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Lecture 1
Randomized Controlled Trials

Randomized controlled trials (RCTs) form the foundation of statistical causal
inference. When available, evidence drawn from RCTs is often considered gold
standard evidence; and even when RCTs cannot be run for ethical or practical
reasons, the quality of observational studies is often assessed in terms of how
well the observational study approximates an RCT.

Today’s lecture is about estimation of average treatment effects in RCTs
in terms of the potential outcomes model, and discusses the role of regression
adjustments for causal effect estimation. The average treatment effect is iden-
tified entirely via randomization (or, by design of the experiment). Regression
adjustments may be used to decrease variance, but regression modeling plays
no role in defining the average treatment effect.

The average treatment effect We define the causal effect of a treatment
via potential outcomes. For a binary treatment w ∈ {0, 1}, we define potential
outcomes Yi(1) and Yi(0) corresponding to the outcome the i-th subject would
have experienced had they respectively received the treatment or not. The
causal effect of the treatment on the i-th unit is then1

∆i = Yi(1)− Yi(0). (1.1)

The fundamental problem in causal inference is that only one treatment can
be assigned to a given individual, and so only one of Yi(0) and Yi(1) can ever
be observed. Thus, ∆i can never be observed.

1One major assumption that’s baked into this notation is that binary counterfactuals
exist, i.e., that it makes sense to talk about the effect of choosing to intervene or not on
a single unit, without considering the treatments assigned to other units. This may be a
reasonable assumption in medicine (i.e., that the treatment prescribed to patient A doesn’t
affect patient B), but are less appropriate in social or economic settings where network effects
may arise. We will discuss causal inference under interference later in the course.
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Now, although ∆i itself is fundamentally unknowable, we can (perhaps
remarkably) use randomized experiments to learn certain properties of the
∆i. In particular, large randomized experiments let us recover the average
treatment effect (ATE)

τ = E [Yi(1)− Yi(0)] . (1.2)

To do so, assume that we observe n independent and identically distributed
samples (Yi, Wi) satisfying the following two properties:

Yi = Yi(Wi) (SUTVA)

Wi ⊥⊥ {Yi(0), Yi(1)} (random treatment assignment)

Then, the difference-in-means estimator

τ̂DM =
1

n1

∑
Wi=1

Yi −
1

n0

∑
Wi=1

Yi, nw = |{i : Wi = w}| (1.3)

is unbiased and consistent for the average treatment effect.

Difference-in-means estimation The statistical properties of τ̂DM can read-
ily be established. A key consequence of our random treatment assignment as-
sumption is that, conditionally on all the potential outcomes {Yi(0), Yi(1)}ni=1

and n1, all units are treated with the same probability:2

P
[
Wi = 1

∣∣ {Yi(0), Yi(1)}ni=1 , n1

]
=
n1

n
, i = 1, . . . , n. (1.4)

2Here, we’re implicitly assuming that each unit has the same marginal probability of
getting treated. Standard experimental designs that satisfy this assumption include the
Bernoulli-randomized trial, where each unit is independently treated with probability π; the
completely randomized trial, where each set of n1 treated units are equally likely to get
chosen for treatment; and the matched-pairs design, where we first pair units according to
some algorithm, and then randomly choose one unit in each pair for treatment. Designs that
assign different units different units different marginal treatment probabilities may also be
considered; however, as discussed in the next chapter, analyzing them requires more care.
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Thus, for the average outcome of treated units, we get3

E

[
1

n1

∑
Wi=1

Yi
∣∣ {Yi(0), Yi(1)}ni=1 , n1

]

= E

[
1

n1

n∑
i=1

WiYi
∣∣ {Yi(0), Yi(1)}ni=1 , n1

]
(...)

= E

[
1

n1

n∑
i=1

WiYi(1)
∣∣ {Yi(0), Yi(1)}ni=1 , n1

]
(SUTVA)

=
1

n1

n∑
i=1

Yi(1)E
[
Wi

∣∣ {Yi(0), Yi(1)}ni=1 , n1

]
(chain rule)

=
1

n

n∑
i=1

Yi(1) (random assignment),

and an analogous result holds for the average of the controls. Thus, we see
that

E
[
τ̂DM

∣∣ {Yi(0), Yi(1)}ni=1 , n1

]
= τSATE :=

1

n

n∑
i=1

(Yi(1)− Yi(0)) . (1.5)

In other words, thanks to randomization alone, the difference-in-means esti-
mator is unbiased for the average difference in potential outcomes for the n
units in the study. This quantity, τSATE, is often called the sample-average
treatment effect.

IID Sampling and Population Asymptotics The fact that the unbiased-
ness result (1.5) holds conditionally on any realization of the potential outcomes
means that, unconditionally,4

E [τ̂DM ] = E [Yi(1)]− E [Yi(0)] = τ.

Moreover, given IID sampling, we can also write the variance as

Var
[
τ̂DM

∣∣n0, n1

]
=

1

n0

Var [Yi(0)] +
1

n1

Var [Yi(1)] .

3We’re assuming n0, n1 6= 0 here. If there are no treated or control units, we can’t
compute the difference in means estimator.

4For a precise statement, one would need to worry about the case where n0 or n1 is 0.
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A standard central limit theorem can be used to verify that

√
n (τ̂DM − τ)⇒ N (0, VDM) ,

VDM = Var [Yi(0)]
/
P [Wi = 0] + Var [Yi(1)]

/
P [Wi = 1] .

(1.6)

Finally, note that we can estimate VDM via routine plug-in estimators to build
valid Gaussian confidence intervals for τ :

lim
n→∞

P
[
τ ∈

(
τ̂DM ± Φ−1(1− α/2)

√
V̂DM/n

)]
= 1− α, (1.7)

where Φ denotes the standard Gaussian cumulative distribution function and

V̂DM =
1

n1 − 1

∑
Wi=1

(
Yi −

1

n1

∑
Wi=1

Yi

)2

+
1

n0 − 1

∑
Wi=0

(
Yi −

1

n0

∑
Wi=0

Yi

)2

.

From a certain perspective, the above is all that is needed to estimate average
treatment effects in randomized trials. The difference in means estimator τ̂DM
is consistent and allows for valid asymptotic inference; moreover, the estimator
is very simple to implement, and hard to “cheat” with (there is little room for
an unscrupulous analyst to try different estimation strategies and report the
one that gives the answer closest to the one they want).

On the other hand, it is far from clear that τ̂DM is the “optimal” way to
use the data, in the sense that it provides the most accurate value of τ for a
given sample size. Below, we try to see if/when we can do better.

Example: The linear model To better understand the behavior of τ̂DM ,
it is helpful to look at special cases. First, we consider the linear model: We
assume that (Xi, Yi, Wi) is generated as

Yi(w) = c(w)+Xiβ(w)+εi(w), E
[
εi(w)

∣∣Xi

]
= 0, Var

[
εi(w)

∣∣Xi

]
= σ2. (1.8)

Here, τ̂DM does not use the Xi; however, we can characterize its behavior in
terms of the distribution of the Xi. Throughout our analysis, we assume for
simplicity that we are in a balanced randomized trial, with

P [Wi = 0] = P [Wi = 1] =
1

2
.

Moreover, we assume (without loss of generality) that

E [X] = 0, and define A = Var [X] .
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The assumption that E [X] = 0 is without loss of generality because all estima-
tors we will consider today are translation invariant (but of course the analyst
cannot be allowed to make use of knowledge that E [X] = 0).

Given this setup, we can write the asymptotic variance of τ̂DM as

VDM = Var [Yi(0)]
/
P [Wi = 0] + Var [Yi(1)]

/
P [Wi = 1]

= 2
(
Var

[
Xiβ(0)

]
+ σ2

)
+ 2

(
Var

[
Xiβ(1)

]
+ σ2

)
= 4σ2 + 2

∥∥β(0)

∥∥2

A
+ 2

∥∥β(1)

∥∥2

A

= 4σ2 +
∥∥β(0) + β(1)

∥∥2

A
+
∥∥β(0) − β(1)

∥∥2

A
,

(1.9)

where we used the notation
‖v‖2

A = v′Av.

Is this the best possible estimator for τ?

Regression adjustments with a linear model If we assume the linear
model (1.8), it is natural to want to use it for better estimation. Note that,
given this model, we can write that ATE as

τ = E [Y (1)− Y (0)] = c(1) − c(0) + E [X]
(
β(1) − β(0)

)
. (1.10)

This suggests an ordinary least-squares estimator

τ̂OLS = ĉ(1) − ĉ(0) +X
(
β̂(1) − β̂(0)

)
, X =

1

n

n∑
i=1

Xi, (1.11)

where the (ĉ(w), β̂(w)) are obtained by running OLS on those observations with
Wi = w (i.e., we run separate regressions on treated and control units). Stan-
dard results about OLS imply that (recall that, wlog, we work with E [X] = 0)

√
nw

((
ĉ(w)

β̂(w)

)
−
(
c(w)

β(w)

))
⇒ N

(
0, σ2

(
1 0
0 A−1

))
. (1.12)

In particular, we find that ĉ(0), ĉ(1), β̂(0), β̂(1) and X are all asymptotically
independent. Then, we can write

τ̂OLS − τ = ĉ(1) − c(1)︸ ︷︷ ︸
≈N (0, σ2/n1)

− ĉ(0) − c(0)︸ ︷︷ ︸
≈N (0, σ2/n0)

+ X
(
β(1) − β(0)

)︸ ︷︷ ︸
≈N

(
0,‖β(1)−β(0)‖2A/n

)
+X

(
β̂(1) − β̂(0) − β(1) + β̂(0)

)
︸ ︷︷ ︸

OP (1/n)

,
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which leads us to the central limit theorem

√
n (τ̂OLS − τ)⇒ N (0, VOLS) , VOLS = 4σ2 +

∥∥β(0) − β(1)

∥∥2

A
. (1.13)

In particular, note that VDM = VOLS +
∥∥β(0) + β(1)

∥∥2

A
, and so OLS in fact helps

reduce asymptotic error in the linear model.

Regression adjustments without linearity The above result is perhaps
not so surprising: If we assume a linear model, than using an estimator that
leverages linearity ought to help. However, it is possible to prove a much
stronger result for OLS in randomized trials: OLS is never worse that the
difference-in-means methos in terms of its asymptotic variance, and usually
improves on it (even in misspecified models).

Replace our linearity assumption with the following generic assumption:

Yi(w) = µ(w)(Xi) + εi(w), E
[
εi(w)

∣∣Xi

]
= 0, Var

[
εi(w)

∣∣Xi

]
= σ2, (1.14)

for some arbitrary function µ(w)(x). As before, we can check that (recall that
we assume that P [Wi = 1] = 0.5)

√
n (τ̂DM − τ)⇒ N (0, VDM) = 4σ2 + 2 Var

[
µ(0)(Xi)

]
+ 2 Var

[
µ(1)(Xi)

]
,

and so τ̂DM provides a simple way of getting consistent estimates of τ .
In order to analyze OLS, we need to use the Huber-White analysis of linear

regression. Without any assumption on µ(w)(x), the OLS estimates (ĉ(w), β̂(w))
converge to a limit characterized as(

c∗(w), β
∗
(w)

)
= argminc, β

{
E
[
(Yi(w)−Xiβ − c)2]} . (1.15)

If the linear model is misspecified, (c∗(w), β
∗
(w)) can be understood as those

parameters that minimize the expected mean-squared error of any linear model.
Given this notation, it is well known5 that (recall that we still assume wlog
that E [X] = 0)

√
nw

((
ĉ(w)

β̂(w)

)
−
(
c∗(w)

β∗(w)

))
⇒ N

(
0,

(
MSE∗(w) 0

0 · · ·

))
c∗(w) = E [Yi(w)] , MSE∗(w) = E

[(
Yi(w)−Xiβ

∗
(w) − ĉ∗(w)

)2
] (1.16)

5For a recent review of asymptotics for OLS under misspecification, see Buja et al. [2019];
in particular (1.16) is stated as Proposition 7.1 of this paper.
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Then, following the line of argumentation in the previous section, we can derive
a central limit theorem

√
n (τ̂OLS − τ)⇒ N (0, VOLS) , (1.17)

with asymptotic variance6

VOLS = 2MSE∗(0) + 2MSE∗(1) +
∥∥β∗(1) − β∗(0)

∥∥2

A

= 4σ2 + 2 Var
[
µ(0)(X)−Xβ∗(0)

]
+ 2 Var

[
µ(1)(X)−Xβ∗(1)

]
+
∥∥β∗(1) − β∗(0)

∥∥2

A

= 4σ2 + 2
(
Var

[
µ(0)(X)

]
− Var

[
Xβ∗(0)

])
+ 2

(
Var

[
µ(1)(X)

]
− Var

[
Xβ∗(1)

])
+
∥∥β∗(1) − β∗(0)

∥∥2

A

= 4σ2 + 2
(
Var

[
µ(0)(X)

]
+ Var

[
µ(1)(X)

])
+
∥∥β∗(1) − β∗(0)

∥∥2

A
− 2

∥∥β∗(0)

∥∥2

A
− 2

∥∥β∗(1)

∥∥2

A

= 4σ2 + 2
(
Var

[
µ(0)(X)

]
+ Var

[
µ(1)(X)

])
−
∥∥β∗(0) + β∗(1)

∥∥2

A

= VDM −
∥∥β∗(0) + β∗(1)

∥∥2

A
.

