. Here we
have an example of the obstacle (ii). This induction is unbounded, and we
must find another argument.
25.21 Thm. A'is a sequence of formulas & 1 <1< LnA' — Conj A’ A'(1)
is a tautology.

Proof. Suppose hyp (25.21) & v is a truth valuation on Conj A" A'(1)
& v(Conj A’ A'(1)) = 0. Then v(4'(¢)) = 0 and v(Conj A') = 1. But this
contradicts (24.22), and thus (25.21).
25.22 Thm. A'is a sequence of formulas & A'#0 & A is a formula —
Impl(A' * (A4))=3(Conj A’ A4) and (Conj A’ A)SImpl(A’' x (A)) are tau-
tologies.

Proof. Suppose hyp(25.22), let C = Impl(A' * (A4)), and let D =
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Conj A'5 A. Suppose v is a truth valuation on C=D & v(C=D) = 0.
Then v(D) = 0 and v(C) = 1. Therefore v(4) = 0 and v(Conj A') = 1,
so by (24.22), Vi(1 <1 < Ln A" — v(A'(7)) = 1). By (24.21), v(C) =0, a
contradiction, and thus C= D is a tautology. Suppose v is a truth valuation
on D=C & v(D=C) = 0. Then v(C) = 0 and v(D) = 1. By (24.21),
v(A) = 0 and Vi(1 <7 < LnA' — v(A'(7)) =1). By (24.22), v(D) =0, 2
contradiction, and thus D=3C is a tautology. Thus (25.22).

25.23 Def. Cases A' = {{i,Conj A’ A'(?)) : i € Dom A'}.
25.24 Thm. A' is a sequence of formulas & Bis a formula &
B': A} t Impl(A' x (B)) — Djs (A, B,B'): A+ A' - B.
Proof. Define D' = A's B'«(B). Suppose hyp(25.24). Then con (25.24)
by (25.23). Thus (25.24).

25.25 Thm. (corollary to tlie deduction theorem) A’ Is a sequence of closed
formulas & B": Ag+ A’ B — Djg, (A, B'): Aj - Impl(4' « (B)) &
(A" # 0 — Cy5 45 (A", B'): Ay F Conj A'=B).

Proof. We distinguish two cases: 1. A' = 0 and 2. A’ # 0. Define

C' = Dis ,o(Conj A’, Cases A’ + B'),

D, =B,

D} = C' = {{Conj A’ B)=Impl(A' « (B))) * (Impl(A’ * (B))),

D' = D), in case (u), for 1 < pu < 2.
Suppose hyp (25.25). Then (1) — con (25.25), so suppose (2). By (25.21),
Cases A" + B': Aj » (ConjA’) = B. Then C": A ConjA'SB by the
deduction theorem (25.20). By (25.22), D}: A, F Impl{A' # (B)), and thus
(2) — con (25.25). Thus (25.25).
25.26 Thm. €' is a sequence of constants & z'is a sequence of variables & u
is a designator — (Ssub(u,€',2'} is a term < u is a term) & (Ssub(u,¢',z')
is a formula < u is a formula).

Proof. Suppose Ju—(25.26). By BLNP there exists a minimal such u.
Let u' = Argu and let

u) = {(7,Ssub(u'(¢),€',z')) : + € Domu'}.

Then by the minimality assumption we have
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Vi(1 < ¢ < Lnu| — con (25.26),[u!(7})]).

Suppose (u(1)) is a constant. Then Index (u(1)) = 0, so Lnu =1 and u =
(u(1)). But then Ssub(u,€',z') is a term, so con (25.26), a contradiction.
Thus —({u(1)) is a constant). Therefore Ssub(u,e€',z') = (u(1)) * u}* and
so con (25.26), a contradiction. Thus (25.26).

25.27 Thm. €' is a sequence of constants & ' is a sequence of variables
& A is a tautology — Ssub(A,¢€,z') is a tautology.

Proof. Suppose hyp (25.27) and let Ay = Ssub(A,¢',z'). Suppose g is
a truth valuation on A, and let

v = {{B,v(Ssub(B,€,z'}))) : B € Formulas A}.

Then v is a truth valuation on A, so v(A) = 1. Therefore vo(A4p) = 1 and
thus Ag 1s a tautology. Thus (25.27).

25.28 Thm. (theorem on constants) €' is an injective sequence of constants
& ' is an injective sequence of variables & Lnz' = Lne & A'isa
sequence of formulas & A is a formula & Rane' N Occ(A* +A) =0 &
B': A' - Ap[e] — Dy ,e(€,2', A, B'): A' F A.

Proof. Define

y = {<1:3 Xeizyaspryd) 11 € Dom e,}’

C' = {{j,Ssub(B'(5),€¢,¢')) : 7 € Dom B'},

D'=C'« D;s.G(xlaylaAZ'[y’])'
Suppose hyp(25.28). Observe that Ssub(A,
(25.27), C': A"+ Ay [y']. Since (A [y'),[2']
(25.6), and thus (25.28).

fel,ey) = Auly']l. By
= A, we have con (25.28) by

25.29 Thm. A and B are formulas & ¢’ is an injective sequence of con-
stants & z' =FreeA & Lnz' = Lne & A'is a sequence of formulas
& Rane' NOcc(A™ + AxB) = 0 & B': A (Ay[e]) b Bule] —
Dy 5o(A,B,e' 2’ A", B'): A'+ ASB.

Proof. Define

C'= D'25.20(AZ'[6,]5B,5A,)a
D =C'« D125_28(e',x',A:/->B,C').
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Then (25.29) by the deduction theorem (25.20) and the theorem on con-
stants (25.28). [0

Now we take up the equivalence and equality theorems, following the
discussion in [Sh,§3.4]. This is a dull topic; Shoenfield remarks that it can
be roughly summarized by saying that equivalent formulas and equal terms
may be substituted for one another.

We want to treat the notion of one formula being obtained from another
by replacing some occurrences in it of formulas from a given sequence by
the corresponding formula in another given sequence. We do this by means
of another arithmetized relativized generalized inductive definition.

25.30 Def. Replacements(A, Ay, B', B}) =

Min s(s < Formulas A x Formulas A; &

VBYB,({B, B;) € Formulas A x Formulas A, & ((1) v ---v (5)) —
(B, By) € s)), where

1. B - Bl,

2. W(1<I<LnB & B=B() & B, = Bi{)),

3. 3C3C{(B = 5C & By = 5C, & (C,Cy) € s),

4. ECBDBCIBDI(B = C\7D & Bl = CI\A;DI & <C,Cl> & s &
<Da D1> € S)a ~ .

5.3z3B3C(z is a variable & B = JzC & B, = dzC; & (C,Cy) € s).
25.31 Def. replace(4, Ay, B',B}) < A and B are formulas & B' and B
are sequences of formulas & LnB' =LnB] &
(A, A;) € Replacements(A, A;, B, B}).
25.32 Thm. (distribution rule for equivalence) A and A, are formulas &
z is a variable — Cy; 5,(A, Ay, z): (AT A)) F SxASdz4, &
Dl (A, A1, 1) (ASSAL) F VZASVIA,.

Proof. Define

C' = (AS A1) + (AS A1) * Cle 14(A, AL z) + (FZASATAY) + (A A) »
Cos14(A, Ar,z) * (JxA, 53z A) * (JTAS3TA), .

D' = <A<”3A1>3‘ <Ai\/—>él> * D’2§°14(A,§1,$) * <VIA:’VIA1> * <A1:A> *
Dl (A, Ay, z) + (V2 A, V2 A) + (VZASVIA).
25.33 Def. Equiv(B', B}) = {{{,B'(l)=>By(l)) : | ¢ Dom B'}.
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25.34 Thm. (equivalence theorem) replace(A, Ay, B', By) —
D . (A, Ay, B', B)): Equiv(B', B]) - AT A,.
Proof. Define
so = Ran {(z,Proj, 255Proj; 2) : z € Replacements(A, A,, B', B})},
r = {<A0,Ln A0> M Ao € So},
A' = Enumer(sp, r).
We distinguish two cases:

1. 3z3C3Cy(z is a variable & (C,C;) € Replacements(A4, 4, B', Bj)
& A'(d) = 3zC32Cy),

2. ~(1).
Define z, C, and Cy as in (1), and define

Cj = C355,(C,Cy, 7),

cy = (i),

C' = C, in case (u), for 1 < p <2,

D' = {{,C") :i € Dom A'}*.
Suppose hyp(25.34) and suppose 1 < ¢ < LnA'. We have (1) — Ci:
Equiv(B', By) * A'[1,¢ — 1] = A'(¢) by (25.32). We have (2) — A'(7) €
Ran Equiv(B’, Bj) vV A'(z) is a tautological consequence of A'[1,7 — 1], so
(2) — Cj: Equiv(B',B}y) * A[1, — 1] + A’(z). Thus con (25.34), and thus
(25.34). O

Using semibounded replacement, we can prove replace(4, A;, B', B}) &
VI(1 <! <LnB' — B'(l)5B{(l) is a theorem of t) — AT A, is a theorem
of t.
25.35 Thm. B is a formula & z and y are variables & (z =y Vv -(yis
free in B)) — Djyg (B, z,y): 0F 3zB&3yB,[y].

Proof. Define
. D'= (B.[y]=5zB) « (JyB.[y|=3zB) » (B=3yB,[y]) «
(JzB=5yB.[y]) + (JzBS Dy B, [yl).
Suppose hyp(25.35). Then y is substitutable for z in B. Observe that
B=3yB, |yl is a substitution axiom, since B = (B,[y]),|z|. Thus (25.35).
25.36 Def. replace;(4, A1, D, D) — A, A1, D, and D are formulas &
371 <i<j<LnA & D=A[|,j] &
Ay = A1, — 1]+ Dy * A[j + 1,Ln A]).
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25.37 Thm. C € Formulas A & C; € Formulas 4; —
Replacements(C, Cy, B', B]) C Replacements(A, 4,, B', B}).

Proof. Suppose hyp(25.37), let s; = Replacements(C, Cy, B', B), and
let s = Replacements(A, A, B', B}), so scopemin (25.30)4 4, s[C,C1,5 N s1]
and s; < sMNs; < s;. Thus (25.37).

25.38 Thm. replace; (A, 4,, D, D) — replace(A, Ay, (D), (Dy)).

Proof. Suppose 3A3A,—(25.38). By BLNP there exist minimal such A
and A,. Clearly D # A. By the occurrence theorem (23.44), there exists
k such that 1 < k < Index (A(1)) & D occurs in (Arg A)(k). By the
minimality assumption,

replace({Arg A)(k), (Arg A1} (k), (D), (Dy)).

By (25.37) we have (25.38), a contradiction, and thus (25.38).

25.39 Def. A, is an immediate variant of A «» 3z3y3B(z and y are variables
& Bisaformula & zoccursin A & vy occurs in A; & B occurs in 4
& (z =y V —(yis free in B)) & replace,(A, A;,3zB,JyB.[y])).

25.40 Thm. A, is an immediate variant of A — Dl (A1, A): 0 F AT A4,.

Proof. Define z, y, and B as in (25.39) and define

D' = Dy, 55(B,2,y) * Dis54(4, 4, (SzB), (3uB:[y])).

25.41 Def. A; is a variant of A «— JA'(A' is a sequence of formulas &
1<LnA'<LnAd & A{l)=A4 & A(LnA)=A; & ¥i(1<i<LnA
— Ran A'({) CRanAURanA4; & LnA'(1)=1lnAd) & Vi1 <i<Llnd
— A'(7 + 1) is an immediate variant of 4'(}))).

We have rhs(25.41): LnA' < Ln A, LnSup A' < Ln A, SupSupA' <
Max(Sup A, Sup 4,).

25.42 Thm. A'is a sequence of formulas & A'# 0 — A'(1)&A'(LnA") is
a tautological consequence of Equiv(A4'[1,Ln A' — 1}, A'[2,Ln A']).

Proof. Suppose 3A'-(25.42). By BLNP there exists a minimal such A'.
Clearly Ln A’ # 1. Let A} = A'[1,Ln A’ —1}]. By the minimality assumption
we have (25.42) o[ Ap]; that is, A'(1)&A’'(Ln A’ ~ 1) is a tautological conse-
quence of Equiv(A'[1,Ln A" — 2], A’'[2,Ln A" — 1]). But A'(1)&A'(Ln 4) is
a tautological consequence of
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(A'(1)SA'(Ln A' — 1)) # (A'(Ln A' — 1) A'(Ln A")),
so con (25.42), a contradiction, and thus (25.42).

25.43 Thm. (variant theorem) A, is a variant of 4 —
Dy 5(A1, A): O F AT A,

Proof. Define A’ as in (25.41) and define

D' = {(i, D 1o(A'(1+1),A'(?))) : © € Dom A'[1,Ln A" — 1]}* *x (A A,).
25.44 Thm. Ais aformula & u is an expression — Bas 44(A4,u) is a variant

of A & VYz(z € Occu — —(z is bound in By 4(A,u)) ) & Vu(v € Occu
— Bis4a{A,u) = Bas 44(A, v % u)).

Proof. Define

' = Enum{i € Dom 4 : A'({) € Ranu & (A(x— 1)) = 3},

J'={(k,7) : k€ Domi & A[(k)+ 1,j]is a formula},

C' = {{k, Al'(k) + 1,7'(k)]) : k € Dom1i'},

' = {(k, (A{{(k)))) : k € Domi'},

s = {z € Occu : z is a variable},

y' = {(k, Xass+s) : k € Dom1'},

1. A =MinA(LnA'=Loi' +1 & A'(1)=A &
Vk(1 <k <Lni — A'(k+1) =
A'(k)[1, 1" (k) = 2] x 3 y'(k) = (k) [9'(R) ] * A'(K)[5'(K) + 1,Ln A])),

B' = A'(Ln 4').
Suppose hyp{25.44). Then scopey, (1): LnA4' < Ln¢' + 1, LnSup A' <
Ln A, Sup Sup A' < Max(Sup A,Supy'). Suppose 1 < k < Ln¢'. Then it
follows that A’(k + 1) is an immediate variant of A’(k). Thus B is a variant
of A, and thus (25.44).

25.45 Thm. (symmetry theorem) a and b are terms —
Dl i(a,b): 0F a=bb=aq.

Proof. Define

D' = (X2 X175 X0 2 Xo™ Xo= Xo ™ X12 Xo) + (Xo= Xo) *
<X0£X1—A‘;X1£X0> * D;s_s(agb:bga,XOEX]:XIEXQ) * <a%b3’—>b%a) *
D'25,8(bia3aib, XOEXY—N'?XIiXo) * <bia:>aib> * <a—%b5b%a>

25.46 Thm. ais a term — D) ,(a): O F aZa.
Proof. Define D' = (Xo=X,) * Dj ¢(a=a, Xo=X) * (a=a).
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25.47 Thm. fis a function synbol & ¢’ and ¢ are sequences of terms &
Index f = Ln¢' = Lnc), — Dy ,(f,¢',¢}): Equals(c’,¢}) F fxe™ = fxeh*.