In other words, whether or not the true effect function µw(x) is linear, OLS
always reduces the asymptotic variance of DM. Moreover, the amount of vari-
ance reduction scales by the amount by which OLS in fact chooses to fit the
training data. A worst case for OLS is when β∗(0) = β∗(1) = 0, i.e., when OLS
asymptotically just does nothing, and τ̂OLS reduces to τ̂DM .

Recap The individual treatment effect ∆i = Yi(1) − Yi(0) is central object
of interest in causal inference. These effects ∆i themselves are fundamentally
unknowable; however, a large randomized controlled trial lets us consistently
recover the average treatment effect τ = E [∆i]. Moreover, even without as-
suming linearity, we found that OLS regression adjustments generally improve
on the performance of the simple difference in means estimator.

We emphasize that, throughout our analysis, we defined the target estimand
τ = E [∆i] before making any modeling assumptions. Linear modeling was only
used as a tool to estimate τ , but did not inform the scientific question we tried
to answer. In particular, we did not try to estimate τ by direct regression
modeling Yi ∼ Xiβ + Wiτ + εi, while claiming that the coefficient on τ is a
causal effect. This approach has the vice of tying our scientific question to our

6For the third equality, we use the fact that Xβ∗(w) is the projection of µ(w)(X) on to the

linear span of the features X, and so Cov[µ(w)(X), Xβ∗(w)] = Var[Xβ∗(w)].
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regression modeling strategy: τ appears to just have become a coefficient in
our linear model, not a fact of nature that’s conceptually prior to modeling
decisions.

Finally, note that our OLS estimator can effectively be viewed as

τ̂OLS =
1

n

n∑
i=1

(ĉ(1) +Xiβ̂(1)

)
︸ ︷︷ ︸

µ̂(1)(Xi)

−
(
ĉ(0) +Xiβ̂(0)

)
︸ ︷︷ ︸

µ̂(0)(Xi)

 , (1.18)

where µ̂(w)(x) denotes OLS predictions at x. Could we use other methods to
estimate µ̂(w)(x) rather than OLS (e.g., deep nets, forests)? How would this
affect asymptotic variance? More on this in the homework.

Bibliographic notes The potential outcomes model for causal inference was
first advocated by Neyman [1923] and Rubin [1974]; see Imbens and Rubin
[2015] for a modern textbook treatment. Lin [2013] presents a thorough dis-
cussion of the role of linear regression adjustments in improving the precision of
average treatment effect estimators. Wager, Du, Taylor, and Tibshirani [2016]
have a discussion of non-parametric or high-dimensional regression adjustments
in RCTs that expands on the results covered here.

One distinction question that has received considerable attention in the lit-
erature is whether or not one is willing to make any stochastic assumptions
on the potential outcomes. In this lecture, we worked under a population
model, i.e., we assumed the existence of a distribution P such that the po-
tential outcomes are drawn as {Yi(0), Yi(1)} iid∼P , and we sought to estimate
τ = EP [Yi(1)− Yi(0)]. In contrast, others adopt a strict randomization infer-
ence framework where the potential outcomes {Yi(0), Yi(1)}ni=1 are taken as
fixed, and only the treatment assignment Wi is taken to be a random vari-
able; they then consider estimation of the sample average treatment effect
τSATE = n−1

∑n
i=1(Yi(1)− Yi(0)).

The advantage of the randomization inference framework is that it does not
require the statistician to imagine the sample as a representative draw from a
population; in contrast, the advantage of population modeling is that it often
allows for simpler and often more transparent statistical arguments. The study
of high-dimensional regression adjustments under randomization inference is an
ongoing effort, with recent contributions from Bloniarz, Liu, Zhang, Sekhon,
and Yu [2016] and Lei and Ding [2021].
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Lecture 2
Unconfoundedness and the
Propensity Score

One of the simplest extensions of the randomized trial is treatment effect esti-
mation under unconfoundedness. Qualitatively, unconfoundedness is relevant
when we want to estimate the effect of a treatment that is not randomized,
but is as good as random once we control for a set of covariates Xi.

The goal of this lecture is to discuss identification and estimation of average
treatment effects under such an unconfoundedness assumption. As before, our
approach will be non-parametric: We won’t assume well specification of any
parametric models, and identification of the average treatment effect will be
driven entirely by the design (i.e., conditional independence statements relating
potential outcomes and the treatment).

Beyond a single randomized controlled trial We define the causal effect
of a treatment via potential outcomes. For a binary treatment w ∈ {0, 1}, we
define potential outcomes Yi(1) and Yi(0) corresponding to the outcome the i-th
subject would have experienced had they respectively received the treatment
or not. We assume SUTVA, Yi = Yi(Wi), and want to estimate the average
treatment effect

ATE = E [Yi(1)− Yi(0)] .

In the first lecture, we assumed random treatment assignment, {Yi(0), Yi(1)} ⊥⊥
Wi, and studied several

√
n-consistent estimators for the ATE.

The simplest way to move beyond one RCT is to consider two RCTs. As
a concrete example, supposed that we are interested in giving teenagers cash
incentives to discourage them from smoking. A random subset of ∼ 5% of
teenagers in Palo Alto, CA, and a random subset of ∼ 20% of teenagers in
Geneva, Switzerland are eligible for the study.
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Palo Alto Non-S. Smoker
Treat. 152 5

Control 2362 122

Geneva Non-S. Smoker
Treat. 581 350

Control 2278 1979

Within each city, we have a randomized controlled study, and in fact readily
see that the treatment helps. However, looking at aggregate data is misleading,
and it looks like the treatment hurts; this is an example of what is sometimes
called Simpson’s paradox:

Palo Alto + Geneva Non-Smoker Smoker
Treatment 733 401

Control 4640 2101

Once we aggregate the data, this is no longer an RCT because Genevans are
both more likely to get treated, and more likely to smoke whether or not they
get treated. In order to get a consistent estimate of the ATE, we need to
estimate treatment effects in each city separately:

τ̂PA =
5

152 + 5
− 122

2362 + 122
≈ −1.7%,

τ̂GVA =
350

350 + 581
− 1979

2278 + 1979
≈ −8.9%

τ̂ =
2641

2641 + 5188
τ̂PA +

5188

2641 + 5188
τ̂GVA ≈ −6.5%.

What are the statistical properties of this estimator? How does this idea gen-
eralize to continuous x?

Aggregating difference-in-means estimators Suppose that we have co-
variates Xi that take values in a discrete space Xi ∈ X , with |X | = p < ∞.
Suppose moreover that the treatment assignment is random conditionally on
Xi, (i.e., we have an RCT in each group defined by a level of x):

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi = x, for all x ∈ X . (2.1)

Define the group-wise average treatment effect as

τ(x) = E
[
Yi(1)− Yi(0)

∣∣Xi = x
]
. (2.2)

Then, as above, we can estimate the ATE τ by aggregating group-wise treat-
ment effect estimations,

τ̂AGG =
∑
x∈X

nx
n
τ̂(x), τ̂(x) =

1

nx1

∑
{Xi=x,Wi=1}

Yi −
1

nx0

∑
{Xi=x,Wi=0}

Yi, (2.3)
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where nx = |{i : Xi = x}| and nxw = |{i : Xi = x, Wi = w}|. How good is this
estimator? Intuitively, we have needed to estimate |X | = p “parameters” so
we might expect the variance to scale linearly with p?

To study this estimator it is helpful to write it as follows. First, for any
group with covariate x, define e(x) as the probability of getting treated in that
group, e(x) = P

[
Wi = 1

∣∣Xi = x
]
, and note that

√
nx (τ̂(x)− τ(x))⇒ N

(
0,

Var
[
Yi(0)

∣∣Xi = x
]

1− e(x)
+

Var
[
Yi(1)

∣∣Xi = x
]

e(x)

)
.

Furthermore, under the simplifying assumption that Var
[
Y (w)

∣∣X = x
]

=
σ2(x) does not depend on w, we get

√
nx (τ̂(x)− τ(x))⇒ N

(
0,

σ2(x)

e(x)(1− e(x))

)
. (2.4)

Next, for the aggregated estimator, defining π̂(x) = nx/n as the fraction of
observations with Xi = x and π(x) = P [Xi = x] as its expectation, we have

τ̂AGG =
∑
x∈X

π̂(x)τ̂(x) =
∑
x∈X

π(x)τ(x)︸ ︷︷ ︸
=τ

+
∑
x∈X

π(x) (τ̂(x)− τ(x))︸ ︷︷ ︸
≈N(0,

∑
x∈X π

2(x) Var[τ̂(x)])

+
∑
x∈X

(π̂(x)− π(x)) τ(x)︸ ︷︷ ︸
≈N (0, n−1 Var[τ(Xi)])

+
∑
x∈X

(π̂(x)− π(x)) (τ̂(x)− τ(x))︸ ︷︷ ︸
=OP (1/n)

.

Putting the pieces together, we get
√
n (τ̂AGG − τ)⇒ N (0, VAGG)

VAGG = Var [τ(Xi)] +
∑
x∈X

π2(x)
1

π(x)

σ2(x)

e(x)(1− e(x))

= Var [τ(Xi)] + E
[

σ2(Xi)

e(Xi)(1− e(Xi))

]
.

(2.5)

Remarkably (?) the asymptotic variance VAGG does not depend on |X | = p, the
number of groups! As we’ll see later on, this fact plays a key role in enabling
efficient semiparametric inference of average treatment effects in observational
studies.
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Continuous X and the propensity score Above, we considered a setting
where X is discrete with a finite number levels, and treatment Wi is as good
as random conditionally on Xi = x as in (2.1). In this case, we found that
we can still accurately estimate the ATE by aggregating group-wise treatment
effect estimates, and that the exact number of groups |X | = p does not affect
the accuracy of inference. However, if X is continuous (or the cardinality of X
is very large), this result does not apply directly—because we won’t be able to
get enough samples for each possible value of x ∈ X to be able to define τ̂(x)
as in (2.3).

In order to generalize our analysis beyond the discrete-X case, we’ll need
to move beyond literally trying to estimate τ(x) for each value of x by simple
averaging, and use a more indirect argument instead. To this end, we first need
to generalize the “RCT in each group” assumption. Formally, we just write
the same thing,

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi, (2.6)

although now Xi may be an arbitrary random variable, and interpretation of
this statement may require more care. Qualitatively, one way to think about
(2.6) is that we have measured enough covariates to capture any dependence
between Wi and the potential outcomes and so, given Xi, Wi cannot “peek” at
the {Yi(0), Yi(1)}. We call this assumption unconfoundedness.