Proof. Define

' = {{1, X;)1 € Dom ('},

7y = {{{, Xinegs 0 7 € Domc },

Dy = Impl(Equals(z', ) * (f+z'*= fxz}*)),

D' = Equals(c', ¢}) * (Dp) * Dys o(c' ¥ ¢4, z' =z, Dp) + (fxc"™ = fxc)*).
25.48 Thm. pis a predicate symbol & ¢’ and ¢} are sequences of terms &

I 1%~

Indexp = Lnc' = Lnc} — D x(p,c',c}): Equals(c',c)) F pxc™ &pxc)*.
Proof. Define

= {{({,X;):1€ Domc'},

7y = {{{, Xrn i) 1 1 € Domc}},

Dy = Impl(Equals(z', z) * (pxx"*=p+z\™*)),

D} = Baquals(e',c}) + (Do) * Dl ol 5 ¢, 2" 3 2, Do) # (prc’* 5pecy?),

Dy = {{t, D 45(c'(3), (7)) : i € Dom '},

D' = D)+ Dy (D) [ehe'] + (pec* Sprcy ).
25.49 Def. Substitutions(u,uy,a’,a}) = Mins(s < Occu x Occu; &
YoV, ({v,v;) € Occu x Occu; & v and v; are designators & ((1) v (2)
V (3)) = (v,v1) € s)), where

1. v =,

2.1 <1<Llnd & v=2d(l) & v, =a|(l)),

3.v(1) =vi(1) & ((w(1)) =3 —v(2) =v:(2) &
Vi(1 <1 < LnIndex (v(1)) — ((Argv)(¢),(Argvi)(7)) € s).

25.50 Def. substitute(u,u;,a',d}) « u and u; are designators & ¢ and
a} are sequences of terms & Lna' =Lnd| &

{(u,u;) € Substitutions(u,u;,d',a}).

25.51 Thm. (equality theorem for terms) b and b, are terms &
substitute(d, &y, a',ay) — Dis 5, (b, 81,a',a)): Equals(d’, a}) F 8=b,;.

Proof. Define

so = Ran {(z, Proj; 2=Proj, z) : z € Substitutions(b, by, d',a})},
r = {<A0,LH A0> : Ao S So},
A" = Enumer({sq,7),
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d={{i,c):1€Dom A & Jc; A'(7) = c=¢y},

¢; = {(lye1) :7€ Dom A" & FcA'(Y) = ¢=c1}.
We distinguish three cases:

1. '(2) = ¢i(4),

2. ¢(©)=¢1(2) € Ran Equals(d’, d}),

3.-(1) & ~(2).

Define
Ci = D'254§(c'(2')),
Cy = (A'(7)),

C = Dl (€'(0)(1), Arg (¢(3), Arg (¢4(1))),
C' = C, in case (u), for 1 < p < 3,
D' = {(,C") : i € Dom A'}*.

25.52 Thm. a' and d| are sequences of terms & Lna' = Lna] & (v,v) €
Substitutions(u,u;,a',a}) — (v and v; are terms V v and v, are formulas)
& substitute(v,v,,d’,a}).

Proof. Suppose hyp(25.52), let s = Substitutions(u,u;,a’,a!), and let
s1 = {z € s: con (25.52), ,,|Proj; z, Proj; z|}.

Then we have scopey;i, (25.49)4(s1], so sy = s. Thus (25.52).

25.53 Def. u~v = 4 < (v and v are terms & A = u=v) V (u and v are
formulas & A = uv), otherwise 4 = 1.

25.54 Thm. (equality theorem for formulas) A and A, are fgrmulas &
substitute(A4, Ay,a’,a}) — Dije o (A4, A1,d',a}): Equals(a’,a}) - ATA,.

Proof. Define

so = Ran {(z, Proj, z~Projz 2) : 2 € Substitutions(A, 41,d',a})},

r = {<A0,Ln A0> M AO € 80},

A" = Enumer(so, 1),

v' = {{z,v) : 1 € Dom A" & Fv; v~v,},

vy = {{t,v1) : 1 € Dom A' & Fvv~v,}.

We distinguish four cases:

1. v'(7) and v}(7) are terms,
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2. (=(1) & ¥'(2) = v () vV '()(1)) == v () (1)) =V
3. v'(2) # vi(2) & (v'(§)(1)) is a predicate symbol,
4 0(0) £ 040) & (WD) =3

Define

Ci DI25 51(1)'( ) ( ) a"all)’

Cy = (A'(1)),

C3 = Das 45((v'(1) (1), Arg (v'(2)), Arg (v} (2
Cy = Dj; 5(v'(4)[3, Lnv'(4)], v1 (4)[3, Ln v (¢
C' = C,, in case (u), for 1 < u <4,

D' = {{(i,C") : i € Dom A"'}*.

25.55 Thm. v occurs in u & wv; occurs in uy — Substitutions(v, vy, d',a})
C Substitutions(u, u1,a', a}).

Proof. Suppose hyp(25 55) let s; = Substitutions(v,v,,d’,a}), and let
s = Substitutions(u, u;, a’, ¢}). Then scopemin (25.49)y,y, +|v,v1, 5N 81], s0 it
follows that s; < s M s; < s1. Thus (25.55).

25.56 Thm. u is a designator & z'is an injective sequence of variables &
a' and o} are sequences of terms & Lnz' = Lna' = Lnd] & (uisaformula
— o' is simultaneously substitutable for z' in v & a} is simultaneously
substitutable for z' in u) — substitute(u,[a'],u[a}],d,a}).

Proof. Suppose Ju3z'-(25.56). By BLNP there exist minimal such u
and z'. Let v = uz[a'], let v; = uy[d}], and let

s = Substitutions(v,v;,a’, @}).

Clearly ~(u is a variable), so v(1) = v;(1) = u(1). Suppose ~({u(1)) =3 &
(u(2)) € Ranz'). Suppose 1 < ¢ < Index (u(1)), let w = ((Argu)(¢))or[a'],
and let w; = ((Argu)(7))[€}]. By the minimality assumption we have
substitute(w, wy, a',a}). But w occurs in v and w; occurs in vy, so by
(25.55), (w,wy) € s. Thus (v,v,) € s, a contradiction, and thus (u(1)) =

& (u(2)) € Ransg'. There exists 7 such that'l < j < Lnz' &
(]) = (u(2)). Let y = 2'[1,5 — 1] = 2’| + 1,Ln2']; by (19.38) we have
S z'. Suppose 1 < i < Index (u(1)), let w = ((Argu)(¢)),/[a’], and let
= ((Argu)(?)),]a}]. Again we have substitute(w,w;,a',a}), w occurs
in v and w; occurs in vy, so {w,w;) € s Thus {v,v1) € s, a contradiction,
and thus {25.56).

g s W
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25.57 Thm. (equalityltheorem) hyp (25.56) —
Di or(u, 7', d', d}): 0 Impl(Equals(a’, a}) * (un[a'|~uz[d}])).

(See Corollaries 1 and 2 of [Sh,§3.4]. The proof given there seems to
require a slight emendation, as given below, because the variables occurring

in one of the terms may overlap with the variables being substituted.)
Proof. Define

y' = Enum {y € Occ Conj Equals(a’,a}) : y is a variable},

z' = Enum{z € Rany' : z ¢ Ranz'},

e = {<]a FO,u+a'+a’l+j> :.7' € Dom y'}’

d' ={{j,d):j € Domy & Vi(y'(j) =2'(i) - d=172'()) &
(v'(7) ¢ Ranz' — d = €'(j))},

¢ ={{,a(l)y[€]):! € Doma'},

¢y = {{,d\ (), [€']) : | € Domadl},

V= uzr[dﬂ.

We distinguish two cases: 1. u is a term, and 2. u is a formula. Define

Ci = D'25.51(UZ’(C’-‘vvz'(cﬂac’7c'1)’
Cy = Dyg sylva[e'],valer], e, c),
C' = C| in case {u), for 1 < p <2,
D = C; . (Equals(c’, ¢}),C",0)

1]

!
1
Ay = Conj Equals(d’,a})=

Dy = Diyg pe(e',y's Ao, D).

Unfortunately, there is a trivial distinction of cases to make: 3. a' = a} =0,
and 4. -(3). Define

Dy = (u~v),
Dy = D+ (Ag™ Ay) * (A4),
D' = D, in case (u), for 3 < p <4.

Suppose hyp (25.57). Clearly (3) — con (25.57), so suppose (4). By (25.56),
(25.51), and (25.54), C': Equals(c',c}) F uz[c'|~uz[c}]. Let

C = ConjEquals(c’, ¢})= (uy [¢']~uz[c}]).

By the corollary (25.25) to the deduction theorem, Dj: 0~}: C. But
Aoy [€] = C, so by the theorem on constants (25.28), D}: 0 t A,. Then
by (25.22), Dy: 0 F Ay, but D' = D). Thus con (25.57), and thus (25.57).
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25.58 Thm. (corollary to the equality thetlrem) a is substitutable for z in A
& ~(z occurs in @) — Diy; 5(a,z,A): O F Az[a]S3z(z=a& A).

Proof. Define

= Diss1(4,(2), (z), (a)) * (z2a=(AB 4, [a])) * (z2a& A 4, [a]) *
(31(:5 a&A)—»A cJal) * {a= a&iA,[a]>3z(s2ak A)) * D25.46(a) * {(a=a) *
(A Ja]>3z(z2a& A)). O

Finally, we discuss the prenex operations; see [Sh,§3.5].

25.59 Thm. z is a variable & B and C are formulas & -(z is free in C)
= ((1) & --- & (6)), where

1. D y550(z, B): 0 ~3zB&VYz=B,
2. Dyass0(z, B): OF ~YzrB&3z=B,
3. D'3 2550(2, B,C): OF JzBVC+3z(BYC),
4. D)y g0(2, B.C): 0 ¥zBYCHYz(BIC),
5. Dy g5 50(2, B,C): 0 F CV3zB®3z(CVB),
6. D} 55 50(z, B,C): 0 F CUVzB&Yz(CUB).

Proof. Define

D} = (B&S%%B) Chy (B, 5B, 7) * (3zB&>32%%B) + (232 B~>Vz™B),
D; = (*YzB&3z5B),
= (BBYC) + Cy, 1,(B, BYC, z) » (JzB=33z(BVC))
(B\/CHzx(B\/C)) <0v3x(3v0)> + (B>3zB) « (BYC=3zBYC) #
(3z(BYC)=3zBVC) * <3IB\/C<—>3.Z(B\/CD .

D}, = (B=BYC) + Dis (B, BYC,z)  (V2B=Yz(BYC)) * (C=BYC) «
13253(0 BYC,x) » (C=Vz(BYC)) * Dy 1,(BYC, z) + (Y2(BYC)SBIC) *
(V2(BYC)&~C™5 B) + Dy o(Y2(BYC)&>C, B, z) * (V(BYC)&=C V2 B) »
(Vz(BYC)=YzBYC) * (Y2 BVCSYz(BYC)),

D5 (CUBBUC) + Cl, ,(CVB, BYC, z) * (32(CVB)&3x(BYC)) +

« (3zBYC&3z(BYC)) + (CU3zB&32(CUB)), }

D6 = (CUB&BYUC) « Dy ,(CYB, BUC, 1) * (Yz(CVB)&Vz(BUC)) +

D), (YzBYC&Y2(BUC))  (CIVzB&Y2(CUB)).

25.60 Def. A, is an immediate prenex transform of A «— Jdz3y3dB3C3ADAD,
(z and y are variables & A, A;, B, C, D, and D, are formulas & =z occurs
in A & yoccursin 4; & Boccursin A & C occursin A & -(yis
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free in C) & vy is substitutable for z in B & replace,(A,A4,,D,D;) &
(1) v -V (6))), where

D =%3zB & D, = VB,
. D = =VzB & D, = 3z°B,

= E:EB\/C & D, = E]y( :[y]1V0),

. D ¥zBYC & D, = Yy(B,[y]VC),

. D= C\/E{:cB & D, = Eiy(C\/B (y]),

6. D=CVVzB & D, = Vy(C\/B yl)-

t

25.61 Thm. A, 1§ an immediate prenex transform of 4 —
Dys61(Ar, A): OF AT A4

Proof. Define z,y, B, C, D, and D; as in (25.60). We distinguish the
six cases (1)-(6) of (25.60). Define

Dy = Dy 34(A, A1, (D), (D1)),
D = D’1,25.59($,B) * Dy

D, = D;,zs.sg(z,B) * Dy,
C' = Diy; 4o(D1, D),

[SANN- NI LI R

Dy = C'+ Dy 25.59(?!, B.[y],C) Dy,
D, =C"+ D, 25.59(1/,Bz [y],C) = Dy,
Dl C'« Dg,25.59(yaBz{y]’ C) * Dy,
Dg=C'« D%,zs,ssa(vaz[yLC) = D,
D'= D! in case (n),for 1 < p < 6. OJ

It is possible to express within our theory the notion of a formula being
in prenex form. One can construct the prenex form of a formula via a
bounded function symbol. Each of the transforms (1}-(6) pushes a logical
connective to the right of a quantifier. It is necessary to define the notion
of occurrence of a logical connective in such a way that the occurrences
of negation in a universal quantifier are not counted, and to impose the
restriction in (1) that (B(1)) # =. Then we obtain the prenex form A; of A
by a sequence A’ of formulas, each being an immediate prenex transform of
its predecessor, with Ln A’ < (Ln A)? + 1. The formulas may grow slightly
in length because a universal quantifier has length 4 while an existential
quantifier has length 2, but we obtain the bounds

Ln A' < Log(2- (A# A)),
LnSup A' < Log(A - (2- (4 #4))?),
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and
Sup Sup A' < Max(Sup 4, Sup A;).

Finally, one can construct a bounded function symbol that is a proof from 0
of the equivalence of a formula with its prenex form. 1 do not think that it
will be necessary for our purposes to carry out these constructions.



Chapter 26

Special constants

There is another important derived rule of inference. When we have
proved 3xA it is very useful to have a name for such an x. In our proofs we
have been saying “there exists x such that A”. More formally, for a closed
instantiation IxA one can adjoin a new constant r, called a special constant,
and the special aziom 3xA — A,[r], and this device can be iterated. When
IxA is not closed, it is necessary to treat its free variables as constants;
this is a tacit use of the Theorem on Constants. In this chapter we will
construct a predicative arithmetization of the method of special constants,
following the presentation contained within [Sh,§4.2].

26.1 Def. B is a special axiom <« Jz3A3r(z is a variable & Ais aNformu]a
& ris a constant & =z occursin A & ~(r occurs in A) & drAdisa
closed formula & B = dzAA_[y]).

26.2 Def. Spvar B = x «— 3A3r scopes, (26.1), otherwise z = 1.
26.3 Def. Spform B = A — 3z3r scopes, (26.1), otherwise A = 1.
26.4 Def. Spconst B = r < 3z3A scopes, (26.1), otherwise r = 1.