The assumption (2.6) may seem like a difficult assumption to use in prac-
tice, since it involves conditioning on a continuous random variable. However,
as shown by Rosenbaum and Rubin (1983), this assumption can be made con-
siderably more tractable by considering the propensity score1

e(x) = P
[
Wi = 1

∣∣Xi = x
]
. (2.7)

Statistically, a key property of the propensity score is that it is a balancing
score: If (2.6) holds, then in fact

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣ e(Xi), (2.8)

i.e., it actually suffices to control for e(X) rather than X to remove biases
associated with a non-random treatment assignment. We can verify this claim

1When X is continuous, the propensity score e(x) has exactly the same meaning as when
X is discrete; however, we can no longer trivially estimate it via ê(x) = nx1/nx in this case.
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as follows:

P
[
Wi = w

∣∣ {Yi(0), Yi(1)} , e(Xi)
]

=

∫
X
P
[
Wi = w

∣∣ {Yi(w)} , Xi = x
]
P
[
Xi = x

∣∣ {Yi(w)} , e(Xi)
]
dx

=

∫
X
P
[
Wi = w

∣∣Xi = x
]
P
[
Xi = x

∣∣ {Yi(w)} , e(Xi)
]
dx (unconf.)

= e(Xi)1w=1 + (1− e(Xi))1w=0.

The implication of (2.8) is that if we can partition our observations into groups
with (almost) constant values of the propensity score e(x), then we can consis-
tently estimate the average treatment effect via variants of τ̂AGG.

Propensity stratification One instantiation of this idea is propensity strat-
ification, which proceeds as follows. First obtain an estimate ê(x) of the propen-
sity score via non-parametric regression, and choose a number of strata J .
Then:

1. Sort the observations according to their propensity scores, such that

ê (Xi1) ≤ ê (Xi2) ≤ . . . ≤ ê (Xin) . (2.9)

2. Split the sample into J evenly size strata using the sorted propensity
score and, in each stratum j = 1, ..., J , compute the simple difference-
in-means treatment effect estimator for the stratum:

τ̂j =

∑bjn/Jc
j=b(j−1)n/Jc+1WiYi∑bjn/Jc
j=b(j−1)n/Jc+1Wi

−
∑bjn/Jc

j=b(j−1)n/Jc+1 (1−Wi)Yi∑bjn/Jc
j=b(j−1)n/Jc+1 (1−Wi)

. (2.10)

3. Estimate the average treatment by applying the idea of (2.3) across
strata:

τ̂STRAT =
1

J

J∑
j=1

τ̂j. (2.11)

The arguments described above immediately imply that, thanks to (2.8), τ̂STRAT
is consistent for τ whenever ê(x) is uniformly consistent for e(x) and the num-
ber of strata J grows appropriately with n.
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Inverse-propensity weighting Another, algorithmically simpler way of ex-
ploiting unconfoundedness is via inverse-propensity weighting: As before, we
first estimate ê(x) via non-parametric regression, and then set

τ̂IPW =
1

n

n∑
i=1

(
WiYi
ê(Xi)

− (1−Wi)Yi
1− ê(Xi)

)
. (2.12)

The simplest way to analyze it is by comparing it to an oracle that actually
knows the propensity score:

τ̂ ∗IPW =
1

n

n∑
i=1

(
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

)
. (2.13)

Suppose that we have overlap, i.e., that

η ≤ e(x) ≤ 1− η for all x ∈ X . (2.14)

Suppose moreover that |Yi| ≤M , and that we know that supx∈X |e(x)− ê(x)| =
OP (an)→ 0. Then, we can check that

|τ̂IPW − τ̂ ∗IPW | = OP
(
anM

η

)
, (2.15)

and so if τ̂ ∗IPW is consistent, then so is τ̂IPW .
It thus remains to analyze the behavior of the oracle IPW estimator τ̂ ∗IPW .

First, we note that

E [τ̂ ∗IPW ] = E
[
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

]
(IID)

= E
[
WiYi(1)

e(Xi)
− (1−Wi)Yi(0)

1− e(Xi)

]
(SUTVA)

= E
[
E
[
WiYi(1)

e(Xi)

∣∣ e(Xi)

]
− E

[
(1−Wi)Yi(0)

1− e(Xi)

∣∣ e(Xi)

]]
= E [Yi(1)− Yi(0)] (unconf.),

meaning that the oracle estimator is unbiased τ . Meanwhile, under overlap
(2.14), we immediately see that τ̂ ∗IPW concentrates at 1/

√
n-rates; and thus

τ̂ ∗IPW is consistent for τ .
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The variance of oracle IPW Studying the accuracy of IPW in a way that
properly accounts for the behavior of the estimated propensity scores ê(x) is
somewhat delicate, and intricately depends on the choice of estimator ê(x).
Thus, let’s start by considering the accuracy of the oracle τ̂ ∗IPW . We already
know that it is unbiased, and so we only need to express its variance. To do
so, it is helpful to expand out (without loss of generality),2

Yi(0) = c(Xi)− (1− e(Xi))τ(Xi) + εi(0), E
[
εi(0)

∣∣Xi

]
= 0

Yi(1) = c(Xi) + e(Xi)τ(Xi) + εi(1), E
[
εi(1)

∣∣Xi

]
= 0,

(2.16)

and assume for simplicity that Var
[
εi(w)

∣∣Xi = x
]

= σ2(x) does not depend
on w. Then, we can verify that (on the second line, the fact that the variances
separate is non-trivial, and is a result of how we defined c(·))

nVar [τ̂ ∗IPW ] = Var

[
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

]
= Var

[
Wic(Xi)

e(Xi)
− (1−Wi)c(Xi)

1− e(Xi)

]
+ Var [τ(Xi)]

+ Var

[
Wiεi
e(Xi)

− (1−Wi)εi
1− e(Xi)

]
= E

[
c2(Xi)

e(Xi)(1− e(Xi))

]
+ Var [τ(Xi)] + E

[
σ2(Xi)

e(Xi)(1− e(Xi))

]
.

Pulling everything together, we see that

√
n (τ̂ ∗IPW − τ)⇒ N (0, VIPW ∗) ,

VIPW ∗ = E
[

c2(Xi)

e(Xi)(1− e(Xi))

]
+ Var [τ(Xi)] + E

[
σ2(Xi)

e(Xi)(1− e(Xi))

]
.

(2.17)

How accurate is oracle IPW? To gain a better understanding of how
good the accuracy is, it is helpful to re-visit the setting of the beginning of this
lecture where X is discrete. In this setting, nothing’s stopping us from using
IPW; but we now can also use our group-wise aggregated estimator τ̂AGG from
(2.3) as a point of comparison. And, in doing so, we see that the performance of
the oracle IPW estimator is somewhat disappointing. Despite having access to

2In particular, note that E
[
Yi(1)− Yi(0)

∣∣Xi = x
]

= τ(x). Here, the function c(x) is
simply chosen such as to make the decomposition (2.16) work.
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the true propensity score e(x), it always under-performs τ̂AGG: Both estimators
are asymptotically centered normal, but from (2.5) and (2.17) we see that

VIPW∗ = VAGG + E
[

c2(Xi)

e(Xi)(1− e(Xi))

]
. (2.18)

Thus, unless c(x) as defined via (2.16) is zero everywhere, τ̂ ∗IPW has a strictly
worse asymptotic variance than τ̂AGG.

Perhaps even more surprisingly, we note that τ̂AGG can actually be under-
stood as an IPW estimator with a specific choice of estimated propensity score
ê(x). In the setting of (2.3) where τ̂AGG is well defined, we have:

τ̂AGG =
1

n

n∑
i=1

(
WiYi
ê(Xi)

− (1−Wi)Yi
1− ê(Xi)

)
, ê(x) =

nx1

n1

,

τ̂ ∗IPW =
1

n

n∑
i=1

(
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

)
.

(2.19)

Thus, the “feasible” IPW estimator τ̂AGG is actually better than the “oracle”
IPW estimator. At a high level, the reason this phenomenon occurs is that
the estimated propensity score corrects for local variability in the sampling
distribution of the Wi (i.e., it accounts for the number of units that were
actually treated in each group).

Comparison with linear modeling One can contrast this approach to a
“classical” approach to controlling for covariates based on parametric modeling.
In such a classical analysis, one might estimate the effect of a non-randomized
treatment Wi by writing down a linear regression model

Yi ∼ Xiβ +Wiτ, (2.20)

and then estimating the model by OLS. One might then argue that τ is the
effect of Wi while “controlling” for Xi.

The approach following (2.20) is potentially acceptable if one knows the
linear model to be well specified, or is willing to settle for a more heuristic
analysis. However, one should note that the standard of rigor underlying such
linear modeling vs. the methods discussed today is quite different. As discussed
today, IPW is consistent under the substantively meaningful assumption (2.6),
whereby treatment assigned emulates random treatment assignment once we
control for Xi. On the other hand, the linear modeling approach is entirely
dependent on well-specification of (2.20); and in case of model misspecification,
there’s no reason to except that its τ̂ estimate will converge to anything that
can be interpreted as a causal effect.
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Recap Today, we discussed estimation of the average treatment effect under
unconfoundedness, i.e., under the assumption that we observe a set of covariates
Xi such that treatment is as good as random after we control for Xi in the sense
of (2.6), and showed that estimators based on the propensity score achieve non-
parametric consistency.

We found that IPW is a simple estimator that easily enables us to exploit
unconfoundedness, and with true propensity score se(x) it is unbiased. How-
ever, we also found that a variant of IPW with estimated propensity scores can,
in some cases, outperform the oracle IPW estimator. This provides evidence
that IPW is not “optimal,” and does not fully capture the complexity of the
problem of average treatment effect estimation under unconfoundedness. In
the following lecture, we’ll discuss alternatives to IPW with better asymptotic
properties.

Bibliographic notes The central role of the propensity score in estimating
causal effects was first emphasized by Rosenbaum and Rubin [1983], while asso-
ciated methods for estimation such as propensity stratification are discussed in
Rosenbaum and Rubin [1984]. Hirano, Imbens, and Ridder [2003] provide a de-
tailed discussion of the asymptotics of IPW-style estimators; and in particular
they discuss conditions under which IPW with non-parametrically estimated
propensity scores can outperform oracle IPW.

Another popular way of leveraging the propensity score in practice is propen-
sity matching, i.e., estimating treatment effects by comparing pairs of units
with similar values of ê(Xi). For a some recent discussions of matching in
causal inference, see Abadie and Imbens [2006, 2016], Diamond and Sekhon
[2013], Zubizarreta [2012], and references therein.

Imbens [2004] provides a general overview of methods for treatment effect
estimation under unconfoundedness, including a discussion of alternative esti-
mands to the average treatment effect, such as the average treatment effect on
the treated.
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Lecture 3
Robust Treatment Effect Estimation
via Augmented IPW

Inverse-propensity weighting (IPW) is a simple and transparent approach to
average treatment effect estimation under unconfoundedness. However, as seen
in the previous lecture, the large-sample properties of IPW are not particularly
good in general. For example, in the case where the covariates Xi ∈ X are
discrete, we found that IPW underperforms a baseline that estimates separate
treatment effects for each value of x ∈ X and then aggregates them. The
goal of this lecture is to get beyond the limitations of IPW, and to discuss a
general recipe for building robust and asymptotically optimal treatment effect
estimators under unconfoundedness.

Statistical setting We observe data (Xi, Yi, Wi, ) ∈ X ×R×{0, 1} accord-
ing to the potential outcomes model, such that there are potential outcomes
{Yi(0), Yi(1)} for which Yi = Yi(Wi) (SUTVA). We are not necessarily in a
randomized controlled trial; however, we assume unconfoundedness, i.e., that
treatment assignment is as good as random conditionally on the features Xi:

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi. (3.1)

We seek to estimate the average treatment effect τ = E [Yi(1)− Yi(0)]. Through-
out, we write σ2

w(x) = Var
[
Yi(w)

∣∣Xi = x
]
.

Two characterizations of the ATE Last time, we saw that the ATE can
be characterized in terms of the propensity score e(x) = P

[
Wi = 1

∣∣Xi = x
]
:

τ = E [τ̂ ∗IPW ] , τ̂ ∗IPW =
1

n

n∑
i=1

(
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

)
. (3.2)
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However, τ can also be characterized in terms of the conditional response sur-
faces µ(w)(x) = E

[
Yi(w)

∣∣Xi = x
]
. Under unconfoundedness (3.1),

τ(x) := E
[
Yi(1)− Yi(0)

∣∣Xi = x
]

= E
[
Yi(1)

∣∣Xi = x
]
− E

[
Yi(0)

∣∣Xi = x
]

= E
[
Yi(1)

∣∣Xi = x, Wi = 1
]
− E

[
Yi(0)

∣∣Xi = x, Wi = 0
]

(unconf)

= E
[
Yi
∣∣Xi = x, Wi = 1

]
− E

[
Yi
∣∣Xi = x, Wi = 0

]
(SUTVA)

= µ(1)(x)− µ(0)(x),

and so τ = E
[
µ(1)(x)− µ(0)(x)

]
. Thus we could also derive a consistent (but

not necessarily optimal) estimator for τ by first estimating µ(0)(x) and µ(1)(x)
non-parametrically, and then using τ̂REG = n−1

∑n
i=1(µ̂(1)(Xi)− µ̂(0)(Xi)).

Augmented IPW Given that the average treatment effect can be estimated
in two different ways, i.e., by first non-parametrically estimating e(x) or by
first estimating µ(0)(x) and µ(1)(x), it is natural to ask whether it is possible to
combine both strategies. This turns out to be a very good idea, and yields the
augmented IPW (AIPW) estimator of Robins, Rotnitzky, and Zhao [1994]:

τ̂AIPW =
1

n

n∑
i=1

(
µ̂(1)(Xi)− µ̂(0)(Xi)

+Wi

Yi − µ̂(1)(Xi)

ê(Xi)
− (1−Wi)

Yi − µ̂(0)(Xi)

1− ê(Xi)

)
.

(3.3)

Qualitatively, AIPW can be seen as first making a best effort attempt at τ by
estimating µ(0)(x) and µ(1)(x); then, it deals with any biases of the µ̂(w)(x) by
applying IPW to the regression residuals.

Weak double robustness AIPW has many good statistical properties. One
of its properties that is easiest to explain is “double robustness”: AIPW is
consistent if either the µ̂(w)(x) are consistent or ê(x) is consistent. To see this,
first consider the case where µ̂(w)(x) is consistent, i.e., µ̂(w)(x) ≈ µ(w)(x). Then,

τ̂AIPW =
1

n

n∑
i=1

(
µ̂(1)(Xi)− µ̂(0)(Xi)

)
︸ ︷︷ ︸

a consistent treatment effect estimator

+
1

n

n∑
i=1

(
Wi

ê(Xi)

(
Yi − µ̂(1)(Xi)

)
− 1−Wi

1− ê(Xi)

(
Yi − µ̂(0)(Xi)

))
︸ ︷︷ ︸

≈ mean-zero noise

,
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because E
[
Yi − µ̂(Wi)(Xi)

∣∣Xi, Wi

]
≈ 0, and so the “garbage” propensity score

weight 1/ê(Xi), resp. 1/(1−ê(Xi)) is multiplied by mean-zero noise that makes
it go away. Thus τ̂AIPW is consistent. Second, suppose that ê(x) is consistent,
i.e., ê(x) ≈ e(x). Then,

τ̂AIPW =
1

n

n∑
i=1

(
WiYi
ê(Xi)

− (1−Wi)Yi
1− ê(Xi)

)
︸ ︷︷ ︸

the IPW estimator

+
1

n

n∑
i=1

(
µ̂(1)(Xi)

(
1− Wi

ê(Xi)

)
− µ̂(0)(Xi)

(
1− 1−Wi

1− ê(Xi)

))
︸ ︷︷ ︸

≈ mean-zero noise

,

because E
[
1−Wi/ê(Xi)

∣∣Xi

]
≈ 0, and so the “garbage” regression adjust-

ments µ̂(w)(Xi) is multiplied by mean-zero noise that makes it go away. Thus
τ̂AIPW is consistent.

The above double robustness of AIPW is well known. However, while it
is a nice property to have, its importance should not be overstated: It only
guarantees consistency of τ̂AIPW , whereas in most treatment effect estimation
applications we also care about rates of convergence and confidence intervals.
Furthermore, one might also argue that, in a modern statistical setting, one
should expect practitioners to appropriate non-parametric estimators for both
µ(w)(x) and e(x) such that both are consistent; in which case both τ̂REG and
τ̂IPW would already be consistent on their own, and so the above double ro-
bustness statement (namely consistency of τ̂AIPW ) doesn’t buy us much.

Strong double robustness A much more interesting and useful property
is the following “strong” double robustness result that quantifies the weaker
consistency statement given above. Consider the following “oracle” AIPW
estimator that depends on the true µ(w)(x) and e(x) rather than on estimates
thereof:

τ̂ ∗AIPW =
1

n

n∑
i=1

(
µ(1)(Xi)− µ(0)(Xi)

+Wi

Yi − µ(1)(Xi)

e(Xi)
− (1−Wi)

Yi − µ(0)(Xi)

1− e(Xi)

)
,

(3.4)

Then, under flexible conditions described below, we can verify that

|τ̂AIPW − τ̂ ∗AIPW |

= OP
(

max
w

E
[(
µ̂(w)(Xi)− µ(w)(Xi)

)2
] 1

2 E
[
(ê(Xi)− e(Xi))

2] 1
2

)
.

(3.5)

21



In other words, τ̂AIPW is a good approximation for the oracle τ̂ ∗AIPW as long
as both the outcome regressions µ̂(w)(·) and the propensity regression ê(·) are
reasonably accurate; and if one of them is very accurate it can tolerate the
other being less so.

The upshot of (3.5) is that, if

max
w

E
[(
µ̂(w)(Xi)− µ(w)(Xi)

)2
] 1

2 E
[
(ê(Xi)− e(Xi))

2] 1
2 � 1√

n
, (3.6)

then τ̂AIPW is first-order equivalent to the oracle, meaning that

√
n (τ̂AIPW − τ̂ ∗AIPW )→p 0. (3.7)

Now, τ̂ ∗AIPW is just an IID average, so we immediately see that1

√
n (τ̂ ∗AIPW − τ)⇒ N (0, V ∗) ,

V ∗ = Var [τ(Xi)] + E
[
σ2

0(Xi)

1− e(Xi)

]
+ E

[
σ2

1(Xi)

e(Xi)

]
,

(3.8)

and so whenever (3.7) holds τ̂AIPW also satisfies a CLT as in (3.8).
In interpreting (3.6), note that if µ̂(w) and ê both attained the parametric

“
√
n-consistent” rate, then the error product would be bounded as O(1/n). A

simple way to satisfy (3.6) is to have all regression adjustments be o(n−1/4)
consistent in root-mean squared error (RMSE), which is an order of magnitude
slower than the parametric rate. Moreover, this condition doesn’t depend on
the internal structure of the machine learning method used; rather, it only
depends on the mean-squared error of the risk adjustments, and so justifies
tuning the µ̂(w)(·) and ê(·) estimates via cross-validation.

Cross-fitting When choosing which treatment effect estimator to use in
practice, we want to attain performance as in (3.8) and so need to make sure
that (3.7) holds. In order to formally establish this result, it is helpful to
consider the following minor modification of AIPW using cross-fitting. At a
high level, cross-fitting uses cross-fold estimation to avoid bias due to overfit-
ting; the reason why this works is exactly the same as why we want to use
cross-validation when estimating the predictive accuracy of an estimator.

1To see why τ̂∗ has variance V ∗/n, note that we can decompose its summands
into 3 uncorrelated parts: µ(1)(Xi) − µ(0)(Xi), Wi

(
Yi − µ(1)(Xi)

)
/e(Xi), and (1 −

Wi)
(
Yi − µ(0)(Xi)

)
/ (1− e(Xi)).
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Cross-fitting first splits the data (at random) into two halves I1 and I2,
and then uses an estimator2

τ̂AIPW =
|I1|
n

τ̂I1 +
|I2|
n

τ̂I2 , τ̂I1 =
1

|I1|
∑
i∈I1

(
µ̂I2(1)(Xi)− µ̂I2(0)(Xi)

+Wi

Yi − µ̂I2(1)(Xi)

êI2(Xi)
− (1−Wi)

Yi − µ̂I2(0)(Xi)

1− êI2(Xi)

)
,

(3.9)

where the µ̂I2(w)(·) and êI2(·) are estimates of µ(w)(·) and e(·) obtained using
only the half-sample I2, and τ̂I2 is defined analogously (with the roles of I1

and I2 swapped). In other words, τ̂I1 is a treatment effect estimator on I1 that
uses I2 to estimate its nuisance components, and vice-versa.

This cross-estimation construction allows us to, asymptotically, ignore the
idiosyncrasies of the specific machine learning adjustment we chose to use, and
to simply rely on the following high-level conditions:

1. Overlap: The true propensity score is bounded away from 0 and 1, such
that η < e(x) < 1− η for all x ∈ X .

2. Consistency: All machine learning adjustments are sup-norm consis-
tent,

sup
x∈X

∣∣∣µ̂I2(w)(x)− µ(w)(x)
∣∣∣ , sup

x∈X

∣∣êI2(x)− e(x)
∣∣→p 0.

3. Risk decay: The product of the errors for the outcome and propensity
models decays as

E
[(
µ̂I2(w)(Xi)− µ(w)(Xi)

)2
]
E
[(
êI2(Xi)− e(Xi)

)2
]

= o

(
1

n

)
, (3.10)

where the randomness above is taken over both the training of µ̂(w) and
ê and the test example X.

Given these assumptions, we characterize the cross-fitting estimator (3.9)
by coupling it with the oracle efficient score estimator (3.4), i.e.,

√
n (τ̂AIPW − τ̂ ∗)→p 0. (3.11)

2In subsequent lectures, whenever I’ll talk about AIPW, I’ll implicitly assume we’re using
cross-fitting unless specified otherwise. I also recommend using cross-fitting when imple-
menting AIPW in practice.
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To do so, we first note that we can write

τ̂ ∗ =
|I1|
n

τ̂I1,∗ +
|I2|
n

τ̂I2,∗

analogously to (3.9) (because τ̂ ∗ uses oracle nuisance components, the cross-
fitting construction doesn’t change anything for it). Moreover, we can decom-
pose τ̂I1 itself as

τ̂I1 = µ̂I1(1) − µ̂
I1
(0),

µ̂I1(1) =
1

|I1|
∑
i∈I1

(
µ̂I2(1)(Xi) +Wi

Yi − µ̂I2(1)(Xi)

êI2(Xi)

)
,

(3.12)

etc., and define µ̂I1,∗(0) and µ̂I1,∗(1) analogously. Given this buildup, in order to
verify (3.11), it suffices to show that

√
n
(
µ̂I1(1) − µ̂

I1,∗
(1)

)
→p 0, (3.13)

etc., across folds and treatment statuses.
We now study the term in (3.13) by decomposing it as follows:

µ̂I1(1) − µ̂
I1,∗
(1)

=
1

|I1|
∑
i∈I1

(
µ̂I2(1)(Xi) +Wi

Yi − µ̂I2(1)(Xi)

êI2(Xi)
− µ(1)(Xi)−Wi

Yi − µ(1)(Xi)

e(Xi)

)

=
1

|I1|
∑
i∈I1

((
µ̂I2(1)(Xi)− µ(1)(Xi)

)(
1− Wi

e(Xi)

))
+

1

|I1|
∑
i∈I1

Wi

((
Yi − µ(1)(Xi)

)( 1

êI2(Xi)
− 1

e(Xi)

))
− 1

|I1|
∑
i∈I1

Wi

((
µ̂I2(1)(Xi)− µ(1)(Xi)

)( 1

êI2(Xi)
− 1

e(Xi)