26.5 Thm. A and B are formulas & =z and y are variables & —(y occurs
in AVB) — Diy(A,B,z,y): ((3zAA,[y|)>B) + B.

Proof. Define

_ D' = {(3zA=A,[y])SB)
GIA:’B?/AJ!/D * Dg,zsAsg(yaAz lyl, =

134
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26.6 Def. t{B'| = (Langt U NIs B'*, Axt U Ran B').
26.7 Thm. t is a theory & B'is a sequence of formulas — t{B'] is a theory.
Proof. From (26.6) and (24.14).

26.8 Thm. (theorem on special constants) t is a theory & B’ is a sequence
of special axioms & Vu(u is a nonlogical symbol & wu occurs in B'* &
u ¢ Langt — 31(1 <: < LnB' & u = Spconst B'(¢))) & Vi(1<:<LnB'
— Spconst B'(:) ¢ LangtUOcc B'[i+1,Ln B']*) & Aisaformula of Langt
& D) is a proof in t[B'| of A — Dy 4(t, B', A, D}) is a proof in t of A.

Proof. Define

r' = {{¢,Spconst B'(7)) : i € Dom B'},-

C} = {(7,Spform B'(2)) : { € Dom B'},

Ay = {{¢,Impl(B'[7,Ln B'] * (A))) : 1 € Dom B'U{Ln B’ + 1}},
D} = D oo (B', D}, Enum Ax t),

Yy = {{i, Xprya+i) : 1 € Dom B'},

Ci = {{¢,Ssub(C{(7),",¥")} : { € Dom B'},

Ay = {{z,Ssub{A}(7), 7', y')) : 1 € Dom Ay},

Dy = Diyg o5(r', yIvA’I(l)lel)’

Dy = Diy 5(C1(2), A1z + 1), Spvar B'(d), '(2)),

D' = D4+ {(i,D%) : i € Dom B'}*.

Suppose hyp (26.8). Observe that
1. ¥i¥j(l < ¢ < j < LnB' — —(r'(¢) occurs in B'(7)))-

Now B’ is a sequence of closed formulas, so by the corollary (25.25) to
the deduction theorem, D} is a proof in ¢t of Impl(B' * (A)). Observe that
Impl(B' * {A)) = Ap(1). By the theorem on constants (25.28), D} is a
proof in ¢ of A3(1). By (26.5), which is applicable by (1), 1 <7 < Ln B
— Dy A7) F AY(r + 1), so D' is a proof in t of A{(LnB"+ 1). But
A{(LnB' + 1) = A, and thus (26.8).



Chapter 27

Extensions by definition

In this chapter we will predicatively arithmetize the notions of extension
by definition of a predicate symbol and extension by definition of a function
symbol, and show how to construct bounded function symbols that trans-
late proofs into the original theory. We will follow [Sh,§4.6] except for the
proof that an extension by definition of a function symbol is conservative.
We begin with some general properties of translation functions.

27.1 Def. g is a translation function on s <+ ¢ is a function & s is a
set of formulas & Domg = s & VB(B € s -» ¢g(B) is a2 formula &
Freeg(B) = Free B) & (1) & (2) & (3), where

1. VB(®B € s — g(*B) = =¢(B)),

2. ‘V’BVC(VB\70 € s — g(BVC) = ¢(B)Vg¢(C)),

3. VBVz(3zB € s — g(3zB) = Jzg¢(B)).
27.2 Def. Atoms A = {B € Formulas A : B is an atomic formula}.

27.3 Thm. g, and g, are translation functions on Formulas A &
g1|Atoms A = 92| AtomsA — 91 = G2.
Proof. Suppose hyp (27.3), and suppose IB(g:1(B) # g.(B)). By BLNP

there is a minimal such B. Clearly B € Formulas A. By (23.30), B is an
atomic formula, which is impossible. Thus g; = g2, and thus (27.3).

27.4 Thm. g, is a translation function on Atoms A — Jg(g is a translation
function on Formulas 4 & gy Cg & LnSupg < LnA-Sup(Ln ogp) <

136
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Log(A # go(Maxm(Ln o gy))) & SupSupg < Max(Sup A, SupSup go)).
Proof. We use the abbreviation « for

¢ is a translation function on s & s C Formulas4 & ¢, C g &
VB(B € s — Formulas B C s).

Suppose hyp (27.4). We claim that

1. a & B € s — Lng(B) < LnB-Sup(Ln cgy) & Supg(B) <
Max(Sup B, Sup Sup go)-
Suppose 3B-(1). By BLNP there exists a minimal such B, but this is
impossible by (23.30). Thus (1). Since

Ln B - Sup (Ln o g;) < Log(A # go(Maxm(Ln o go))),
we have

Jdg a: Domg < Formulas A, LnSupg < Log(A # go(Maxm(Ln o ¢5))),
Sup Supg < Max(Sup A, Sup Sup ¢).
We have a, ,/Atoms A, go] and hence 3g a,[Atoms A]. Let

s = Max s(s < Formulas A & 3g a).
Then Jg o by MAX, so of course there exists g such that &. Suppose

2. 3B(B € Formulas A & B ¢ s).

By BLNP there exists a minimal such B. Let s; = sU {B}. Now B ¢
Atoms A, so by (23.30) there exist C, D, and z such that

Ccs& Des& (B=3CVvB=CVYBVB=3zC).

Suppose B = “C and let g; = g U {{3C,5¢(C))}. Then ay|sig1], so
dg o|s1]. By the maximality of s we have s; < s, a contradiction. Thus
B # 5C. Suppose B = CVD and let g; = ¢U {{CVD,g(C)Vg(D))}. Then
sy < s, a contradiction, and thus B = 3zC. Let g; = g U {(3zC, 3zg(C))}.
Then s, < s, a contradiction, and thus —(2). Therefore s = Formulas 4,
and thus (27.4).

27.5 Def. Trext(gy, A) = g < go is a translation function or AtomsA &
¢ is a translation function on Formulas A & gy C g, otherwise ¢ = 1.

We have been using the abbreviation g c f. Now we introduce a binary
function symbol denoted by o.
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276 Def. go f = {(z,2) :z ¢ Dom f & f(z) € Domg & z=g(f(z))}.

27.7 Thm. g is a translation function on s & B’ is a sequence of formulas
& ImplB' € s — g¢(lmpl B') = Impl(g o B').

Proof. Suppose 3B'={27.7). By BLNP there exists a minimal such B'.
Clearly Ln B' > 2. Let By = B'[2,Ln B']|. Then Impl B’ = B'(1)=Impl Bj,
so con (27.7), a contradiction, and thus (27.7).

27.8 Thm. g is a translation function on s & Impl(B'*(B))€s & Bis
a tautological consequence of B' — g{B) is a tautological consequence of
go B.

(See the Remark in |Sh,§3.1].) Proof. Suppose hyp(27.8) and let 4 =
Impl(B' « (B)). By (27.7), g{A) = Impl(g o B' * {(¢(B)}). Suppose v is a
truth valuation on g(A), and let

vo = {{C,v(¢(C))} : C € Formulas A}.

Then vg is a truth valuation on A, so vo(A4) = 1 and hence v(A4) = 1. Thus
g(A) is a tautology, and thus (27.8).

279 Thm. ¢ is a translation functionon s & C€s & Des & C can
be inferred from D by 3-introduction — ¢{C) can be inferred from g¢(D)
by 3-introduction.

Proof. Suppose hyp (27.9). There exist z, A, and B such that —(z is free
inB) & D= A~B & C = 3zA~SB. Since Freeg(B) = Free B, we have
=(z is free in g(B)). Also, g(D) = g(A)=g¢(B) and ¢(C) = Jzg(A)=¢(B),
so con (27.9). Thus (27.9).

27.10 Thm. A is a formula & ¢ is a translation function on Formulas A
— replace(A,g(A), Enum Atoms 4, g o Enum Atoms A).

Proof. Suppose hyp(27.10), and let B' = Enum Atoms A. Suppose 1:
3B(B € Formulas A & (B,g(B)) ¢ Replacements(A4,g(A4),B',go B')). By
BLNP there exists a minimal such B, which is impossible. Thus (1), so
that con (27.10). Thus (27.10). O

Now we introduce the notion of an extension by definition of a predicate
symbol.

27.11 Def. extp(ti,t,p,z',D) < t, and t are theories & p is a predicate
symbol & p¢ Langt & p# = & <z’ is an injective sequence of variables
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& Indexp = Lnz' & D is a formula of Langt & RanFreeD C Ranz'
& t, =t[{pxz"*SD)].

27.12 Def. Tratp(p,z’,D,u,A)=C « ({(A(1)) #£p > C=A) &

((A(1)) =p — C = Bys.as(D, A * u)[Arg A]).

This is the arithmetization of A¥*, for A an atomic formula, in the dis-
cussion of predicate symbols in [Sh,§4.6]. Recall that Bgs(D, A * u) is
a variant of D, constructed to avoid colliding variables with A x u. It is
convenient to allow the dependence on an auxiliary expression u; this will
save a lot of fuss with variants.

27.13 Def. A is an atomic formula of | < A is an atomic formula & A is
a formula of [.

27.14 Thm. extp{ty,t,p,z', D) & A is an atomic formula of Langt;, —
D}y 14(p, 2, D, A u) is a proof in t; of A=Tratp(p,z’, D, u, A).

(See (i) in the discussion of predicate symbols in |Sh,§4.6]. The restric-
tion to atomic formulas will be removed shortly.) Proof. We distinguish
two cases: 1. {A(1)) # p and 2. (A(1)) = p. Define

D} = (454,

Dy = Bysaa(D, A # u),

D) = (px2' & D) + Dy, 45(Do, D) * (prz'* Do) *

Di o(Arg A, 2, pxx'* = Dy) * (px(Arg A)* S Do [Arg A)),

D' = D, in case (u), for 1 < p < 2.

Suppose hyp(27.14). Clearly (1) — con(27.14), so suppose (2). Then
p+(Arg A)* = A and Dy,/[Arg A] = Tratp(p, 2, D,u, A), so by the variant
theorem (25.43) and the substitution rule (25.5) we have con (27.14). Thus
con (27.14), and thus (27.14).

27.15 Def. Trinp(p,z', D, u, A) =

Trext({(B, Tratp(p, z', D,u, B)) : B € Atoms A}, A).

27.16 Def. Trp(p,z', D,u, A) = Trinp(p,z', D,u, A)(A).

27.17 Thm. extp(ty,t,p,z',D) & A is a formula of Langt, —
Trp(p,z',D,u, A) is a formula of Langt & (A is a formula of Langt —
Trp(p, 2, D,u, A) = A).

Proof. Suppose 3A-(27.17). By BLNP there exists a minimal such A,
which is impossible. Thus (27.17).
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27.18 Thm. hyp(27.17) — D}, s(p,z',D,u, A) is a proof in t; of
ASTrp(p,2',D,u, A).

Proof. Define

B} = Enum Atoms A4,

D = {(i, D}, ,,(p,2', D, B'(i},u)) : 1 € Dom B'}* «
Dy 5, (A, Trp(p, z', D,u, A), B', By).
Then (27.18) by (27.14) and the equivalence theorem (25.34), which is
applicable by (27.10).

27.19 Thm. g = Trfnp(p,z’, D,u,A) & =z is a variable & aisa term &
B € Formulas A & B,[a] € Formulas A — g(B,[a]) = (9(B).[a]).

Proof. Suppose 3B—(27.19). By BLNP there exists a minimal such B.
Clearly ~(B is an atomic formula), (B(1)) # =, and (B(1)) # V. Therefore
(B(1)) = 3. Let y = (B(2)) and let C = B|3,Ln B], so that B = 3yC. Sup-
posey = z. Then g(B;[a]) = g(B) = (¢9(B).{a]), a contradiction, and thus
y # z. Then g(B,[al) = ¢(JyC.[a]) = yg(C.[a]) = Jy(9(C)).[a] by the
minimality assumption, and 3y(¢(C)).[al = (9(3yC)):[a] = (¢(B)):[ea].
This is a contradiction, and thus (27.19).

27.20 Thm. extp(t,,t,p,z',D) & Dj is a proofint, of A —
DYy oolp,2', D, DY) is a proof in t of Trp(p, ', D, Dy*, A).

(See (ii) in the discussion of predicate symbols in [Sh,§4.6].) Proof.
Suppose hyp (27.20) and define

g = Trfnp(p, z', D, D}*, Disj D},),

Do = st_44(D,D’O*).

Observe that
VivB(1 <1< LnDj & B € Formulas D} —
g(B) = Trp(p,z', D, D}*, B))
by (27.3). Suppose 1 < ¢ < Ln Dj. We distinguish three cases:

1. Dj(7) is a substitution axiom Vv Dj(7) is an identity axiom V (Dj(1)
is an equality axiom & —(p occurs in Dy(2))) vV Dy(t) € Axt v Dy(s) is
a tautological consequence of Dj[1,¢ — 1] V 35(1 < j <i & Djy(i) can be
inferred from D) (7) by 3-introduction),

2. =(1) & Djy(s} is an equality axiom,
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3. ~(1) & Dj(:) = pxz"*&D.
Suppose (1) and define C] = (g(Dg(7))). We claim that
4. C): Enum Axt * g o Di[1,1 — 1] F ¢(D}(:)).

This holds by (27.19) (for a substitution axiom), by (27.17) (for axioms
of Langt), by (27.8) (for tautological consequence), and by (27.9) (for 3-
introduction). Thus (1) — (4).

Suppose (2}, define ¥’ and 2' as in

3y'32' D(¢) = Impl(Equals(y', 2') * (p*y"* Spxz'*})),

and define Cy = Dy 5;(Do, 2',y', 2'). Thus (2) — (4)c:[C3] by the corollary
(25.57) to the equality theorem.

Suppose (3) and define C§ = Dl (o(Do, D) * (DoD). Observe that
Dy&=D = g(Dg(i)), and thus (3) — (4)¢([C3] by the variant theorem
(25.43).

Define ¢! = C, in case (u), for 1 < p < 3. Thus 1 <7 < LnDj —
(4)c![C]. Define D' = {(,C") : i € Dom D}}*. Then D' is a proof in ¢ of
g(A4), and thus (27.20). O

In arithmetizing the notion of an extension by definition of a function
symbol, we need to include the proofs of the existence and uniqueness
conditions in order to have a bounded predicate symbol. So as not to have
to worry again about variants, we first treat the case that the right hand
side of the defining axijom is an atomic formula; the general case is easily
reduced to this by first adjoining a new predicate symbol.

27.21 Def. extfo(ty,t, f,2',y,y1,p,C4,Cy) « t; and t are theories & f
is a function symbol & f ¢ Langt & z'* (y) * (y1) is an injective
sequence of variables & Indexf = Lnz' & pis a predicate symbol &
Indexp = Index f +1 & Cj is a proof in ¢ of éyp*z’**y & C| is a proof

1k o~

in ¢ of prz'*aykpra'Fry; SyZy & t; = Hy= fa'* Spxz' ry.