))
Now, we can verify that these are small for different reasons. For the first
term, we intricately use the fact that, thanks to our double machine learning
construction, µ̂I2(w) can effectively be treated as deterministic. Thus after con-
ditioning on I2, the summands used to build this term become mean-zero and
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independent (2nd and 3rd equalities below)

E

( 1

|I1|
∑
i∈I1

((
µ̂I2(1)(Xi)− µ(1)(Xi)

)(
1− Wi

e(Xi)

)))2


= E

E
( 1

|I1|
∑
i∈I1

((
µ̂I2(1)(Xi)− µ(1)(Xi)

)(
1− Wi

e(Xi)

)))2 ∣∣∣ I2


= E

[
Var

[
1

|I1|
∑
i∈I1

((
µ̂I2(1)(Xi)− µ(1)(Xi)

)(
1− Wi

e(Xi)

)) ∣∣∣ I2

]]

=
1

|I1|
E
[
Var

[(
µ̂I2(1)(Xi)− µ(1)(Xi)

)(
1− Wi

e(Xi)

) ∣∣∣ I2

]]
=

1

|I1|
E
[
E
[(
µ̂I2(1)(Xi)− µ(1)(Xi)

)2
(

1

e(Xi)
− 1

) ∣∣∣ I2

]]
≤ 1

η |I1|
E
[(
µ̂I2(1)(Xi)− µ(1)(Xi)

)2
]

=
oP (1)

n

by consistency (2), because I1 ∼ n/2. The key step in this argument was
the 3rd equality: Because the summands become independent and mean-zero
after conditioning, we “earn” a factor 1/ |I1| due to concentration of iid sums.
The second summand in our decomposition here can also be bounded similarly
(thanks to overlap). Finally, for the last summand, we simply use Cauchy-
Schwarz:

1

|I1|
∑

{i:i∈I1,Wi=1}

((
µ̂I2(1)(Xi)− µ(1)(Xi)

)( 1

êI2(Xi)
− 1

e(Xi)

))

≤
√

1

|I1|
∑

{i:i∈I1,Wi=1}

(
µ̂I2(1)(Xi)− µ(1)(Xi)

)2

×

√√√√ 1

|I1|
∑

{i:i∈I1,Wi=1}

(
1

êI2(Xi)
− 1

e(Xi)

)2

= oP

(
1√
n

)

by risk decay (3). (To establish this fact, also note that by consistency (2), the
estimated propensities will all eventually also be uniformly bounded away from
0, η/2 ≤ êI2(Xi) ≤ 1− η/2, and so the MSE for the inverse weights decays at
the same rate as the MSE for the propensities themselves.)

The upshot is that by using cross-fitting, we can transform any oP (n−1/4)-
consistent machine learning method into an efficient ATE estimator. Also,
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the proof was remarkably short (at least compared to a typical proof in the
semiparametric efficiency literature).

Condensed notation We will be encountering cross-fit estimators frequently
in this class. From now on, we’ll use the following notation: We define the data
into K folds (above, K = 2), and compute estimators µ̂

(−k)
(w) (x), etc., excluding

the k-th fold. Then, writing k(i) as the mapping that takes an observation and
puts it into one of the k folds, we can write

τ̂AIPW =
1

n

n∑
i=1

(
µ̂

(−k(i))
(1) (Xi)− µ̂(−k(i))

(0) (Xi)

+Wi

Yi − µ̂(−k(i))
(1) (Xi)

ê(−k(i))(Xi)
− (1−Wi)

Yi − µ̂(−k(i))
(0) (Xi)

1− ê(−k(i))(Xi)

)
,

(3.14)

which (almost) fits on one line.

Confidence intervals It is also important to be able to quantify uncertainty
of treatment effect estimates. Cross-fitting also makes this easy. Recall from
last class that the empirical variance of the efficient score converges to the
efficient variance V∗:

1

n− 1

n∑
i=1

(
µ(1)(Xi)− µ(0)(Xi)

+Wi

Yi − µ(1)(Xi)

e(Xi)
− (1−Wi)

Yi − µ(0)(Xi)

1− e(Xi)
− τ̂ ∗

)2

→p V
∗,

(3.15)

where τ̂ ∗ is as in (3.4). Our previous derivation then establishes that the same

holds for cross-fitting: V̂AIPW →p V
∗, where

V̂AIPW :=
1

n− 1

n∑
i=1

(
µ̂

(−k(i))
(1) (Xi)− µ̂(−k(i))

(0) (Xi)

+Wi

Yi − µ̂(−k(i))
(1) (Xi)

ê(−k(i))(Xi)
− (1−Wi)

Yi − µ̂(−k(i))
(0) (Xi)

1− ê(−k(i))(Xi)
− τ̂AIPW

)2

.

(3.16)

We can thus produce level-α confidence intervals for τ as

τ ∈
(
τ̂AIPW ±

1√
n

Φ−1(1− α

2
)

√
V̂AIPW

)
,
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where Φ(·) is the standard Gaussian CDF, and these will achieve coverage with
probability 1−α in large samples. Similar argument can also be used to justify
inference via resampling methods as in Efron [1982].

Closing thoughts People often ask whether using machine learning meth-
ods for causal inference necessarily means that our analysis becomes “uninter-
pretable.” However, from a certain perspective, the results shown here may
provide some counter evidence. We used “heavy” machine learning to obtain
our estimates for µ̂(w)(x) and ê(x)—these methods were treated as pure black
boxes, and we never looked inside—and yet the scientific questions we are try-
ing to answer remain just as crisp as before (i.e., we want the ATE or the ATT).
Perhaps our results even got more interpretable (or, at least, credible), because
we did not need to rely on a parametric specification to build our estimators
for τ .

Finally, we haven’t discussed the form of the limiting variance in (3.8) much
today; however, it turns out that the behavior (3.8) is asymptotically optimal,
in the sense that no “regular” estimator of τ can improve on the behavior in
(3.8).3 This result is a Cramer-Rao type bound for non-parametric average
treatment effect estimation. A discussion of why the behavior (3.8) is optimal
is beyond the scope of this class and instead belongs in a class on theoretical
statistic and/or semiparametrics; however, for those of you who are curious to
see an argument, Hahn [1998] is a good place to start.

Bibliographic references The literature on semiparametrically efficient treat-
ment effect estimation via AIPW was pioneered by Robins, Rotnitzky, and
Zhao [1994], and developed in a sequence of papers including Robins and Rot-
nitzky [1995] and Scharfstein, Rotnitzky, and Robins [1999]. The effect of
knowing the propensity score on the semiparametric efficiency bound for aver-
age treatment effect estimation is discussed in Hahn [1998], while the behavior
of AIPW with high dimensional regression adjustments was first considered by
Farrell [2015]. These results fit into a broader literature on semiparametrics,
including Bickel, Klaassen, Ritov, and Wellner [1993] and Newey [1994].

The approach taken here, with a focus on generic machine learning esti-
mators for nuisance components and cross-fitting, follows Chernozhukov et al.
[2018]. One major strength of this approach is in its generality and its abil-
ity to handle arbitrary nuisance estimators; however, the risk decay condition

3Interestingly, note that the estimator τ̂AGG discussed in the last class for the case where
X is discrete also had asymptotic variance V ∗, and is thus semiparametrically efficient.
There is a large taxonomy of different ATE estimators under unconfoundedness; but the
expectation is that all the good ones should attain efficiency.
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(3.10) is somewhat loose. There has been considerable recent interest in sharper
analyses of AIPW that rely on specific choices of µ̂(w)(x) and ê(x) to attain
efficiency under the most general conditions possible, including work by Newey
and Robins [2018].

Finally, one should note that AIPW is far from the only practical average
treatment effect estimator that can attain semiparametric efficiency. One no-
table alternative to AIPW is targeted learning [van der Laan and Rubin, 2006],
which can also be instantiated via machine learning based nuisance estimators
and cross-fitting [van der Laan and Rose, 2011]. In the case of high-dimensional
linear modeling, Belloni, Chernozhukov, and Hansen [2014] proposed a double-
selection algorithm for choosing which variables to control for.
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Lecture 4
Estimating Treatment Heterogeneity

Until now, we have focused on estimating the average treatment effect. In
many application areas, however, there is interest in going beyond average
effects, and to model treatment heterogeneity. For example, in personalized
medicine, we may want to identify patients with more severe side effects than
others; other application areas include public policy or online marketing. In
this lecture, we’ll discuss methods for treatment heterogeneity in observational
studies that, analogously to AIPW, are to first order insensitive to errors in
estimated nuisance components.

The conditional average treatment effect As always, we formalize our
problem in terms of the potential outcomes framework. The analyst has
access to n independent and identically distributed examples (Xi, Yi, Wi),
i = 1, ..., n, where Xi ∈ X denotes per-person features, Yi ∈ R is the ob-
served outcome, and Wi ∈ {0, 1} is the treatment assignment. We posit the
existence of potential outcomes {Yi(0), Yi(1)} corresponding to the outcome we
would have observed given the treatment assignment Wi = 0 or 1 respectively,
such that Yi = Yi(Wi).

In previous lectures, we focused on the average treatment effect τ =
E [Yi(1)− Yi(0)]. Here, in contrast, we want to understand how treatment
effects vary with the observed covariates Xi, and consider the conditional av-
erage treatment effect (CATE)

τ(x) = E
[
Yi(1)− Yi(0)

∣∣Xi = x
]

(4.1)

as our estimand. We emphasize that the CATE is not the same as the (in
general unknowable) individual-i specific treatment effect ∆i = Yi(1) − Yi(0);
rather, it’s still an average effect, but an average over a more targeted group
of samples as characterized by their covariates Xi.

29



Regularization bias As discussed in the previous lecture that, whenever
treatment assignment Wi is unconfounded, i.e., {Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi, we
can write

τ(x) = µ(1)(x)− µ(0)(x), µ(w)(x) = E
[
Yi
∣∣Xi = x, Wi = w

]
. (4.2)

Now, since the µ(w)(·) are just two conditional response surfaces, one could
imagine just fitting µ̂(0)(·) and µ̂(1)(·) by separate non-parametric regressions
on the controls and treated units respectively, and then estimate the CATE as
the difference between these two regression estimates,

τ̂T (x) = µ̂(1)(x)− µ̂(0)(x). (4.3)

This approach is simple and consistent (provided we use universally consistent
estimators for µ(w)(·)), but may not perform particularly well in finite samples.

A first concern is that, if there are many more control than treated units (or
vice-versa) and we use generic non-parametric methods, then the two regression
surfaces µ̂(0)(·) and µ̂(1)(·) may be differently regularized, thus creating artifacts
in the learned CATE estimate τ̂T (x). The following figure, reproduced from
Künzel, Sekhon, Bickel, and Yu [2019], illustrates this point. Both µ(0)(x) and
µ(1)(x) vary with x but the CATE function is constant. There are many controls
so µ̂(0)(·) is well estimated, but there are very few treated treated units and
so µ̂(1)(·) is heavily regularized and approximated as a linear function. Both
estimates µ̂(0)(·) and µ̂(1)(·) are reasonable on their own; however, once we take
their difference as in (4.3), we find strong heterogeneity is τ(x) where there is
none (which is effectively the worst thing a statistical method can do).

A second, more subtle concern is that (4.3) does not explicitly account for
variation in the propensity score. If e(x) varies considerably, then our estimates
of µ̂(0)(·) will be driven by data in areas with many control units (i.e., with
e(x) closer to 0), and those of µ̂(1)(·) by regions with more treated units (i.e.,
with e(x) closer to 1). And if there is covariate shift between the data used to
learn µ̂(0)(·) and µ̂(1)(·), this may create biases for their difference τ̂T (x).
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Semiparametric modeling In order to develop a more formal understand-
ing of heterogeneous treatment effect estimation, it is helpful to consider the
case where we have a model for τ(x),

Yi(w) = f(Xi) + w τ(Xi) + εi(w), P
[
Wi = 1

∣∣Xi

]
= e(x), (4.4)

where τ(x) = ψ(x) · β for some pre-determined set of basis functions ψ : X →
Rk. In other words, we allow for non-parametric relationships between Xi,
Yi, and Wi; however, the treatment effect function itself is parametrized by
β ∈ Rk.