Now we introduce some function symbols to be used in eliminating
occurrences of f.
27.22 Def. Newvaru = Minz{z < X, & 2z is a variable & —(z occurs
in u)).
27.23 Def. Lasty(f,u) =i« (u(?)) = f & Vj(¢ <7 <Lnu — (u(?)) # f),

otherwise : = 0.
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27.24 Def. Lasty(f,u) = § < u and u[Last,(f, u), 7] are designators, other-
wise 7 = 0.

27.25 Def. Arglast(f,u) = Arg(u|Last,(f,u), Last,(f,u)]).

27.26 Def. Elim(f,u) = u|1, Last;(f,u) — 1] x Newvaru *
u[Lasty(f,u) + 1,Lnu].

27.27 Def. Deg(f,u) = Card{i € Domu : (u(7)) = f}.

27.28 Thm. f is a function symbol & wu is a designator & f occursin u
& z = Newvaru & o = Arglast(f,u) & v = Elim(f,u) — u = v,[f+a'*]
& -(f occurs in @'*) & Deg(f,v) = Deg(f,u) — 1.

Proof. From (27.22)-(27.27).

27.29 Thm. [ is a function symbol & u is a designator — 3W'(Lnv' =
Deg(f,u)+1 & ¢'(1) =u & Vi(l <7< Lnv' — v'(¢+1) = Elim(f,v'(¢)))
& Vi(1 <7< Lnv' - Deg(f,v'(z)) = Deg(f,u)+:—1) & LnSupv' <Lnu
& SupSupv' < Xyipnu)-

Proof. The uniqueness holds by (12.17). We use « as an abbreviation
for scopezy, (27.29) but with Lnv' = Deg(f,u) + 1 replaced by Lnv' <
Deg(f,u)+ 1. Suppose hyp (27.29) and let v' = Max v' a. We have a,{(u}],
so by MAX we have o. Suppose f occurs in v'{Lnv'), and let

vy = v U {{Lnv' + 1, Elim(f,v'(Lnv')))}.

Then a,|vy] by (27.28), so that v < o', which is an impossibility. Thus —-(f

occurs in v'(Lnv')); that is, Deg(f,v'(Lnv’)) = 0. Consequently, Lnv' =
Deg(f,u) + 1, and thus (27.29).

27.30 Def. Elimseq(f,u) = v' « hyp(27.29) & scopeas (27.29), otherwise
v =1

27.31 Thm. f is a function symbol & A is an atomic formula — Jlg(g is
a function & Domg = RanElimseq(f,A) & VB(B € Domg — (1} &
- & (4))), where
1. Lng(B) < LnB + (8 + Index f) - Deg(f,B) &
Lng(b) < Log(B°- (B # B)),
2. Supg(B) < XatLaa +p+ 3,
3. Deg(f, B) = 0 g(B) = B,
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4. V2VCVd'(Deg(f,B) # 0 & z=NewvarB & C = Elim(f,B) &
a' = Arglast(f, B) — ¢(B) = Jz(p*a'*+2&g¢(C))).

Proof. Suppose hyp (27.31). Let A = Reverse Elimseq(f, A). Write a as
an abbreviation for scopes, (27.31) but with Domg = Ran Elimseq(f, A)
replaced by 35(1 < j < LnA' & Domg = RanA'[l,j]), and let ¢ =
Max g . We have

a: Dom g < Ran Elimseq(f, A), Ln Sup g < Log(A® - (4 # 4)),
SupSupg < Xpi1na +p+ 3

and we have ¢,[0], so a holds by MAX.
Suppose

3i(1 <1< LnA' & A'(7) ¢ Domyg).

By BLNP there exists a minimal such 7. Suppose i = 1. Then Deg(f, A'(1))
= 0. Let g; = g U {{A'(1),A(1))}. Then a,4|g:}, so g, < g, a contradiction,
and thus ¢ # 1. Let z = Newvar A'(7), let ¢’ = Arglast(f. 4'(:)). and let

g1 = g U {(A'(d), Fz(pra’ 42&g(A'(i ~ 1))))}.
By (23.60) and (23.59), Ln g:(A'(z)) < Lng(A'(z — 1)) + (8 + Index f). Let
k =1LnA'(¢) + (8 + Index f) - Deg(f, A'(z)),

so that Lng,(A’(¢)) < k. Since f occurs in A'(¢) we have Index f < Ln A'(z),
and Deg(f, A'(i)) < LnA'(i). so that k < Log(A'i)° - (4'(i) % A'(1)))
Therefore g1, so g; < g, a contradiction, and thus Domg = Ran A4' =
Ran Elimseq(f, A). Hence scopes, (27.31).

Suppose scopesy, (27.31)4{¢1), and suppose
5i(1 < i < Ln A" & g(A'0)) % 01(4'())).

By BLNP there exists a minimal such 7. Suppose 1 = 1. Then g(A'(7)) =
g1(A'(7)), a contradiction, and thus ¢ # 1. Then again g(A'(2)) = g:(A'(7)),
a contradiction, and thus g = g;. Thus con (27.31), and thus (27.31). O

In an effort to make the rest of this chapter less unreadable, let us make
the following conventions. Any theorem marked * is understood to have
the hypothesis

extfo(t1,t, f,2',y,v1,p,Co, Cy),
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called the tacit hypothesis, and any nonlogical symbol introduced by a defin-
ing axiom marked *, or introduced (by “define ...”) in the proof of a the-
orem marked *, is understood to have as its first arguments 1, ¢, f, 2/, v,
Y1, P, Cg, C}. In proving theorems marked *, we will not introduce and
discharge the tacit hypothesis, and if (¢) is such a theorem, by hyp(£) we
mean the hypothesis of the theorem as written (not the tacit hypothesis).

27.32* Def. Tratf A = g «— hyp(27.31) & scopesy, (27.31), otherwise g = 1.
27.33* Def. Trat A = Tratf A(A).

This is the arithmetization of A¥*, for A an atomic formula, in the dis-
cussion of function symbols in [Sh,§4.6]. See (i) of that discussion for the
following result. The restriction to atomic formulas will be removed shortly.

27.34* Thm. A is an atomic formula of Langt; — D, ,,(A) is a proof in
t; of A5 Trat A.

Proof. Suppose hyp{27.34) and define B' = Elimseq(f, A4), ¢ = Tratf A.
Suppose 1 < ¢ < Ln B’ and define z = Newvar B'(7), a’ = Arglast(f, B'(¢)),

Cy = (B'(i +1)g(B'(i + 1))) * (y=fxz'* Spxz'*xy).

We want to construct a proof from Cj of B'(1)&g(B'(t)). Recall that
g(B'(?)) = Sz(pra'*+2z&g(B'(z + 1))). Define

O3 = Cy » Digela’ + (2),2' + (y), y= [ra* Spra'*sy).
By the substitution rule (25.6), Cy: CL F 22 fxa'* 25pxa'*+z. Define

Ci = CyxDiy 54 (32(= [xa" &B'(i+1)),g(B'(7), (2= [+a")+(B(i+1)),
(pra'"xz) + (g(B'(i + 1)))).
By the equivalence theorem (25.34),

Cly: CL F (22 f+a'*&B'(i + 1)73g(B'(1))).
Define

Cg = Cyx Disgs(fa'™, 2, B'(i + 1)) x (B'(i + 1) fxa"* | 5g(B'(1 + 1)))-

By the corollary to the equality theorem (25.58), Ci: C;f Ct(Ln Cf), but
B'(i+1),[f+d'*] = B'(d). Thus 1 <i < Ln B' — CL: C} F B'(i)&g(B'(4)).
Define

D' = Reverse{(:,C}) : © € Dom B'[1,Ln B' - 1]}.
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Then D': (y=f+z'"* Spes'*+y) F AT3g(A), and thus (27.34).
27.35*% Def. Trfn A = Trext({(B,Trat B) : B € Atoms A}, A).
27.36* Def. Tr A = Trfn A(A).

27.37* Thm. A is a formula of Langt; — Tr A is a formula of Langt &
(A is a formula of Langt — Tr 4 = A).

Proof. Suppose 3A-(27.37). By BLNP there exists a minimal such A.
Then A is an atomic formula, so that Tr A = Trat A. But by (27.31) this
is impossible. Thus (27.37).

27.38* Thm. A is a formula of Langt, — Dj;35(A) is a proof in t; of
ASTr A.

Proof. Define

B' = Enum Atoms A,

By = {(+, Trat B'(2)) : © € Dom B'},

D' = {{i, Dy, 54(B'(:))) : i € Dom B'}" * Dy 5,(A, Tr A, B', By).
Then (27.38) by (27.34) and the equivalence theorem (25.34), which is
applicable by (27.10). O

The next task is to give a predicative arithmetization of the theorem
that an extension by definition of a function symbol is conservative. It is a
semantic triviality that such an extension does not alter the validity of any
formula, but the argument by Goédel’s Completeness Theorem that it is a
conservative extension yields no clue as to how much longer is a proof with
the new function symbol eliminated. We cannot follow the proof of (ii) in
the discussion of function symbols in [Sh,§4.6] because it is based on the
Theorem on Functional Extensions (in which the uniqueness condition is
not assumed), whose proof in [Sh,§4.5] uses Herbrand’s Theorem, which in
turn depends on the Consistency Theorem; this argument yields a super-
exponential bound. (I do not know whether the Theorem on Functional
Extensions can be established predicatively; we have not used such exten-
sions in the development of our theory.) The difficulty in a direct proof,
similar to the one for an extension by definition of a predicate symbol, is
that the translation of a substitution axiom is not in general a substitution
axiom-—the analogue of (27.19) fails because the term a may contain the
new function symbol f. There is a direct proof in [K1,§74], but it is very
intricate. Here is a different proof; so far as I know, it is new.
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The idea can be described very quickly. Consider an extension T; of T
by definition of a function symbol f. For any variable-free term a of T, we
define a variable-free term a® of T. (this is the theory obtained by adjoining
all special constants and special axioms of T; see [Sh,§4.2]) by replacing
each part of a of the form fa;...a, by the corresponding special constant,
working from right to left. By the existence and uniqueness conditions and
the special axioms, A,[a]* and A¥|a‘| are equivalent in T.. Therefore if
C is a closed substitution axiom of T;, then C* is equivalent in T, to a
substitution axiom, and since T, is a conservative extension of T, C* is a
theorem of T. If C is an arbitrary substitution axiom of Ty, then Fr C* by
the Theorem on Constants.

Now let us examine the argument in full detail. Let T be a theory, let
p be a (v + 1)-ary predicate symbol such that

Fr Jypzy..- Ty
(existence condition) and
Fr pzy... 2y & pT1.. Ty D Y = U

(uniqueness condition), and let T; be the theory obtained by adjoining to T
a new v-ary function symbol f and the defining axiom

y=1fz,...z2, « pxy...1,¥.

Let A be an atomic formula of T, ; we define A* by induction on the
number of occurrences of f in A. If there are none, then A* is A. Otherwise,
let B be the atomic formula with one less occurrence of f obtained by
replacing the rightmost occurrence in A of a term beginning with f by z,
where z is the first variable in alphabetical ofder not occurring in A, so
that A is B,[fa;...a,] where a,,...,a, do not contain f. Then A* is

Jz(pa,...a,z & B).

For a non-atomic formula A of T;., we define A* by replacing each atomic
part C of A by C*. This is the construction of [Sh,§4.6], which has been
arithmetized in (27.31).

Let us show that if a is a term of T;. with no occurrences of f, then

i. Acla)* is A)a).
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It suffices to prove (i) for A atomic. Then the proof is by induction on
the number of occurrences of f in A. If there are none, then both formulas
are A,[a). Otherwise, using the notation introduced above, we see that the
following are all the same formula:

Axla]",

B,fa; ...a,)/a]",
Bylal:[faia]. .. aux(a]]",
Jz(paix(a] - . - awx[a]z & B,[a]"),
Jz(paix[al...ax[alz & B)[a]),

AXlal.
The induction hypothesis was used in the next to last step.

Let a be a variable-free term of T;.. We define a variable-free term a° of
T. by induction on the number of occurrences of f in a. If there are none,
then a® is a. Otherwise, let b be the term with one less occurrence of f
obtained by replacing the rightmost occurrence in a of a term beginning
with f by y, so that a is by[fa; ... a,] where a,...a, do not contain f. Let r
be the special constant for Jypa, ...a,y; then a® is b,[r]°.

Now let us show that if a is a variable-free term of T;.. then

ii. Fro Ayfal* < Af]af.

By the Equivalence Theorem, it suffices to prove (ii) for A atomic. We
can assume that there is precisely one free occurrence of x in A—if there
are none, we have (ii) by a tautology, and otherwise we can write A,]al
in the form A} | [a...a] and obtain (ii) by induction on A from the case
A = 1. Now the proof is by induction on the number of occurrences of f in
Ay{a]. If there are none, then we have (ii) by a tautology. Otherwise, use the
notation introduced above. If the rightmost occurrence of a term beginning
with f is not in the occurrence of a that has been substituted for x, then
A,la] is By|a),[fa; ...a,], so that A,[a]* is Jz(pa,...a,z & B,[a]*), which
by the induction hypothesis is equivalent in T, to Jz(pa, ...a,z & B}[a‘));
ie., to Af[a%]. Otherwise A,[a] is Ax[by[fa; ...a.]], so
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A lal® is Jz(pay...a,z & ALb'T)
where b’ is b,[z]. Now
Fr. Jypa;...ay
by the existence condition and the Substitution Rule, so
iii. Fr. pa;...a,r
by the special axiom for r. Also,
Fr. paj...a,T&pay...a,2 2T =12
by the uniqueness condition and the Substitution Rule, so
Fr. pay...a,z 2T =12
and a fortiori
Fro pa-..a,z & A ==
But
fper =2 - (A o AdbT)
by the Equality Theorem, so
Fre par..az & A — Al
by a tautology. By 3-introduction,
iv. Fr, Jz(par...az & A [r]) — A b))
Conversely, since
Fpe Par...ar & A0 — Jz(pag...az & Ayb'TH)
by a Substitution Axiom, we have by (iii) that
v. Fro Aglb")[r] — 3z(pa;...a,2 & ALb'T).
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By (iv) and (v), A]a]* is equivalent in T, to A,[b']}[r], which by (i) is
A,[bL[r]]*, i.e. AL]b,[r]]*. By the induction hypothesis, this is equivalent in
T. to AX[b,|r]]; i.e., to Af]a¢]. This proves (ii).

Now we are ready to prove that if -1, A then Fp A*. The proof is
by induction on theorems (see [Sh,§3.1]). Tautological consequence and
J-introduction present no problem, by the way in which we defined A* for
A non-atomic (to borrow from our arithmetical terminology, the mapping
A — A% is a translation function), so we need only show that if A is an
axiom of T; then A* is a theorem of T. Let Ty be the theory obtained
by adjoining new constants e;,€s,€s, ... (distinct from f), but no new non-
Jogical axioms, to T. Let A° be A, ., le1...e,] where wy,...,w, are in
alphabetical order the free variables of A. Notice that A%* is A*", by (),
so by the Theorem on Constants it suffices to show that -, A°* for A an
axiom of T;.

Let A be an axiom of T. Then A’* is an instance of A.

Let A be a substitution axiom of T;. Then A’ is a closed substitution
axiom B,la! — 3xB, and by (ii), Bx|a]* is equivalent in Tq to BJ[a‘], so
that A" is equivalent in Ty, to the substitution axiom BX|a®] — 3xB*. But
A%* is a formula of Ty and Tq. is a conservative extension of Tg, so A% is
a theorem of T,.

Let A be an equality axiom for f. Then A® is

aj=by —---—a,=b, —fa;...a, =fb;...b,

where a,,....b, are e;,....e;, in some order. Let r be the special constant

for Zypa; ...a,y and let s be the special constant for Jypb; ...b,y. By (ii),
A% is equivalent in To. to

aj=by—+-—a,=b, —2r=s.
But

Fr, a1 =by— -+ —a,=b, — (pa;...a,s & pby...b,s)
by the Equality Theorem, and

FT, Pb1...b,s

by the special axiom for s and the existence condition, so A°* is a theorem
of Ty, and hence of Ty.
Finally, let A be the defining axiom of f. Then A° is
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b=1{a,...a, < pa;...ab

where b,a;,...,a, are e,...,€,,; in some order. Again let r be the special
constant for 3ypa, ...a,y. By (i), A°* is equivalent in To. to

b=r+« pa;...ab,

so that A%* is a theorem of Tq., and hence of Ty, by the existence and
uniqueness conditions and the special axiom for r.

Since A* 1s A if A is a formula of T, this shows that T, is a conservative
extension of T.

Now it is a straightforward task to give a predicative arithmetization of
this argument.

27.39" Thm. D} is a proof in t; of A — Djy, 4,(Dy) is a proof in t of Tr A.

The proof and the construction of Dj; 5, are omitted. More precisely, I
have omitted to write them down. In a previous version of this chapter I
carried out a detailed arithmetization. But as Sam Buss pointed out, there
was a conceptual error in the original metamathematical argument, and
this was simply copied in the arithmetization. The moral is the familiar
one that one’s capacity for self-deception is great. Perhaps this can be
avoided by submitting oneself to the discipline of a completely formalized
proof, but this is an ideal that is seldom achieved in mathematics, and
certainly not in the present work.

Now we remove the restriction that the right hand side of the defining
axiom be an atomic formula.

27.40 Def. extf(i).t, [/, 2',y,11,D,C},C}) « ¢, and ¢ are theories & f

is a function symbol & f ¢ Langt & ' =* (y) * (y;) is an injective

sequence of variables & Indexf = Lnz' & D is a formula of Langt

& RanFree D C Ran(z' * (y)) & C!is a proof in t of JyD & y, is

substitutable for y in D & C] is a proof in t of D&Dy{yﬂﬁy%y; &

ty = tiy=f+z" =Dl

27.41 Def. Tri(ty,t, [, 7', y, 1, D,CL,Cl u, A) =

Trp(Prnziv1s, 2 * (y), D,u, Tr (t1,t, £y, y1, Prnarenes Cy, C1, A)).

27.42 Thm. extf(ty,t, f,z,y,uy1,D,C{,Cy) & Dj is a proof int of A —

Dl ot t, fo o'y, 1, D, CL, Cy, DY) is a proof in ¢ of

Tri(tsst, fo2',y, 41, D, Ch, O, war.42(tns t, £, 2y, w1, D, Cy, Cy, D), A).
Proof. Suppose hyp (27.42} and define
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p= Pan'+1,t )

ta = t|{prz" +y& D)),

ts = to[(y= f+z'* Spra'tay)),

Cy = Ch * Chg sy (prz'* vy, D,y) + (Syprz'* xy),

Cy = Oy * Dig o((ur), (y), pra’" +y® D) # {pra’ 5y1 S Dy [yr]) *
<p*z'**y&p*z’**yl—’3y£yl>.

Then extfo(ts, ts, f. 7', y, y1, p, C3, C4). Define

DI] = D,27,39(t33 tZa f’ I” Y, Y1, P Cév Cé- D(,))7
u= D",
D' = Dy y(p 2, D, DY).

Then con (27.42), and thus (27.42).
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Interpretations

The proof in [Sh,§4.7] of the Interpretation Theorem has a straightfor-
ward predicative arithmetization. We begin with the notion of an interpre-
tation 7, with universe ug, of one language in another.

28.1 Def. interpo(7, uo,l1,1s) < I and I, are languages & uq is a predicate
symbol & Indexuy =1 & uo€{l;, & Dom: =1, & Ran: C [, &
Vo(v € I; - Indexi(v) = Indexv & (i(v) is a predicate symbol < v is a
predicate symbol}).
28.2 Def. ugy = {{j,v) : j € Domu & (u(y) € Domi — v =1i(u(y))) &
(u(y) ¢ Domz -+ v = u(s})}.

This construction is used to interpret a term or an atomic formula u:

replace each nonlogical symbol by z of it. We construct the interpretation
Albw) of a general formula A in two steps.

28.3 Thm. 3l¢(g is a function & Domg = Formulas A & VBVCVz(B ¢
Domg & C € Domg & =z isa variable — (1) & --- & (5))), where
1. Lng(B) <8-LnB < Log B®* & Supg(B) < Max(Sup B,Supi) +

2. B € Atoms A — ¢(B) = By,

%B € Domg — ¢(*B) = “¢(B),

BYC € Domg — g(BYC) = ¢(B)¥g(C),
JzB € Domg — ¢(JzB) = 3z{up*zé&g(B)).

Proof. Write « as an abbreviation for scopes, (28.3) but with Domg =

O W

152
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Formulas A replaced by Domg C FormulasA & VB(B € Domg —
Formulas B C Domyg), and let ¢ = Maxga. We have o,[0], so o holds
by MAX. Suppose

3By(B, € Formulas A & B, ¢ Domg).

By BLNP there exists a minimal such By. Clearly By ¢ Atoms 4, so there
exist B, C, and z such that B and C are formulas & z is a variable
& (B, = BV By, = BYC V By, = 3zB), but this is impossible. Thus
Dom g = Formulas A and so scopes,(28.3).

Suppose scopea,(28.3),(g1], and suppose

3By (By € Formulas A & ¢(Bo) # ¢:1(Bo))-

By BLNP there exists a minimal such By, which is impossible. Thus g = ¢;,
and thus (28.3).

28.4 Def. A u,) = (Min g scopes,(28.3))(A).
28.5 Def. Univ(uo,z') = {{j,uo*z'()) : 7 € Domz'}.
28.6 Def. Al = Impl(Univ(uo, Free A) * (A(;iu,)))-

Now we can define an interpretation of one theory in another. Again,
proofs are included as part of the structure in order to obtain a bounded
predicate symbol.

28.7 Def. interp(s,uo,C',z",CY,CY ty,t;) < t; and ¢, are theories &
interpo (7, o, Langt,,Langt,) & C'is a proof in t; of §X0(u0*Xo)
Domz" = DomC{ = {f € Langt, : f is a function symbol} & DomCy =
Axt, & (1) & (2), where

1. Vf(f € Domz" — z"(f) is an injective sequence of variables &
Lnz"(f) = Index f & cg(f) is a proof in t, of
mpl (Univ (g, 2" (£)) * (wosi (/)2 (1)),

2. VA(A € Axt, — CV(A) is a proof in t; of Alu)),

Given an interpretation of one theory in another, we want a bounded
function symbol that converts a proof of a theorem in the one theory into
a proof of its interpretation in the other theory. We need two preliminary
results.
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28.8 Thm. interp(s,uo,C',2",Cf,CY,t;,t;) & a is a term of Langt; —
Dy (3, u0, 2", Cf, a) is a proof in t; of Impl(Univ(uo, Free a) * (ug+a;))).

Proof. Suppose hyp (28.8) and define
ro = {(b,Lnb) : b € Termsa},

a' = Enumer(Terms a, ),

B' = {{j, Impl(Univ(uo, Free a'(j)) * (vo*a'(j))))) : 7 € Dome'}.
Suppose 1 < 7 < Lna'. We distinguish two cases: 1. a'(j) is a variable and
2. —~(d'(y) is a variable). Define

D = uora'(5) Suoxa'(j),

[ ={d(5)(1)),

b’ Argad'(y),

= {(k,b'(k))) s k € Domb’}
= Cg(f) * Diys (¢', 2" (f), Impl(Univ(uo, 2" (f)) * (wori(f)+2"(£)*))) *
<B’(J)>’

D; = D, in case (u), for 1 < p < 2.
Thus 1 < j < Lna' — Djis a proof in t3|B'[1,7 — 1}] of B'(j). Define

D' = {{;,D%) : j € Dom B'}*.
Then con (28.8), and thus (28.8).
28.9 Thm. interp(7,uo, C', 2", Cy,CY,t1,t;) & z'is a sequence of variables
& A is a formula of Langt; & RanFree A C Ranz' & Dj is a proof in t,
of Impl(Univ(uy, z') * (A ) = Digolt,ue, C', 2", CY, 2', A, Djy) is a proof
to of A(i’u“).

Proof. Suppose hyp (28.9) and define

y' = Enum{y € Ranz': y ¢ Ran Free A},
B' = {{j, Impl(Univ(uo, y'[5, Ln y']) » (AL)))) :
7 € Domy'u{Lny' + 1}}.

Suppose 1 < j < Lny' and define

Dy = (B'(7)) * (3¢ (1) (wory/' () 5B'(j + 1) e
Dis 5 (uo* Xo, Xo,4'(5)) * (3¢ (5) (uo*y'(4))) * (B'(j + 1)>
Thus 1 < j < Lny' — Dj is a proof in t3[(B'(5))] of B'(7 +

D' = Dy * (B'(1)) *{(j, D}) : j € Domy'}".
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Then con (28.9), and thus (28.9).

28.10 Thm. (interpretation theorem) interp(i,uo,C’,z",C{,C} t1,t2) &
D({,_ is)a proof in t; of A — Dby 10(7,u0,C', 2", Cl, CY, Dp) is a proof in ¢, of
A t,U0 .

Proof. Suppose hyp (28.10) and suppose 1 < j < Ln Dj. We distinguish
five cases:

. 3B3z3a(a is substitutable for z in B & Dj(j) = B,[a]=3zB),
Di(s) is an identity axiom Vv Dg(s) is an equality axiom,
Dé(]) € Ath,
Dy(7) is a tautological consequence of D}[1,5 ~ 1],
k(1 < k < 3 & D{(j) can be inferred from Dg(k) by 3-introduction).

Define B, z, and a as in (1), and define

= Enum{y € Ran Free (B % a) : y # z},

Djo = Digglt,up, 2", Cf, a) * (Impl(Univ(uo, y') * (ugxap)))) *
<u0*a( )&(B(, u”))z[a( ]331:(1/,0*.’[&3(,3%,)» % .
(Impl(Univ(uo, y') * <(B(z w)z[@@)]) * (Fz(uo*z& By u,))))) *
<Imp](Un1v(u0,y) * ( ) 1U-n )

D = Dlzs.g(i’UOvC’ " Cé',f Dy(s), Dio)s

D2 = <D")(])(1,un)> <D,( ) 1Un >3

Dé = Ci’(DB(J))

z' = Free Dj1,7*,

to = {(k, Dy(k)0™) - k € Dom Dyf1,7 1}
(Impl(Univ (uo, z') * <D6(].)(1 un)>)>a

D} = Dhg (i, e, C', 2", Cho ', Dh(5), Di)-

Define k as in (5), define zo, C, and D as in

Jro3CID(z; is a variable & C and D are forrgulas &
~(zo is free in D) & Do(k) = C=D & Dy(j) = 3z,C>D),

9":“.‘*’!""‘

and define

z{, = Free D{(7),

Dy = (Impl(Univ(uo, 25) * (uo*To) * (Cliug)) * (D)) *
<1~1,0*:1:0&C(,~g”):Impl(Univ(uo,.736) * <D(i1u“)>)> *
<3z0(uo*zo&c(i,un)):Impl(Univ(uO’ I'0) * <D(i,u|.)>)> (D,( ) fuo >’
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D = D;, in case (u), for 1 < p <5.
Thus 1 < j < Ln D} — Dj is a proof in
to[Ran{(l, Dy())**)) : I € Dom Dy[1,5 — 1]}]
of Dj(5). Define
D' = {{j, Dg) : 5 € Dom Dy }*.
Then con (28.10), and thus (28.10).

INTERPRETATIONS



Chapter 29

The arithmetization of
arithmetic

Now we can begin to prove results about predicative arithmetic within
predicative arithmetic. In this chapter we will arithmetize Robinson’s the-
ory and show it to be tautologically consistent (and we do this within a
theory that is interpretable in Robinson’s theory).

29.1 Def 0= Fg’o.

29.2 Def. S = Fyq

29.3 Def. P = Fy,.

29.4 Def. + = Fyp.

20.5 Def. = = Fy,.

29.6 Def. Sa =S+ a.

29.7 Def. Pa = P #a.
29.8 Def. aTb=F s axb.

a
29.9 Def. a'b=~%a *b.

If x is the v*® variable in alphabetical order, we use X as an abbreviation
for X3. (Recall that U is S---S0 with v occurrences of S.) Also, we use
{a1,...,a,} as an abbreviation for {a,} U---U {a,}.

157
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20.10 Def. Q, = ({0,8,P, F,7}.{8240, S2=8y~=z=y, 27025,
£7Sy28(25p), 020, #Sy=xyF %, Pr2yaSy2zV(220&520)}).
29.11 Def. a is a variable-free term of | «+ a is variable-free & a is a term

of I.

29.12 Thm. a is a variable-free term of Lang Q, — 3!f(f is a function &
Dom f = Termsa & Vb¥¢(b€ Domf & c€ Domf — (1) & --- &
(6))), where

7(8) < Expln(2,8) < b,

=0

Sb € Dom f — f(Sb) =
Pb € Dom f — f(Pb)
btec € Dom f — f(bF¢) = f(b) + f(e),
bic € Dom f — f(b'c) = f{b) - f(c).

Proof. Suppose hyp (29.12) and write o as an abbreviation for

S/(),
IO

HVH

scopesy (29.12)
but with Dom f = Terms a replaced by
Dom f C Termsa & Vb(b € Dom f — Terms b C Dom f).

Let f = Max f a. We have ¢: Dom f < Termsa, Sup f < a and we have
as[0], so a holds by MAX.

Suppose 3d(d € Termsa & d ¢ Dom f). By BLNP there exists a min-
imal such d. Then there exist b and ¢ such that d = 0 vV (b € Dom f &
ccDomf & (d=Sbvd="Pbvd=bFcvd=be)).

Suppose d = 0 and let f; = f U {(0,0)}. Then a;[fi],s0o f; < f, a
contradiction, and thus d # 0.