This class of problems was studied by Robinson [1988] who showed that,
under unconfoundedness, we can re-write (4.4) as

Yi −m(Xi) = (Wi − e(Xi))ψ(Xi) · β + εi, where

m(x) = E
[
Yi
∣∣Xi = x

]
= f(Xi) + e(Xi)τ(Xi)

(4.5)

denotes the conditional expectation of the observed Yi, marginalizing over Wi

and εi = εi(w).
This suggests the following “oracle” algorithm for estimating β: First de-

fine Ỹ ∗i = Yi −m(Xi) and Z̃∗i = (Wi − e(Xi))ψ(Xi), and then estimate ζ̂∗R by
running residual-on-residual OLS regression Ỹ ∗i ∼ Z̃∗i . One can show that this
oracle procedure is

√
n-consistent and asymptotically normal,1

√
n
(
ζ̂∗ − β

)
⇒ N (0, VR) , VR = Var

[
Z̃∗i

]−1

Var
[
Z̃∗i Ỹ

∗
i

]
Var

[
Z̃∗i

]−1

. (4.6)

Moreover, under homoskedasticity, i.e., in the case where Var
[
εi
∣∣Xi, Wi

]
= σ2

is constant, VR is the semiparametrically efficient variance for estimating β
(under heteroskedasticity, result (4.6) still holds, but VR is no longer the semi-
parametrically efficient variance).

We of course can’t use this oracle estimator in practice since we don’t know
m(x) and e(x). However, we can again use cross fitting to emulate the oracle:

1. Run non-parametric regressions Y ∼ X and W ∼ X using a method of
our choice to get m̂(x) and ê(x) respectively.

2. Define transformed features Ỹi = Yi − m̂(−k(i))(Xi) and Z̃i = (Wi −
ê(−k(i))(Xi))ψ(Xi), using cross-fitting for m̂(x) and ê(x) as usual.

3. Estimate ζ̂R by running the OLS regression Ỹi ∼ Z̃i.

1For a recent review of OLS asymptotics without linear modeling assumptions, see Buja
et al. [2019].
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Using a similar argument as discussed in class last time, we can verify that if
all non-parametric regressions satisfy

E
[
(m̂(X)−m(X))2] 1

2 , E
[
(ê(X)− e(X))2] 1

2 = oP

(
1

n1/4

)
, (4.7)

then cross-fitting emulates the oracle,

√
n(ζ̂∗R − ζ̂R)→p 0 (4.8)

and so ζ̂R has the same distribution as in (4.6); see Chernozhukov et al. [2018]
for details.

A loss function for treatment heterogeneity The estimator of Robinson
for the partially linear model (4.4) provides helpful guidance on how to derive
robust estimates of the CATE in observational studies if we are willing to use
a linear specification τ(x) = ψ(x) · β. In many modern setting with complex
covariates, however, we may not want to commit to a linear form for τ(x) a-
priori, and would prefer to use a machine learning method that can adaptively
discover a good representation for the CATE.

To this end, it is helpful to re-write Robinson’s estimator as a loss minimizer.
Writing conditional response surfaces as µ(w)(x) = E

[
Y (w)

∣∣X = x
]

for w ∈
{0, 1} we observe that, under unconfoundedness,

E [εi(Wi) | Xi, Wi] = 0, where εi(w) := Yi(w)−
(
µ(0)(Xi) + wτ(Xi)

)
. (4.9)

We can then follow Robinson’s approach, and re-write

Yi −m(Xi) = (Wi − e(Xi)) τ (Xi) + εi, (4.10)

where m(x) = E
[
Y
∣∣X = x

]
= µ(0)(Xi) + e(Xi)τ(Xi) and εi := εi(Wi) (note

that this decomposition holds for any outcome distribution, including for binary
outcomes).

Furthermore, (4.10) can equivalently be expressed as

τ(·) = argminτ ′

E

( (Yi −m(Xi))− (Wi − e(Xi)) τ
′(Xi)

)2
 , (4.11)

and so an oracle who knew both the functions m(x) and e(x) a priori could
estimate the heterogeneous treatment effect function τ(·) by empirical loss
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minimization,

τ̂ ∗R(·) = argminτ ′

{
1

n

n∑
i=1

(
(Yi −m(Xi))− (Wi − e(Xi)) τ

′(Xi)

)2

+ Λn (τ ′(·))

}
,

(4.12)

where the term Λn (τ(·)) is interpreted as a regularizer on the complexity of the
τ(·) function. In practice, this regularization could be explicit as in penalized
regression such as the lasso or kernel regression, or implicit, e.g., as provided
by a carefully designed deep neural network.

The difficulty, as always, is that in practice we never know the weighted
main effect function m(x) and usually don’t know the treatment propensities
e(x) either (unless we’re in an RCT), and so the estimator (4.12) is not feasible.
Thus, it’s natural to consider a plug-in alternative via cross-fitting

τ̂R(·) = argminτ

{
L̂n (τ(·)) + Λn (τ(·))

}
,

L̂n (τ(·)) =
1

n

n∑
i=1

((
Yi − m̂(−k(i))(Xi)

)
−
(
Wi − ê(−k(i))(Xi)

)
τ(Xi)

)2
.

(4.13)

There are many ways to act on the estimation strategy. For example, using
the lasso, (4.13) becomes τ̂(x) = x · β̂ with2

β̂ = argminβ

{
1

n

n∑
i=1

((
Yi − m̂(−k(i))(Xi)

)
−
(
Wi − ê(−k(i))(Xi)

)
Xiβ

)2

+ λ ‖β‖1

}
;

(4.14)

or, one could directly use L̂n(·) as a loss function for boosting or deep learn-
ing. Nie and Wager [2021] establish conditions where (4.13) has a quasi-oracle
property analogous to the one discussed above, and τ̂R can emulate the best
performance guarantees available for the oracle τ̂ ∗R; following this paper, we
refer to L̂n as the R-loss.

2In some cases, it appears that adding a main effect term to the lasso problem (4.14), i.e.,
running a penalized regression with

(
Yi − m̂(−k(i))(Xi)

)
∼ Xiζ +

(
Wi − ê(−k(i))(Xi)

)
Xiβ,

may improve empirical performance slightly [Nie and Wager, 2021].

33



Validating treatment heterogeneity When working with flexible ap-
proaches to estimating treatment heterogeneity, it’s important to be able to
rigorously validate and choose between candidate estimators. How best to
validate treatment effect estimators is still a somewhat open topic; however,
several possible solutions have been proposed in the literature.

A first, simple approach that builds directly on (4.13) is to cross-validate
on the R-loss, i.e., prefer the estimator with the smallest out-of-fold R-loss.3

Furthermore, working in a loss-minimization framework opens the door to a
broader machine learning approach. In addition to using the R-loss L̂n(·) for
choosing between competing estimators via cross-validation, one could also use
it for, e.g., model aggregation via stacking or pruning a complex model of
treatment heterogeneity [van der Laan, Polley, and Hubbard, 2007].

Another, more indirect approach is to use a conditional average treatment
effect estimator τ̂(x) to guide subgroup analysis. For example, one could strat-
ify a test set according to estimates of τ̂(x), and then estimate the average
treatment effect separately for each stratum using doubly robust methods as
discussed in Lecture 3; then, a good treatment effect estimator is one that can
reproducibly find subgroups with different average treatment effects (of course,
for this to be valid, the data used for estimating the ATEs over subgroups can-
not be the same as the data used to learn τ̂(x)).

Finally, if one is simply interested in validation, one could—again on a hold-
out set—try fitting a partially linear model as in (4.10), but with treatment
effect function parametrized in terms of the estimated CATE function, i.e.,
τ(x) ∼ α + βτ̂(x). If we run Robinson’s method with this parametrization and
find β̂ ≈ 1, this may be taken as evidence that the treatment heterogeneity
estimate is well calibrated; meanwhile, if β̂ is significantly greater than 0, this
may be taken as evidence that our estimated CATE function τ̂(x) is not pure
noise. For further examples and discussion, see Athey and Wager [2019] and
Chernozhukov, Demirer, Duflo, and Fernández-Val [2017].

Closing thoughts At first glance, the problem of estimating treatment het-
erogeneity may seem like just another non-parametric regression problem: Just
learn µ̂(w)(x) as usual, and then estimate the CATE via (4.3). However, regular-
ization bias (meaning biases that arise from poorly targeted objectives for the

3One practical issue that may arise when using the R-loss for model choice is that the
numerical difference between the cross-validated losses may be very small relative to the
sampling error of the R-loss itself. Somewhat surprisingly, this may not always be a problem
due to a general phenomenon with cross-validation, whereby the leading noise term of the
cross-validated error cancels out when we compare two models; see Wager [2020a] for a
discussion.
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treatment and control models) can be a real problem if not addressed up front.
These difficulties are particularly accute in the case of causal effect estimation,
because we are often interested in estimating potentially weak treatment effects
τ(x) in the presence of much stronger baseline effects µ(0)(x) (e.g., in a medi-
cal application, one might expect that the causal effect of any intervention on
survival is much smaller than baseline variation in survival probabilities across
patients).

An early line of work on methods for treatment heterogeneity sought to
address regularization bias by directly modifying popular statistical learning
tools such as the lasso or regression trees to focus on accurate estimation of
the CATE in randomized trials [Athey and Imbens, 2016, Imai and Ratkovic,
2013, Tian, Alizadeh, Gentles, and Tibshirani, 2014]. Here, in contrast, we saw
how an extension of the partial linear model estimator of Robinson can be used
to create a loss function that directly targets the CATE function; and then we
can get good estimates of τ(·) by simply minimizing this loss.

The key fact that enabled the whole approach discussed here is the “quasi
oracle” property (4.8) for Robinson’s method, according to the feasible version
of Robinson’s estimator with estimated nuisance components ê(x) and m̂(x)
is to first order just as good as the oracle with known nuisance components—
provided the condition (4.7) holds. This result is closely related to the ro-
bustness property of AIPW discussed in the last lecture, where again errors in
the nuisance components didn’t matter to first order. Such estimators, which
Chernozhukov et al. [2018] refer to as Neyman-orthogonal, play a key role in
non-parametric causal inference (and semiparametric statistics more broadly).

Bibliographic notes We discussed the R-learner, an approach to heteroge-
neous treatment effect estimation in observational studies that builds on the
estimator of Robinson [1988] for partially linear modeling. Nie and Wager
[2021] present excess error bounds for heterogeneous treatment effect estima-
tion via non-parametric kernel regression with the R-learner, and Zhao, Small,
and Ertefaie [2017] discuss post-selection inference for treatment heterogene-
ity using what we’ve here called the R-lasso. Kennedy, Balakrishnan, and
Wasserman [2022] show that a variant of the R-learner is minimax for estimat-
ing CATEs under a set of smoothness assumptions, while Foster and Syrgkanis
[2019] provide general guarantees for machine learning with a class of “orthogo-
nal” loss functions that generalize the R-loss. A random forest based variant of
the R-learner is implemented in the causal forest function in the R-package
grf [Athey, Tibshirani, and Wager, 2019].

Other recently proposed methods for heterogeneous treatment effect esti-
mation in observational studies include Hahn, Murray, and Carvalho [2020] and
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Künzel, Sekhon, Bickel, and Yu [2019], who propose different approaches using
the propensity score for this problem (although these methods are not orthog-
onal to errors in nuisance components in the sense of (4.8)). Finally, Ding,
Feller, and Miratrix [2019] discuss estimation of treatment heterogeneity in a
randomized trial under strict randomization inference (i.e., without assuming
a sampling distribution for the potential outcomes).