Suppose d = Sb and let f; = f U {(Sb,Sf(b))}. Then

F1(86) = f(b) + 1 < 20t 4 1 < 2bnB < G,

so ay{f1] and thus d # So. .
Suppose d = Pb and let f; = f U {(Pb,Pf(b))}. Then

fi(Bb) = f(b) — 1< 2Wb < 2l P < By,
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so ay|f1] and thus d # Pb.
Suppose d = btc and let f; = f U {(b¥e, f(b) + f(c))}. Then

fi(bTc) = f(b) + f(c) < 2Lt 4 glme < glmbtlne o oLn (b¥¢) < bie,

so as[fi] and thus d # b+c.
Hence d = b'c. Let fy = f U {{(b%c, f(b) - f(¢))}. Then

fl(b‘:c) — f(b) . f(c) < 2Lnb . 2an — 2Lnb+an < 2Ln(67c) < b’:C,

so ay|f;] and thus Dom f = Terms a, and we have scopez; (29.12).

Suppose scopezs (29.12)f(f1], and suppose 3d(d € Termsa & f(d) #
f1(d)). By BLNP there exists a minimal such d, which is impossible. Thus
f = fi1, thus con (29.12), and thus (29.12).

29.13 Def. Valfna = f « hyp(29.12) & scopess(29.12), otherwise f = 1.
29.14 Def. Vala = Valfna(a).

29.15 Def. A is a variable-free formula of [ «» A is variable-free & A isa
formula of [.

29.16 Thm. A is a variable-free formula of Lvangao & B < AtomsA —
Ja3b(a and b are variable-free terms of Lang @, & B = a=b).

Proof. Suppose hyp(29.16). Then (B(1)) is a predicate symbol, so
(B(1)) = =. Hence there exist a and b such that a and b are variable-free
terms of Lang @, & B = a=b. Thus (29.16).

20.17 Thm. A is a variable-free formula of Lang@O — Flv(v is a truth
valuation on A & VaVb{a=b ¢ Domv — (v(a=b) =1« Vala = Valb))).

Proof. Recall the defining axiom (24.6) for truth valuations. Write «
as an abbreviation for scopear, (29.17) but with “v is a truth valuation on
A” replaced by rhs(24.6).|A] but with Domv = Formulas A replaced in
it by Domv = Formulas 4 & VB(B € Domv — Formulas B C Domuv).
Suppose hyp (29.17) and let v = Max v a. We have a: Domv < Formulas 4,
Supv < 1 and we have ¢,[0], so & holds by MAX. Suppose

1B(B € Formulas A & B ¢ Domuv).
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By BLNP there exists a minimal such B. By (29.16) there exist a, b, C,
and D such that a and b are variable-free terms of Lang Q, & (B = a=b
vV (C € Domv & D€ Domv & (B==CV B=CVD))).

Suppose B = a=b. There exists z such that (z = 1 < Vala = Valb)
& (2 =0 Vala # Valb). Let v; = vU {(B, z)}. Then a,[v1], so v; <-v,
a contradiction, and thus B # a=b.

Suppose B = =C and let v; = vU {{B,1 — v(C))}. Then a,[v;] and
thus B = CVD.

Let v; = v U {(B,Max(v(C),v(D)))}. Then e,|vi], which again is a
contradiction, and thus scopesy, (29.17).

Suppose scopezy, (29.17),[v;] and suppose

dB(B € Formulas A & v(B) # vi(B)).

By BLNP there exists a minimal such B, which is impossible. Thus v = v,
thus con (29.17), and thus (29.17).

29.18 Def. TruthfnA = v & hyp(29.17) & scopesy, (29.17), otherwise
v=1.

29.19 Def. Truth A = Truthfn A(A).

29.20 Thm. A is a variable-free formula of Eang @0 & (B is an identity
axiom V B is an equality axiom Vv B € Ax@,) & A is an instance of B
— Truth A = 1.

Proof. Suppose hyp (29.20), and let v = Truthfn A.

Suppose 1: B is an identity axiom. Then there exists a such that a
is a variable-free term of Lang@, & A = aZa. Then v(A4) = 1 since
Vala = Vala. Thus (1) — con (29.20).

Suppose 2: B is an equality axiom. Then there exist a,, b;, a;, and
b, such that ay, by, ap, and b, are variable-free terms of LangQ, &
(A =020 Vv A = a;26,86,25b; v A = a;2b;>Pa;2Pby v A =
aliblxagibg—"-‘aliaz%bllbg vV A = aliblqagﬁbzﬁaﬁaz%bsz V A=
a1 201 ay 2by S a Za, by =by). Then v(A) = 1 and thus (2) — con (29.20).

Suppose 3: B € AxQ, Then v(A) = 1 and thus (3) — con (29.20).
Thus (29.20).

29.21 Def. A is an open formula < A is a formula & —(3 occurs in A).
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29.22 Def. t is an open theory « t is a theory & Axt is a set of open
formulas.

29.23 Def. Neg A' = {(i,%A'(z)) : « € Dom A'}.

29.24 Def! t is tautologically consistent < ¢ is an open theory & -3A'(A’
is a sequence of formulas of Langt & DisjNeg A' is a tautology &
VA(A € Ran A' — 3B((B is an identity axiom V B is an equality axiom V
B € Axt) & A is an instance of B))).

29.25 Def. Subg(A,e€) = Apreeal{(t,€) : i € Dom Free A}].
29.26 Thm. @, is tautologically consistent.
Proof. Suppose scopesar (29.24),(Q,). Let

Al = {{(¢,Subg(A'(2),0)) : 2 € Dom A'},

and let v = Truthfn DisjNeg Aj;. Then Ay € Ran A4 — v(A4y) = 1, by
(29.20), so v(Disj Neg Aj) = 0 by (24.20). This is a contradiction, and thus
(29.26).



Chapter 30

The consistency theorem

We have already discussed the Hilbert-Ackermann Consistency Theo-
rem of [Sh,§4.3] in connection with Assertion 18.1. This theorem is basically
an algorithm for eliminating quantifiers from proofs. The first step is to
eliminate each use of J-introduction; this is done by introducing special
constants and special axioms. Then the formulas belonging to special con-
stants are eliminated, beginning with special constants of maximal rank.
We follow |Sh,§4.3] closely.

30.1 Def. spconstseq(r',z',C',t) « r' is an injective sequence of constants
& z'is a sequence of variables & Lnr' = Lnz' = LnC' & {{i,32'(:)C"(4)) :
i € Domr'} is a sequence of closed formulas & ViVj5(1 <7< j < Lnr'
— —(r'(¢) occurs in C'(5))) & tis a theory & LangtnRany' =0 &

NIsC'* C Langt URanr' & Supr’ < Fyiitne.

30.2 Def. ideqax(A,t) «» Vv(v € NIsA — v € Langt V v is a constant) &
dB(A is an instance of B & (B is an identity axiom V B is an equality
axiom V B € Axt)).

30.3 Def. belongs(A,r,r',2',C") & (1 <7 < Lnr" & (i) =r &

(A= %x'(i)C”(i)’—‘“»C'(z’)I:(,-) [r] V Ja(a is a variable-free term &

A = C'())o [a] =32 (1)C"())))-

30.4 Def. Rank A = Deg(4, A).

30.5 Def. delta(A',r',2',C",t,n) <« spconstseq(r',z',C',t) & A'is a se-
quence of closed formulas & NlsA'"™ C Langt U Ranr' & VA(A €

162
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Ran A’ — ideqax(A,t) v 3i(1 < ¢ < Ln# & Rank3Z'(:)C'(s) <n &
belongs(A,r'(?),r', 2, C"))).
30.6 Def. delta,(A',r',2',C",t,n,) < delta(A',r',2',C',t,n) &
Ran {(z, 32'()C'(1) S C" (1) (5[ 7'(1)]) : ¢ € Domr'} C Ran A'.
30.7 Def. deltag(A',t,n) — Ir'3z'3C" delta, (A, ', ', C',t,n).

We have rhs(30.7): Lnr’ < LnA’, Supr’ < Fy,i1na, Lng’ < Ln A,
Supz' <SupA',LnC'<LnA', SupC' < Sup A"

30.8 Thm. D' isaproof int of A & A is a closed formula &

SupRank o D'<n & €(27LlnD') - FA(LnA' < (27TLnD") -1 &
SupLlno 4' < 2-SupLno D' & deltag(A',t,n) & A is a tautological
consequence of A').

(See Lemma 1 of [Sh,§4.3].) Proof. Suppose hyp(30.8). There exists f
such that exp(2,2 T Ln D', f). Let k=2121Ln D', let

v = {{i, Fot+i) :1 € Dom D'},
and write « for

3ry(Lnry = LnFree D'(:) & Ranr) C Rans'[¢,LnD'] &
Ao = D'(t)free D) [ 751)-
We will prove that

1.1 << LnD - VAg(a — ZAL(Ln A < f(:) =1 & LnAj < Logk
& LnSup A < SupLn o A} < 2-SupLn o D' < Log ((Maxm Ln o D')?) &
Sup Sup A; < SupSup D'+ Fyiti & deltag(Ap,t,n) & A is a tautological
consequernce of A(}}.

Suppose Ji—(1). By BLNP there exists a minimal such 7. Suppose
2. D'(z) € Axt v D'(7) is a logical axiom

and suppose a. Let A = (Ao). Thus (1), a contradiction, and thus —(2).
Suppose

3. D'(7) is a tautological consequence of D'[1,7 — 1]

and suppose a. Then there exists r such that scopes,; . Recall the defin-
ing axiom (29.25) for Subg, and let

Dy = {4, Subo(D'(5)rree p1(s) [, 7' (2))) : 7 € Dom D'[1,4 — 1]}
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Then Ag is a tautological consequence of Dj. Let
D} = {7, Min 4} scopess; (1),.4, i, Dy(s)]) : 5 € Dom D}
and let A} = D{*. Thus (1), a contradiction, and thus —(3). Therefore
37(1 < j <i & D'(i) can be inferred from D'(j) by F-introduction),
so there exist j, k, B, and C such that
1<j<t & zisa variable & B and C are formulas &
—(z is free in C) & D'(i) = 3zB=C & D'(j) = B=C.
Suppose a, so that there exists r{ such that scopes, a. Let
By = Brree pri)[ 7015
Co = Crree p'(5) [ 7015
so that Ay = ézBOﬁCO. There exists A} such that
scopesgr (1);,a,,41 17, Boz[7'(5) 175 Co, AY].
Let A} = A} * (3zBy~3 By, [r'(5)]). Observe that
Ln 3zBy> By [r'(5)] = 2-Ln By + 4 < 2- Ln D'(5).
Thus (1), a contradiction, and thus (1). Let i = LnD' and let Ag = A.
Since A = D'(7) we have con (30.8) by (1), and thus (30.8).
30.9 Def. A' is a special sequence < A’ is a sequence of formulas &
Disj Neg A’ is a tautology.

30.10 Thm. eis a constant & D'isa proofint of e%e & SupRankoD' <n
& (21 LnD') — JA'(deltag(A',t,n) & A’ is a special sequence &
InA'"<21D" & SuplnoA'<2-SupLno D).

Proof. Suppose hyp (30.10). By (30.8) there exists Aj such that
deltag(Ag,t,n) & Ln A'Q < (271 D"Y—1 & e#eis a tautological consequence
of Ay. Let A' = A} + (e#e). Then con (30.10), and thus (30.10).

30.11 Def. Belongs(A',r',z',C',n) = {r € Ranr' : JAJi(A € Ran A’ &
1<:<Lnr & r'(¢) =7 & belongs(A,r,r',z',C") &

Rank 32'(:)C'(3) = n)}.

30.12 Def. spdelta(A',r',z',C',t,n,m,l) < delta(4',7',z',C",t,n) &
Card Belongs(A',r',z',C'n) =m & LnA' <! & Lnr' <! & SupLnoA’ <
! & SupLn oC'<!l & tisan open theory & A'is a special sequence.
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In [Sh,§4.2], the special constant r for the closed instantiation 3xA is
denoted by the letter ¢ with the subscript IxA. This is a beautiful device,
which is exploited in the proof of the Consistency Theorem, but a direct
arithmetization of it would lead to explosive growth in the size of special
constants. Notice that the formula A may itself contain a special constant s.
Now r may occur in an expression u without s occurring in u, but s will
appear in u in the subscript of r. The following defining axiom expresses
this notion.

30.13 Def. appears(r,u,r’,C') < 3j'(Lnj' < Ln+' & Supj' < Supr' &
r(7’(1)) =r & Vj(1 <j<Lnj — r'(5'(j)) occurs in C'(j'(7 + 1)) &
r'(7'(Lny")) occurs in u)).

30.14 Thm. ug occurs in v & wg is a truth valuation on uy — Jv(v is a
truth valuation on v & vy C v).

Proof. Suppose hyp (30.14). Write « for

Domwvy C Domv C Formulasu & Supv <1 & VB(5B € Domvu
— B € Domv & v(*B) =1-v(B)) & VYBVYC(B and C are formu-
las & BVC € Domv - B € Domv & C € Domv & v(BVC) =
Max(v(B), v(C))),

and let v = Maxv a. We have a,[v], so & holds by MAX. Suppose
dB(B € Formulasu & B ¢ Domv).

By BLNP there is a minimal such B. Suppose 1: B is an atomic for-
mula V (B(1)) = 3, and let v; = v U {(B,0)}. Then a,[v1}, so v; < v, a
contradiction, and thus —(1). Therefore there exist B; and C; such that
B, € Domv & C; € Domv & (B = “B; V B = B,VC,). Suppose
B = 5By, and let v; = vU{{B,1—v(B;))}. Again we have a contradiction,
and thus B = B;VC,. Let v; = v U {(B,Max(v(B,),v(C,)))}. This gives a
contradiction, and thus Dom v = Formulasu. Thus (30.14).

30.15 Thm. spdelta(4',r',z',C"t,n,m,l) & m #0 —
JAYIry 3z, IC, (spdelta( Ap, b, zf, Ch, t,n,m — 1,1%) & Sup (A)* * C¥) <
Sup (A + C"™* xr}*) & Supz) < Supz').

(See Lemma 2 of [Sh,§4.3].) Proof. Suppose hyp (30.15) and suppose
1. {(i,32'(:)C'(4)) : 1 € Dom C'} is injective.
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Let
i1 =Min#(1 <7 <Lnr' & r'(z) € Belongs(4',r',2',C',n)),
r= T’(il),
z = 2'(1),
B = C'(11),

A} = Enum{A € Ran A’ : -belongs(A,r,r',z,C")}, _
Ay = Enum{A € Ran A’ : belongs(A,r,r',2',C") & A JzB=3B.[r]},
a = {{(j,a):j € DomA, & min, AY(j) = B,[a|=3zB}.
Then
2. Ay = {{5,B.[d'(;)]=3zB) : j € Doma'}
and
3. Ran(4} * A}) C Ran A' C Ran(4} * A} * (3zBB,[r])).
We will prove that
4.1 <7< LnA, - =(3zB occurs in 4}()).