As an aside, we note that Robinson’s estimator for the partial linear model
can also be of interest when the partially linear model is misspecified. In
the simplest case where treatment effects are constant, i.e., Yi(w) = f(Xi) +
τw+εi and E[εi

∣∣Xi, Wi], Robinson’s method provides a simple and consistent
estimate of the treatment effect parameter τ provided nuisance components
converge fast enough:

τ̂R =

∑n
i=1

(
Yi − m̂(−k(i))(Xi)

) (
Wi − ê(−k(i))(Xi)

)∑n
i=1 (Wi − ê(−k(i))(Xi))

2 . (4.15)

However, even when the conditional average treatment effect function τ(x) =
E[Yi(1)− Yi(0)

∣∣Xi = x] is not constant, one can verify that τ̂R converges to a
weighted average of τ(x) with non-negative weights, and that τ̂R is substantially
more robust to local failures of overlap than efficient estimators of the average
treatment effect [Crump, Hotz, Imbens, and Mitnik, 2009, Li, Morgan, and
Zaslavsky, 2018]. Thus, in cases where we believe heterogeneity in τ(x) to be
low and we have difficulties with overlap, using (4.15) as an alternative to an
average treatment effect estimator may be a practical choice.
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Lecture 5
Regression Discontinuity Designs

The cleanest and most straight-forward approach to treatment effect estima-
tion is via the randomized controlled trial and its immediate generalizations.
However, in applied work, there are several other quasi-experimental designs
that have repeatedly proven themselves in practice. One simple yet versa-
tile approach of this type is the regression discontinuity design, which relies
on discontinuous treatment assignment mechanisms to identify causal effects.
Today, we’ll formalize identification arguments for regression discontinuity de-
signs, and discuss best practices for estimation.

Setting and motivation We are interested in the effect of a binary
treatment Wi on a real-valued outcome Yi, and posit potential outcomes
{Yi(0), Yi(1)} such that Yi = Yi(Wi). However, unlike in a randomized trial,
we do not take the treatment assignment Wi to be random. Instead, we assume
there is a running variable Zi ∈ R and a cutoff c, such that Wi = 1 ({Zi ≥ c}).
This setting could arise, e.g., in education, where Zi is a standardized test
score and students with Zi ≥ c are eligible to enroll in an honors program,
or in medicine, where Zi is a severity score, and patients are prescribed an
intervention once Zi ≥ c.

Qualitatively, the main idea of a regression discontinuity is that although
treatment assignment Wi is not randomized, it’s almost as good as random
when Zi is in the vicinity of the cutoff c. People with Zi close to c ought to
all be similar to each other on average, but only those with Zi ≥ c get treated,
and so we can estimate a treatment effect by comparing people with Zi right
above versus right below 0.

Identification via continuity The most prevalent way to formalize the
qualitative argument made above is by invoking continuity. Let µ(w)(z) =
E
[
Yi(w)

∣∣Zi]. Then, if µ(0)(z) and µ(1)(z) are both continuous, we can identify
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the conditional average treatment effect at z = c, i.e., τc = µ(1)(c)−µ(0)(c), via

τc = lim
z↓c

E
[
Yi
∣∣Zi = z

]
− lim

z↑c
E
[
Yi
∣∣Zi = z

]
, (5.1)

provided that the running variable Zi has support around the cutoff c. In other
words, we identify τc as the difference between the endpoints of two different
regression curves; the above figure provides an illustration.

Why our previous results don’t apply to RDD Before discussing meth-
ods for estimation in regression discontinuity designs, it’s helpful to consider
why our previously considered approaches (such as IPW) don’t apply. As em-
phasized by Rubin [2008], the two assumptions that are invariably needed in
studying quasi-experiments (and were used throughout our discussion so far)
are

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Zi, (unconfoundedness) (5.2)

η ≤ P
[
Wi = 1

∣∣Zi] ≤ 1− η, (overlap) (5.3)

for some η > 0. Taken together, unconfoundedness and overlap mean that
we can view our dataset as formed by pooling many small randomized trials
indexed by different values of Zi; then, unconfoundedness means that treatment
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assignment is exogenous given Zi, while overlap means that randomization in
fact occurred (e.g., one can’t learn anything from a randomized trial where
everyone is assigned to control).

In a regression discontinuity design, we have Wi = 1 ({Zi ≥ c}), and so
unconfoundedness holds trivially (because Wi is a deterministic function of Zi).
However, overlap clearly doesn’t hold: P

[
Wi = 1

∣∣Zi = z
]

is always either 0 or
1. Thus, methods like IPW that involve division by P

[
Wi = 1

∣∣Zi], etc., are not
applicable. Instead, we’ll need to compare units with Zi straddling the cutoff
c that are similar to each other—but do not have contiguous distributions.

On a statistical level, the main consequence of this failure of overlap is that√
n-consistent estimation of τc is in general not possible. Instead, the minimax

error for estimating τc will decay at sub-parametric rates, and the specific rate
will depend on how smooth the conditional response functions µ(w)(z) are.
For example, if the µ(w)(z) have a uniformly bounded second derivative in the
vicinity of the cutoff c then, as we’ll see below, we can achieve n−2/5 rates of
convergence.

Estimation via local linear regression A simple and robust approach to
estimation based on (5.1) is to use local linear regression, as illustrated in the
figure below. We pick a small bandwidth hn → 0 and a symmetric weighting
function K(·), and then fit µ(w)(z) via weighted linear regression on each side
of the boundary,

τ̂c = argmin

{ n∑
i=1

K

(
|Zi − c|
hn

)
×
(
Yi − a− τWi − β(0) (Zi − c)− − β(1) (Zi − c)+

)2
}
,

(5.4)

where the overall intercept a and slope parameters β(w) are nuisance param-
eters. Popular choices for the weighting function K(x) include the window
function K(x) = 1 ({|x| ≤ 1}), or the triangular kernel K(x) = (1− |x|)+.

Consistency, asymptotics and rates of convergence It is not hard to
see that, under continuity assumptions as in (5.1), the local linear regression
estimator (5.4) must be consistent for reasonable choices of the bandwidth
sequence hn. However, in order to move beyond such a high-level statement
and get any quantitative guarantees, we need to be more specific about the
continuity assumptions made on µ(0)(z) and µ(1)(z).

There are many ways of quantifying smoothness, but one of the most widely
used assumptions in practice—and the one we’ll focus on today—is that the

39



●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

X

Y

µ(w)(z) are twice differentiable with a uniformly bounded second derivative∣∣∣∣ d2

dz2
µ(w)(z)

∣∣∣∣ ≤ B for all z ∈ R and w ∈ {0, 1} . (5.5)

One motivation for the assumption (5.5) is that it justifies local linear regression
as in (5.4): If we had less smoothness (e.g., µ(w)(z) is just taken to be Lipschitz)
then there would be no point doing local linear regression as opposed to local
averaging, whereas if we had more smoothness (e.g., bounds on the k-th order
derivative of µ(w)(z) for k ≥ 3) then we could improve rates of convergence via
local regression with higher-order polynomials.

Given this assumption, we can directly bound the error rate of (5.4). First,
by taking a Taylor expansion around c, we can write

µ(w)(z) = a(w) + β(w)(z − c) +
1

2
ρ(w)(z − c),

∣∣ρ(w)(x)
∣∣ ≤ Bx2, (5.6)

while noting that τc = a(1)−a(0). Moreover, by inspection of the problem (5.4),
we see that it factors into two separate regression problems on the treated and
control samples, namely

â(1), β̂(1) = argmina,β

{∑
Zi≥c

K

(
|Zi − c|
hn

)
(Yi − a− β (Zi − c))2

}
, (5.7)

40



for the treated units and an analogous problem for the controls, such that
τ̂ = â(1) − â(0).

Now, for simplicity, focus on local linear regression with the basic window
kernel K(x) = 1 ({|x| ≤ 1}). The linear regression problem (5.7) can then be
solved in closed form, and we get

â(1) =
∑

c≤Zi≤c+hn

γiYi, γi =
Ê(1)

[
(Zi − c)2]− Ê(1) [Zi − c] · (Zi − c)
Ê(1)

[
(Zi − c)2]− Ê(1) [Zi − c]2

, (5.8)

where Ê(1) [Zi − c] =
∑

c≤Zi≤c+hn(Zi − c)/ |{i : c ≤ Zi ≤ c+ hn}|, etc., denote
sample averages over the regression window. Now, by direct calculation we see
that

∑
c≤Zi≤c+hn γi = 1 and

∑
c≤Zi≤c+hn γi(Zi − c) = 0 and so, thanks to (5.6),

we see that

â(1) = a(1) +
∑

c≤Zi≤c+hn

γi ρ(1)(Zi − c)︸ ︷︷ ︸
curvature bias

+
∑

c≤Zi≤c+hn

γi
(
Yi − µ(1)(Zi)

)
︸ ︷︷ ︸

sampling noise

, (5.9)

and a similar expansion holds for â(0). Thus, recalling that our estimator is
τ̂ = â(1) − â(0) and out target estimand is τc = a(1)−a(0), we see that it suffices
to bound the error terms in (5.9).

Given our bias on the curvature, we immediately see that the “curvature
bias” term is bounded by Bh2

n. Meanwhile, the sampling noise term is mean-
zero and, provided that Var

[
Yi
∣∣Zi] ≤ σ2, has variance bounded on the order of

σ2
∑

c≤Zi≤c+hn γ
2
i . Finally, assuming that Zi has a continuous non-zero density

function f(z) in a neighborhood of z, one can check that

σ2
∑

c≤Zi≤c+hn

γ2
i ≈

4σ2

|{i : c ≤ Zi ≤ c+ hn}|
≈ 4σ2

f(c)

1

nhn
. (5.10)

In other words, the squared bias of τ̂ scales as h4
n, while its variance scales as

1/(hnn). The bias-variance trade-off is minimized by tuning hn, and we find
that

τ̂c = τc +OP
(
n−2/5

)
, with hn ∼ n−1/5. (5.11)

In other words, we have established that if the potential outcome functions have
bounded curvature as in (5.5) and Zi has a continuous non-zero density around
c (meaning that there will asymptotically be datapoints with Zi arbitrarily close
to c), then local linear regression can estimate τc at an n−2/5 rate.

Finally, note that this n−2/5 rate is a consequence of working with bounds
on the 2nd derivative of µ(w)(z). In general, if we assume that µ(w)(z) has
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a bounded k-th order derivative, then we can achieve an n−k/(2k+1) rate of
convergence for τc by using local polynomial regression of order (k − 1) with
a bandwidth scaling as hn ∼ n−1/(2k+1). Local linear regression never achieves
a parametric rate of convergence, but can get more or less close depending on
how smooth µ(w)(z) is.

Identification via noisy running variables So far, we have focused on
identification in regression discontinuity designs via continuity of µ(w)(x);
specifically, we assumed that the second derivative of µ(w)(x) is bounded as in
(5.5). However, despite its simplicity and interpretability, this continuity-based
approach to regression discontinuity inference does not satisfy the criteria for
rigorous design-based causal inference as outlined by Rubin [2008]. According
to the design-based paradigm, even in observational studies, a treatment effect
estimator should be justifiable based on randomness in the treatment assign-
ment mechanism alone. In contrast, the formal guarantees provided by the
continuity-based regression discontinuity analysis take smoothness of µ(w)(z)
as a primitive.

An alternative justification for identification in regression discontinuity de-
signs starts with a form of implicit randomization in the running variable:
There are many factors outside of the control of decision-makers that deter-
mine the running variable Zi such that if some unit barely clears the eligibility
cutoff for the intervention then the same unit could also plausibly have failed
to clear the cutoff with a different realization of these chance factors [Lee and
Lemieux, 2010]. For example, in an educational setting where a test is used to
determine eligibility to an honors program, there may be a group of marginal
students who might barely pass or fail pass a test due to unpredictable vari-
ation in their test score, thus resulting in an effectively exogenous treatment
assignment rule.

And, if the running variable is in fact noisy, we can build an identification
argument on top of it.1 More formally, consider a setting where the following
two conditions hold:

• The running variable is noisy, such that there is a latent variable Ui with
distribution G such that Zi

∣∣Ui ∼ N (0, ν2) for some ν > 0.