Suppose —(4). Then —(A}(¢) is an open formula), and since ¢ is an open
theory, —idegax{A!(¢),t). Therefore there exists s such that

belongs(A}(¢),s,r', 2, C").
There exist y, C, and a such that

y is a~variab]e & C 1s a formula §z a is a variable-free term &
(A40) = JCSC,[s] v AH) = Cyal 5 HC).

But since Rank 3zB = n, it follows that —(3zB occurs in C,[s] v JzB
occurs in C,[a]). We have 3zB # JyC by (1), so =(3zB occurs in FyC).
Thus —(4) implies (4), and hence (4).

We want to express the notion of replacing each occurrence of izB by
B.[r]. We will prove that

5. 3g(Domg = Formulas Disj Neg A') & VAVA,;VA,Vz(A € Domg &
A; € Domg & A, € Domg & =z is avariable — (i) & --- & (vii)),
where



30. THE CONSISTENCY THEOREM 167

i. Lng(A) <LnA,
ii. Supg(A) <SupA+r,
iii. A is an atomic formula — g(4) = A4,
iv. A=3zB — g(A) = B,]r],
v. A=7%4; — g(A) = 5g¢(4,),
vi. A= 141\7142 - 9(1‘9 = Q(Al)VQ(Az),
vil. A=324; & A # 3zB — g(A) = 3zg(4,).
Write o as an abbreviation for scopes, (5) but with
Dom g = Formulas Disj Neg A’
replaced by

Domg C FormulasDisjNeg A' & VA(A € Domg — Formulas A C
Domyg),

and let ¢ = Max g a. We have o,[0], so a holds by MAX. Suppose
JA(A € Formulas DisjNeg A' & A ¢ Domyg).

By BLNP there is a minimal such A, which is impossible. Thus scopes, (5),
and hence (5).
Let

A, = {{j,B.|d'(J)|>=B;[r]) : 7 € Doma'}.
We will prove that
6. A} + A} is a special sequence.
(See (1) of [Sh,§4.3].) Suppose v is a truth valuation on Disj Neggo 4'. Let
vo = {(4,v(g(A4))) : A € Domg}.
Then vo is a truth valuation on DisjNeg A', so there exists ¢ such that
1 <¢<LnA & vo(54'(x)) = 1. Therefore v{%g(A’({))) = 1, and so
v(Disj Neg 0 A') = 1. Thus go A’ is a special sequence. Recall (3). We have
goAy = A\ by (4),g0A, = Ay by (2), and g(3zB=B,[r]) = B, |r]|=B,|r],
so that g(3zB=B,[r]) is a tautology. Hence (6).

We want to express the notion of replacing r by a'(j) everywhere it
appears, including appearances in subscripts of special constants. Let

r = Minri(Lnr{ = Lnr'-Lna' < Log(r'#a') & Supr) < Foppe &

r} is an injective sequence of constants & Ranr| N (LangtU Ranr') = 0),
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ry = {7, {{&,r1((7 — 1) - Lnr' +4)): i € Domr'}): j € Doma'},

g = {¢ € Domr' : appears(r,C'(7),r',C")},

o ={(7,{{i,r2) ;i€ Domr" & (i¢qg—ro=1(1)) &
(1€ q— rp=r{(5)()}): 7 € Doma'},

R = {(5,{(A, Sub(Ssub(4,r",75(5)), 7, a'(7))): A € Formulas (A}*A})*}):
j € Doma'}.
(To compute h'(5)(A), first replace all the special constants r'(z) such that
r appears in C’'(z) by the new special constant r{(5)(z) and then substitute
a'(j) for each occurrence of r.) Let

Ay = {0k, 1 (5)(B: [a'(k)])=B.[a'(j)1): k € Doma'}): j € Domd'}.
Suppose 1 < j < Lna'. Since A| * A} is a special sequence, h'(j) o (A} * A4})
is a special sequence. But h'(5)(B) = B since —appears(r, B,z',C'), so
R'(5)(B.[r]) = B;|a'(y)]. Thus

7.1 <3< Lnd — (h'(j) o A}) * AY(J) is a special sequence.

(See (2) of [Sh,§4.3].)
Let

Af = AL« {{j,F'(j) 0 A}) : j € Doma'}*.
We will prove that

8. Aj is a special sequence.
Suppose —(8). Then there exists v, such that

vo is a truth valuation on DisjNeg A, & Vivj(1 < i < Lnr' &
1<j<Lnd — u(A'(d)) =1 & v(R'(5)(41(1))) = 1).

By (30.14) there exists v such that

v is a truth valuation on Disj Neg 4!, » {(J, A{(J)*): j € Domd'}* &
vy & v.

Suppose 1 < 5 < Lnad'. By (7),

KO <k <Lnd & w(H()(B.(K))>B.la()]) = 0.
Therefore v(B,[a'(5)]) = 0, and thus

1<j<Lnd — v(B,[d(j)]=B,[r]) =1.
This contradicts (6), and thus (8).
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Let

ro={(i,ry) ;1€ Domr' & (i¢qg—ry={(r'(i)) &
(1€ q — ry = (@) + {5, ( )(i)> :J € Doma'})},
{< 2 :1€Domr & (1¢q— 2y =(d(5)) &

(4 E g - 5 = (2'(2)) * {(7, (‘)> j € Doma'})}*,

Co={{1,C5) ;i€ Domr’ & (i ¢ g~ Cy=(C"(1)) &
(i € ¢ — C3 = (C"(Q)) * {4, ' (5)(C'(4))) : € Doma'})}*.
Then spconstseq(rl, z, Cf,t), Ln A) < [*, Lnr) < I[?, SupLn o A} < 1%
Sup (AL* * CL*) < Sup (A" « C}* «r{), and Sup z}, < Supz'. We will prove
that

9. Ag € Ran A} — ideqax(Ay,t) V 3so(so € Ranr| &
belODgS(AO,SO,T(’),ZL‘B,C{)) & ('50 € Be]ongs(A('), 76’176,06’ n) -
8o € Belongs(A',r',2',C',n) & so # r)).
Suppose —(9). Then Ag ¢ Ran A}, so there exist 7 and k such that 1 <
J<Lnd & 1<k<Lnd & A4, = K(j)}(A\(k)). Let A = Aj{k). We
have ideqax(A,¢) — ideqax(Ag,1), so —ideqax(A,t). Therefore there exists
7 such that 1 <7 < Lnr' & belongs(A4,r'(7),r',2',C'). Let s = r'(7), let
y = 2'(¢), and let C = C'(7). There exists a such that

A= TyC>C,[s] v A= C,la]=TyC.
Let Cy = R'(5)(C), let s = A'(5)(s), and let ag = #'(5)(a). Then

AO = inO:COy[SOT\ v AO = Coy§a0]3§yCO.
We have s # r, so there exists 13 such that

1 < io < Ln 7'(') & S = T(,J(ZQ) & Co = Cé(lo) & y= Ib(’to)
Hence belongs( Ao, 0,7, Cg). Suppose so € Belongs(Af, 7,2y, Cysn). Then
Rank JyC = Rank EyCo = n. By definition of 7; and (30.1),

—appears(r, s,r',z', C’)

and so 89 = h'(j)(s) = s. Thus (9), a contradiction, and thus (9). Hence
spdelta(Af, rf, zf, Cf, t,n,m — 1,1%).

Thus (1) — con (30.15). Now let

¢ = Enum{i € Domr' : ~3j(1 < j <i & 32'(j)C'(j) = I='(¢)C'(4))},

| ) o
rs =71 o,
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zt=1z'o0t,

re = {(¢,7'(7)) : 1 € Domr’ & min; (32'(3)C'(5) = I='(4)C'(2))},

Cg = {(k,Ssub(C'(:'(k)),',r¢)) : kK € Dom1'},

A} = {(i,Ssub(A'(2),r',7{)) : 1 € Dom A'}.

Then spdelta(Af,ry, z5, Ci,t,n,m,1) & (1)c|z5C:]. Hence con (30.15),
and thus (30.15).

30.16 Thm. spdelta(A',r',2',C",t,n,m,l) & €(l) & e(211) &

e(l 1271) — 3ALIry3z,3CEIme(spdelta( Ay, g, x4, C,t,n—1,mo,l T 2 1 1)
& Sup (A)* * C)*) < Sup (A" x C"* x 1)) & Supz} < Supz').

Proof. Suppose hyp(30.16). Observe that m < [. Clearly m = 0 —
con (30.16), so suppose m # 0. There exists f such that exp(2,/, f) and
there exists g such that exp(l,211,¢). Let h=go fandk=2117271L
We will prove that

1. 1 <1 < m — JA I 32\ 3C (spdelta{ A}, r, 21, Cl, t,n, m — ¢, h{i))
& Sup(A}* « C1*) < Sup(A™ +C"™ xr) & Supz| < Supz').

Let a = Max(Sup (A" * C'™), Fy 11 10g4). We have

(1): Ln A} < Logk, LnSup A} < Logk, Sup Sup A} < a, Lnr} < Logk,
Supr; € a, Lnz| < Logk, Supz) < Supz', LnC) < Logk, LnSup C; <
Logk, SupSupC; < a.
Suppose gi—\(l). By BLNP there exists a minimal such 7, which is impos-
sible by (30.15). Thus (1). By (1);[m — 1] and (30.15) we have con {30.16).
Thus con (30.16), and thus (30.16).
30.17 Def. expcomp{l,n,f) < Vi(i € Domf <1< n) & f(O)=1 &
Vi(i < n— Jala < f{i+1) & Loga is a power of two & LogLoga = f(7)
& f(i+1) = Explog(f(),a)).
30.18 Thm. expcomp(l,n,f) & Vi(i € Domf «i<n) & [(0)=1 &
Vili<n - (1) & e2170) & 7(G+1) = 16) 1271 1().

Proof. From (30.17).
30.19 Def! o¢(l,n) < 3f expcomp(l, n, f).
30.20 Thm. ll S l & ny S n & Ug(l,n) — Oo(ll,nl).

Proof. Suppose hyp(30.20). There exists f such that expcomp(l,n, f).
Let g = {(i,f(#)) : 1 € Dom f & 7 < n;}. Then expcomp(l,n,,g). We will
prove that
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1. 1 < ny — Jh(expcomp(ly,i,h) & Yj(5 <1 — h(7) < g(5))).
Suppose 3i~(1). By BLNP there exists a minimal such . Clearly ¢ # 0.
Therefore there exists hy such that scopeas (1)in[t — 1,hq). Let A = hy U
{{t,h1(z —=1) 121 hy(¢ — 1))}. Then (1), a contradiction, and thus (1). By
(1);[r1] we have o¢(ly,n,;), and thus (31.20).

30.21 Thm. oo(l,n) & k<171271! — oo(k,n —1).

Proof. Suppose hyp (30.21). There exists f such that expcomp(l,n, f).
We will prove that

1. 1 <n—1— Sh(expcomp(k,i,h) & Vj(5 <1 — h(j) < f(7+1)))-
Suppose 3:—(1). By BLNP there exists a minimal such . Clearly ¢ # 0.
Therefore there exists hy such that scopess (1)in[t — 1,h1). Let h = hy U
{{(t,h1(¢ —=1) 1 21 hy(¢ — 1)) }. Then (1), a contradiction, and thus (1). By
(1);[n — 1] we have oy(k,n — 1), and thus (30.21).

30.22 Thm. spdelta(A',r',2',C",t,n,m,l) & oo(l,n+1) — IA(A4; isa
special sequence & VYAo(Ag € Ran A — ideqax(Ao,t))).

Proof. Suppose hyp (30.22). There exists f such that

expcomp(l,n + 1, f).

Then e(f(n)). Let k = 21 f(n). We will prove that

1. ¢ < n — 3A|3r32,3C;Im, (spdelta( A}, r}, 2}, CL t,n — i, my, f(7))
& Sup (A}F * C*) < Sup (A «C™ 7)) & Supz, < Supz).

Let @ = Max(Sup (A" * C'*), Fy 11 Logk). We have

(1): Ln A} < Logk, LnSup A} < Logk, SupSup 4} < a, Lnr] < Logk,
Supr] < a, Lnzj < Logk, Supz] < Supz', LnC} < Logk, LnSupC; <
Logk, SupSupC} < a, m; < Logk.

Suppose Ji—(1). By BLNP there exists a minimal such ¢, which is im-
possible by (30.16). Thus (1). By (1);[n] we have con (30.22), and thus
(30.22).

30.23 Thm. t is an open theory & D' is a proof in ¢t of XU;XO &
k= Max(2 7 (LnD'+2),2-SupLln o ') & n = SupRank o D' &
oo(k,n + 1) — —(¢ is tautologically consistent).

Proof. Suppose hyp (30.23). Let to = (Langt U {0}, Axt) and let D} =
D'+ (Xo# Xo)#(0#0). Then D}, is a proof in to of 0£0. Observe that Ln D}, =
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Ln D'+ 2,s0 that 2 T Ln Dy < k. Also, Sup Ln o D = Max(SupLn o D', 4).
But since Ln D' > 1 we have k > 2% = 8 = 2-4, so that 2-SupLn o D} < k..
By (30.10) there exists A such that

delta(Aj,to,n) & Aj is a special sequence & Ln A <k &

SupLn o A} < k.

There exists ry, zi,, and C{, such that delta;(Af, r, zf, Cj, to, n), so there ex-
ists m such that spdelta(A{, rj, 4, C§,t), n, m, k). By (30.22) there exists A}
such that A) is a special sequence & YA,(A; € Ran A} — ideqax(A,,1o)).
Let

7y = Enum{r; € NIs A\* : r; ¢ Langt},

2 = {(7,X,) : § € Domr}},

A" = {{1,Ssub(A!(7),r},})) : i € Dom A} }.

By (30.22) we have con (30.23), and thus (30.23).

30.24 Def! o(n) < o¢(n,n).

30.25 Def! t is o-consistent « -3D'(D' is a proof in t of Xo# X, &
o{Ln D'*)).

30.26 Thm. {consistency theorem) t is tautologically consistent — t is o-
consistent.

Proof. Suppose —(30.26). There exists D' such that scopesp: (30.25).
Let k = Max(2 T (Ln D'+ 2),2-SupLn o D'} and let n = Sup Rank ¢ D"
Then n < Ln o D'* — 2 and k < LnD'™ 7 2 1 LnD'*, so by (30.20) and
(30.21) we have oy(k,n + 1). This contradicts (30.23), and thus (30.26).

30.27 Thm. @, is o-consistent.
Proof. By (30.26) and (29.26).



Chapter 31

Is exponentiation total?

Why are mathematicians so convinced that exponentiation is total (ev-
erywhere defined)? Because they believe in the existence of abstract objects
called numbers. What is a number? Originally, sequences of tally marks
were used to count things. Then positional notation—the most powerful
achievement of mathematics—was invented. Decimals (i.e., numbers writ-
ten in positional notation) are simply canonical forms for variable-free terms
of arithmetic. It has been universally assumed, on the basis of scant evi-
dence, that decimals are the same kind of thing as sequences of tally marks,
only expressed in a more practical and efficient notation. This assumption
is based on the semantic view of mathematics, in which mathematical ex-
pressions, such as decimals and sequences of tally marks, are regarded as
denoting abstract objects. But to one who takes a formalist view of math-
ematics, the subject matter of mathematics is the expressions themselves
together with the rules for manipulating them—nothing more. From this
point of view, the invention of positional notation was the creation of a new
kind of number.

How is it then that we can continue to think of the numbers as being
0, SO, SS0, SSS0, ...7 The relativization scheme of Chapter 5 explains
this to some extent. But now let us adjoin exponentiation to the sym-
bols of arithmetic. Have we again created a new kind of number? Yes.
Let b be a variable-free term of arithmetic. To say that the expression
2P is just another way of expressing the variable-free term of arithmetic,
SSO-SSO-...-SSO with b occurrences of SS0, is to assume that b denotes
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something that is also denoted by a sequence of tally marks. (The notorious
three dots are a direct carry-over from tally marks.) The situation is worse
for expressions of the form 2 1 2 T b—then we need to assume that 2® itself
denotes something that is also denoted by a sequence of tally marks.

Mathematicians have always operated on the unchallenged assumption
that it is possible in principle to express 2° as a numeral by performing the
recursively indicated computations. To say that it is possible in principle is
to say that the recursion will terminate in a certain number of steps—and
this use of the word “number” can only refer to the primitive notion; the
steps are things that are counted by a sequence of tally marks. In what
number of steps will the recursion terminate? Why, in somewhat more than
2 steps. The circularity in the argument is glaringly obvious.

Although e(n) is inductive, one cannot prove Vne(n) in predicative
arithmetic. Here are three arguments for this assertion.

First, take a nonstandard element a of a nonstandard model of Peano
Arithmetic. Then the set of all elements less than 2 T Loga T k for some
standard k will be a model of Q)[3n—e(n)]. This is essentially Theorem 4.3
of Parikh’s article Ezistence and feasibility in arithmetic [Paj, which ex-
presses a viewpoint on the foundations of mathematics similar to the one
developed here. This argument is model-theoretic; it shows how from a
proof of Yne(n) in Q) to derive a contradiction in set theory.

Parikh also proves essentially the following (Theorem 4.4 of (Pa]): Let D
be a bounded formula such that F¢, 3yD. Then for some bounded term b
not containing y, Fg, 3y(y < b & D).

As Sam Buss pointed out to me, this can be used to give a second
proof that ¥ne(n) is not a theorem of predicative arithmetic. Let us use
F A to mean that A is a theorem of an extension by definitions of @,. Of
course, - Vne(n) if and only if t e(n), and - e(n) — 3f exp(2,n, f). But
by Parikh’s Theorem 4.4, if o, 3fexp(2,n, f), then there is a bounded
term b of Q4 not containing f such that ko, 3f(f < b & exp(2,n,/)).
Since F¢, exp(2,n,f) — f(n) < f, we would have - 2" < b, which is
impossible.

Parikh’s proof of Theorem 4.4 is finitary but impredicative. It uses
Herbrand’s Theorem, and the bound on b is superexponential in the number
of occurrences of symbols in the proof of 3yD. The second argument shows
how from a proof of Yre(n) in @} to derive a contradiction in a theory
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containing Herbrand’s Theorem.

In the definition in Chapter 7 of a bounded extension we required, for
each defining axiom of a function symbol with right hand side D, that 3yD
be of bounded form. Since we have the existence condition it would suffice,
by Parikh’s Theorem 4.4, to require only that D be of bounded form. But
in the absence of a predicative proof of Theorem 4.4 it would be unwise
to make only this weaker requirement. As we have developed predicative
arithmetic, the proof that it is locally interpretable in @ can be arithmetized
within the theory itself.

The third argument, which will be outlined now, shows how from a
proof of Yne(n) in predicative arithmetic to produce a contradiction in
predicative arithmetic itself.

31.1 Thm. Vne(n) — ind,o(n).

Proof. Clearly 0(0). Suppose Vne(n) and suppose o(n). Then there
exists f such that expcomp{n,n, f). Let

g=fu{{n+1,f(n) 121 f(n))}.

Then, since Yrn e(n), we have expcomp(n,n + 1,g}. Let

h=gu{{n+2,g(rn+1)127g(rn+1))}

Then expcomp(n,n + 2, k), and so oo(n,n + 2). But it follows from (30.21)
that og(n + 1,n + 1), i.e. o(n + 1). Thus ind, o(n), and thus (31.1). O
Suppose - ¥ne(n). Then + ind,o(n). Then (30.27) says that @, is
inductively consistent, which for many purposes is as good as full formal
consistency. We exploit this as follows. First we arithmetize Q4. Since
it has an axiom scheme, we do this by introducing “t is a Q,-theory” to
express the notion of an extension by definitions (with an inductive re-
striction on the number of new symbols) of a finitely axiomatized portion
of @4. In Chapters 23-28 we developed all the tools necessary (with a fill-
able gap in the treatment of extensions by definition of a function symbol)
to arithmetize the entire development of predicative arithmetic, so that,
still under the assumption that - Vne(n), we have I ¢ is a Q,-theory — ¢
is o-consistent. The point is that all of our results in the arithmetization
of logic took the form of constructing bounded function symbols, which are
respected by o* if ¢ is inductive. In this way (30.27) becomes an induc-
tive self-consistency theorem, and we can employ the familiar reasoning of
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Godel’s Second Theorem to derive a contradiction. In doing this, we rel-
ativize everything by o?; for example, we replace the notion of a proof by
a proof such that the number of occurrences of symbols in it satisfies o*.
Thus if - Vne(n) then predicative arithmetic is inconsistent.

Without the impredicative assumption Vn e(n), the formula o(n) is not
inductive. Nevertheless, we have ¢(0) and we have the rule of inference

infer ¢(Sb) from o(b),

where b is a bounded variable-free term. To see this, suppose F o(b), so
that - 3f expcomp(b,b,f). The proof can be relativized by €}, where ¢, is
as in Chapter 14, so that - 3f(3(f) & expcomp(b,b,f)). Therefore, as
in the proof of (31.1), + 3gexpcomp(b,Sb,g). Relativizing again by €}, we
have + dg(ei(9) & expcomp(b,Sb.g)), so that 3k expcomp(b,SSb,h),
i.e. F oo(b,8Sb), and so - ¢(Sb). Thus if I- o(b) then + o(Sb).

We can think of o(n) as a formalization of the notion that n is a ge-
netic number. We do not have the implication a(n) — o(Sn) but only
the inference, from o(b) infer o(Sb). The distinction expresses the crucial
difference between the formal and the genetic; it is the difference between
sitting comfortably in camp and saying, “If I have climbed part way up the
mountain, then I can always take one more step up the mountain”—and
actually climbing a mountain, when each successive step requires an act.

Hence (30.27) is a genetic self-consistency proof for predicative arith-
metic. It is a remarkable feature of Robinson’s Theory that it can prove
its own tautological consistency (29.26). This is made possible by the
fact (29.12) that the numbers denoted by terms of the arithmetized the-
ory are bounded by the terms themselves. For a theory T that is strong
enough to refer to itself and to prove the full formal consistency theorem,
or even an inductive version of the consistency theorem, T cannot prove
its tautological consistency without being inconsistent, by Godel’s Second
Theorem.

The title of this chapter is not a meaningful question to a nominal-
ist. Instead we may ask, which formula is it more profitable to adjoin to
predicative arithmetic, ¥n e(n) or 3n —e(n)?

Paris and Wilkie (see [PW] and [PW2]) have studied the effect of adjoin-
ing Vn e(n) and have obtained results relating this to adjoining consistency
assumptions. There are a number of interesting questions as to whether
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various results that can be proved with this hypothesis can be proved, or
interpreted, without it. Certainly the theory with Vn e(n) adjoined is too
weak to serve as a basis for much of contemporary mathematics.

The principal objection to adjoining Vre(n) is that the consistency of
the theory is doubtful. One can give a proof of its inductive consistency
assuming that superexponentiation is total, or of its full formal consistency
assuming that supersuperexponentiation is total. But to prove the consis-
tency of the theories with these additional assumptions, one needs further
assumptions yet. It is as if an attorney were to attempt to establish the re-
liability of a client by bringing in a character witness, and then a character
witness to the character witness, and so forth, each one more mafioso than
the predecessor. Impredicative finitary reasoning is a residue of Platonism
that has been uncritically accepted by the finitists.

As we have seen, it is consistent to adjoin 3n —e(n), provided only that
Q@ is consistent. Therefore the resulting theory, which may be called Non-
Peano Arithmetic, is logically very weak. Nevertheless, it is very strong
mathematically. As Hook has shown in his Princeton thesis [Ho|, it can
be used to develop substantial portions of analysis, by means that will be
discussed in the next chapter.

Rather than adjoin 3n —e(n) to predicative arithmetic, one can try to
prove it. This would of course entalil the inconsistency of Peano Arithmetic.
I have put a lot of effort into this, but so far without success.



Chapter 32

A modified Hilbert program

Hilbert’s program was to secure the foundations of classical mathemat-
ics by giving a finitary consistency proof for it. This formulation of the
program was undoubtedly influenced by his controversy with Brouwer—
finitary methods are those (or perhaps a subset of those) that are acccepted
by the intuitionists. As far at least as arithmetic is concerned, Hilbert’s
aim of demonstrating that classical mathematics is no less secure than is
intuitionistic mathematics was achieved by Godel’s five page paper [G62],
published in 1933, in which he gave an interpretation of classical arithmetic
within intuitionistic arithmetic. But by then the problem had been utterly
transformed by his great paper of 1931. Since finitary methods as com-
monly understood can be arithmetized, Godel’s Second Theorem doomed
the Hilbert program.

From a nominalist understanding of mathematics—{rom the viewpoint
of Hilbert’s formalism taken literally—Hilbert’s program can be criticized
on two counts. First, as I have argued at length, the a:ceptance of impred-
icative finitary methods entails a view of mathematics that still contains
a semantic element. Second, a convinced formalist should investigate the
consistency of classical mathematics as a genuinely open question.

Since the original Hilbert program failed, is it sterile to suggest a pro-
gram with stricter requirements for acceptable evidence of consistency?
Perhaps not; a modification of Hilbert’s program appears to be feasible.

The modified program is to build up, parallel to classical mathematics,
a demonstrably consistent elementary mathematics such that most results
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in the core of classical mathematics have an elementary analogue with the
same scientific content, and such that the equivalence of the classical to the
elementary result is easily provable by classical means.

Here is a candidate, which I will call Q*, for such an elementary math-
ematics. To begin with, Q* should contain predicative arithmetic. With a
positive solution to the compatibility problem of Chapter 15, it would be
easy to make precise what this means. Lacking this, we must proceed in a
more piecemeal way. The theory Q* is to contain @y, the higher # symbols
introduced by Hook [Ho|, and semibounded replacement as in Chapter 22.
Adjoin a unary predicate symbol ¢ and the axioms that say that ¢ respects
each bounded function symbol and bounded nonlogical axiom. Adjoin a
constant N with the axioms e(N), (2 T N), €(2 121 N), ... So far, the
theory is locally interpretable in Q. Finally, adjoin the axiom —¢(N}).

Here is a consistency argument for Q*. Let us omit the higher # sym-
bols; the conceptual issues are the same. Interpret ¢ as £!. Then, as we
have seen, Q4{3n-¢(n)] is consistent if Q is. In this theory, introduce a
constant Ny with ~@(Ny) and introduce N by N = Log...Log N, with
v + 1 occurrences of Log. Then we cannot prove ¢(N), for if we could,
then by v + 1 successive relativization arguments we could prove ¢(Np).
Therefore it is consistent to adjoin —¢(N), and we have e(N), (2 1 N},
....and (27 --- 727 N) with v occurrences of 2 {(and v is arbitrary).

This is a finitary but impredicative consistency proof for Q*; the se-
mantic element in the proof enters in the usual proof that @ is consistent,
which involves the assumption that superexponentiation is total. A proof
of the inductive consistency of @ can be based on the assumption that ex-
ponentiation is total (so that o(n) is inductive). There are indications that
it should be possible to demonstrate the genetic consistency of Q* with no
appeal to semantics at all, that Q* is truly demonstrably consistent, but
such an investigation must await the future.

The formula ¢(n) is similar to the formula “n is standard” in one ver-
sion [Ne) of nonstandard analysis; the axioms of Q* asserting that ¢ re-
spects all bounded function symbols and bounded nonlogical axioms have
the consequence that if F—Q* D, where D is bounded, then FQ* D¢—this is
similar to the transfer principle of nonstandard analysis; the axiom —¢(N)
is similar to the idealization principle of nonstandard analysis; the use of
a many-sorted theory in Hook’s thesis [Ho| is perhaps similar to the stan-
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dardization principle of nonstandard analysis. What we have in Q* is a
grafting of Abraham Robinson’s extremely powerful methods of nonstan-
dard analysis (see {Rn|) onto Raphael Robinson’s theory.

The theory Q* is logically very weak but mathematically very strong.
The number N such that ~¢(N) is in some sense an infinite number, since ¢
is inductive, and yet the axioms e(N), €(2 T N), ... allow us to construct the
set of all numbers smaller than N and iterated power sets of this set. Once
one has an infinite, or in a better terminology an unlimited, natural number,
one has infinitesimal rational numbers, and one can introduce real numbers
as a new sort of object: a real number is a limited rational number, and two
real numbers are equal in case their difference is infinitesimal; see [Ho|. In
this way, Hook develops a substantial portion of real and p-adic analysis.

Probability theory is very well adapted to such an approach. Con-
sider the set of all 2V paths indexed by the rational numbers k/N for
k =0,...,N, each of which goes up or down by 1/\/]T/ at each step. This
is an elementary nonstandard model of Brownian motion and, for example,
Wiener’s theorem that the paths of Brownian motion are almost surely con-
tinuous can be given an elementary formulation and proof in this context.
Also, the classical form of Wiener’s theorem is easily deducible from the
elementary form by classical, non-elementary means. This will be discussed
in detail in a book {Ne2] that is in preparation.

I am not, of course, suggesting that classical mathematics should be
abandoned in favor of an elementary mathematics such as Q*. Any theory
is consistent until proved inconsistent. But I am confident that the modi-
fied Hilbert program will repay the efforts of those who find it interesting.
The advent of computers has raised the problems of computational com-
plexity to a position of central importance in mathematics. In the world
of feasible computations, exponentiation is not total. For results relating
questions of computational complexity to syntactical questions in portions
of arithmetic, see /Bul and the references cited there. Nonstandard analysis
and computers are recent developments that are transforming mathematics,
and the semantical interpretation of mathematics is perhaps unsuitable for
both of these developments. I hope that a mathematics shorn of semantical
content will prove useful as we explore new terrain.
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