1Running variables are plausibly noisy in many, but not all, applications of RDDs. For
example, in some cases one might consider an RDD where different counties enact different
policies and so there is a sharp cutoff in legislation at the county border. Here, a continuity-
based argument may be applicable, but claiming that a household’s position in space is noisy
seems questionable.
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• The noise in Zi is unconfounded or exogenous, i.e.,
[{Yi(0), Yi(1)} ⊥⊥ Zi]

∣∣Ui.
Once we invoke this latent structure, we recover an average treatment effect
estimation problem that’s reminiscent from the one studied last week: We have
Yi = Yi(Wi), with {Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Ui and

e(u) := P
[
Wi = 1

∣∣Ui] = P
[
Zi ≥ c

∣∣Ui] = 1− Φ

(
c− Ui
ν

)
,

α(w)(u) := E
[
Yi(w)

∣∣Ui = u
]
, τ(u) = E

[
Yi(1)− Yi(0)

∣∣Ui = u
]
,

(5.12)

where Φ(·) is the standard Gaussian cumulative distribution function.
The remaining difficulty, of course, is that the latent variable Ui is not ob-

served and so we cannot control for it as in, e.g., AIPW. However, as discussed
further in Eckles, Ignatiadis, Wager, and Wu [2020], one can address this issue
using a deconvolution-type estimator. Specifically, if one sets

τ̂γ =
1

n

∑
{i:Zi≥c}

γ+(Zi)Yi −
1

n

∑
{i:Zi<c}

γ−(Zi)Yi (5.13)

with weighting functions satisfying

E [1 ({Zi ≥ c}) γ+(Zi)] = E [1 ({Zi < c}) γ−(Zi)] = 1, (5.14)

then one can verify that

E [τ̂γ] =

∫
h+(u)τ(u) dG(u)︸ ︷︷ ︸

weighted treatment effect

+

∫
(h+(u)− h−(u))α(0)(u) dG(u)︸ ︷︷ ︸

confounding bias

,

h+(u) =

∫ ∞
c

γ+(z)ϕν(z − u) dz, h−(u) =

∫ c

−∞
γ−(z)ϕν(z − u) dz,

(5.15)

and this path can be further pursued to devise estimators for various weighted
averages of τ(u) as defined in (5.12).

Bibliographic notes The idea of using regression discontinuity designs for
treatment effect estimation goes back to Thistlethwaite and Campbell [1960];
however, most formal work in this area is more recent. The framework of
identification in regression discontinuity designs via continuity arguments and
local linear regression is laid out by Hahn, Todd, and van der Klaauw [2001].
Other references on regression discontinuity analysis via local linear regres-
sion include Cheng, Fan, and Marron [1997] who discuss optimal choices for
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the kernel weighting function, Imbens and Kalyanaraman [2012] who discuss
bandwidth choice, and Calonico, Cattaneo, Farrell, and Titiunik [2019] who
discuss the role of covariate adjustments. Imbens and Lemieux [2008] provide
an overview of local linear regression methods in this setting, and discuss al-
ternative specifications such as the “fuzzy” regression discontinuities where Wi

is random but P
[
Wi = 1

∣∣Zi = z
]

has a jump at the cutoff c.
One topic we did not discuss today is the construction of confidence inter-

vals via local linear regression. The reason this is a somewhat delicate issue
is that, when tuned for optimal mean-squared error, the bias and sampling
error of the local linear regression estimator are of the same order, and so
basic delta-method or bootstrap based inference fails (because it doesn’t cap-
ture bias). Several authors have considered solutions to the problem that rely
on asymptotics. In particular, Calonico, Cattaneo, and Titiunik [2014] and
Calonico, Cattaneo, and Farrell [2018] bias-correct local linear regression to
obtain valid confidence intervals, while Armstrong and Kolesár [2020] show
that uncorrected local linear regression point estimates can also be used for
valid inference provided we inflate the length of the confidence intervals by a
pre-determined amount. We will revisit the problem of inference for regression
discontinuity designs in the next lecture, with a focus on methods that allow
for finite sample justification.

When discussing alternative identification via noisy running variables, we
found it helpful to consider conditioning on an unobserved latent variable Ui to
study the behavior of our estimator. This idea, sometimes called principle strat-
ification, plays an important role in many key results about non-parametric
causal inference in observational studies [Frangakis and Rubin, 2002, Heckman
and Vytlacil, 2005, Imbens and Angrist, 1994], and we will encounter it again
when working with instrumental variables.
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Lecture 6
Finite Sample Inference in RDDs

In the previous lecture, we introduced regression discontinuity designs as a
strategy for identifying causal effects. To recap, we asked about the effect of a
binary treatment Wi on a real-valued outcome Yi in a setting where treatment
assignment is a deterministic function of a continuous running variable Zi ∈ R,
i.e., there is a cutoff c, such that Wi = 1 ({Zi ≥ c}). Assuming potential
outcomes {Yi(0), Yi(1)} such that Yi = Yi(Wi) we found that, under continuity
assumptions, τc = E

[
Yi(1)− Yi(0)

∣∣Zi = c
]

is identified via

τc = lim
z↓c

E
[
Yi
∣∣Zi = z

]
− lim

z↑c
E
[
Yi
∣∣Zi = z

]
. (6.1)

Furthermore, we showed that a simple estimator based on local linear regression
can achieve an n−2/5 rate of convergence if the conditional response functions
of the treated and control potential outcomes have bounded second derivatives.

Now, while this result is very helpful from a conceptual point of view, it is
not always clear how to use it in practice. In particular:

• The asymptotic argument underlying (6.1) relies on observing data Zi
arbitrarily close to the cutoff c. In practice, however, we often have to
work with discrete running variables (e.g., Zi is a test score that takes
integers value between 0 and 100), and so these asymptotics do not apply.

• When Zi has a continuous distribution and we run local linear regression
with an optimal bandwidth, both the bias and standard error of τ̂c are of
the same order of magnitude. Thus, any approach to inference that does
not account for bias won’t achieve coverage.

• In many applications, we need to work with more complicated cutoff
functions (e.g., a student needs to pass 2 out of 3 tests to be eligible for
a program). How does (6.1) generalize to this setting?

Our goal today is to re-visit inference in regression discontinuity designs with
an eye towards generalizable procedures with finite-sample guarantees.
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Linear estimators for RDD Recall that local linear regression estimates
τc as follows. For a bandwidth hn > 0 and a symmetric weighting function
K(·), use

τ̂c = argmin

{ n∑
i=1

K

(
|Zi − c|
hn

)
×
(
Yi − a− τWi − β(0) (Zi − c)− − β(1) (Zi − c)+

)2
}
,

(6.2)

where the overall intercept a and and slope parameters β(w) are nuisance pa-
rameters. Popular choices for the weighting function K(x) include the window
kernel K(x) = 1 ({|x| ≤ 1}), or the triangular kernel K(x) = (1− |x|)+.

Now, when studying the local linear estimator (6.2) last time, we noted
that we can write this estimator as

τ̂c(γ) =
n∑
i=1

γiYi. (6.3)

for some weights γi that only depend on the running variable Zi. In the previous
lecture, we wrote down a closed form expression for γi for the window kernel
K(x) = 1 ({|x| ≤ 1}); however, from basic properties of least squares regression
we see that such a linear representation is always available. And interestingly,
despite the definition (6.2) of the local linear estimator, it turns out that we
didn’t make much use of this definition in studying τ̂c. Instead, for our formal
discussion, we just used general properties of linear estimators of the form
(6.3).1

More specifically, our analysis of local linear regression only made use of the
following fact that pertains to all linear estimators. For simplicity, let’s work
with homoskedatic and Gaussian errors, such that Yi(w) = µ(w)(Zi) + εi(w)
with εi(w)

∣∣Zi ∼ N (0, σ2). Then, provided the weights γi are only functions
of the Zi, we have

τ̂c(γ)
∣∣ {Z1, ..., Zn} ∼ N

(
τ̂ ∗c (γ) , σ2 ‖γ‖2

2

)
,

τ̂ ∗c (γ) =
n∑
i=1

γiµWi
(Zi),

(6.4)

where Wi = 1 ({Zi ≥ c}). Thus, we immediately see that any linear estimator
as in (6.3) will be an accurate estimator for τc provided we can guarantee that
τ̂ ∗c (γ) ≈ τc and ‖γ‖2

2 is small.

1There’s a somewhat unfortunate naming collision here: When we say that local linear
regression (6.2) is a linear estimator (6.3), we’re using the qualifier linear twice with two
different meanings.
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Minimax linear estimation Motivated by this observation, it’s natural to
ask: If the salient fact about local linear regression (6.2) is that we can write it
as an linear estimator of the form (6.3), then is local linear regression the best
estimator in this class? As we’ll see below, the answer is no; however, the best
estimator of the form (6.3) can readily be derived in practice via numerical
convex optimization.

As noted in (6.4), the conditional variance of any linear estimator can di-
rectly be observed: it’s just σ2 ‖γ‖2

2 (again, for simplicity, we’re working with
homoskedatic errors for most of today). In contrast, the bias of linear estima-
tors depends on the unknown functions µ(w)(z), and so cannot be observed:

Bias
(
τ̂c(γ)

∣∣ {Z1, ..., Zn}
)

=
n∑
i=1

γiµWi
(Zi)−

(
µ(1)(c)− µ(0)(c)

)
. (6.5)

However, although, this bias is unknown, it can still readily be bounded given
smoothness assumptions on the µ(w)(z).

As in last lecture, consider the widely used smoothness assumption accord-
ing to which the conditional response functions have bounded second deriva-
tives, |µ′′(w)(z)| ≤ B. Then2∣∣Bias

(
τ̂c(γ)

∣∣ {Z1, ..., Zn}
)∣∣ ≤ IB(γ)

IB(γ) = sup

{
n∑
i=1

γiµWi
(Zi)−

(
µ(1)(c)− µ(0)(c)

)
:
∣∣µ′′(w)(z)

∣∣ ≤ B

}
.

(6.6)

Now, recall that the mean-squared error of an estimator is just the sum of its
variance and squared bias. Because the variance term σ2 ‖γ‖2

2 doesn’t depend
on the conditional response functions, we thus see that the worst-case mean
squared error of any linear estimator over all problems with |µ′′(w)(z)| ≤ B is
just the sum of its variance and worst-case bias squared, i.e.,

MSE
(
τ̂c(γ)

∣∣ {Z1, ..., Zn}
)
≤ σ2 ‖γ‖2

2 + I2
B (γ) , (6.7)

with equality at any function that attains the worst-case bias (6.6).
It follows that, under an assumption that |µ′′(w)(z)| ≤ B and conditionally

on {Z1, ..., Zn}, the minimax linear estimator of the form (6.3) is the one that
minimizes (6.7):

τ̂c
(
γB
)

=
n∑
i=1

γBi Yi, γB = argmin
{
σ2 ‖γ‖2

2 + I2
B (γ)

}
. (6.8)

2There is no need for an absolute value inside the sup-term used to define IB(γ) because
the class of twice differentiable functions is symmetric around zero. This fact will prove to
be useful down the road.
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One can check numerically that the weights implied by local linear regression
do not solve this optimization problem, and so the estimator (6.8) dominates
local linear regression in terms of worst-case MSE.

Deriving the minimax linear weights Of course, the estimator (6.8) is
not of much use unless we can solve for the weights γBi in practice. Luckily, we
can do so via routine quadratic programming. To do so, it is helpful to write

µ(w)(z) = a(w) + β(w)(z − c) + ρ(w)(z), (6.9)

where ρ(w)(z) is a function with ρ(w)(c) = ρ′(w)(c) = 0 and whose second deriva-
tive is bounded by B; given this representation τc = a(1) − a(0).

Now, the first thing to note in (6.9) is that the coefficients a(w) and β(w) are
unrestricted. Thus, unless the weights γi account for them exactly, such that

n∑
i=1

γiWi = 1,
n∑
i=1

γi = 0,
n∑
i=1

γi(Zi − c)+ = 0,
n∑
i=1

γi(Zi − c)− = 0,

we can choose a(w) and β(w) to make the bias of τ̂c(γ) arbitrarily bad (i.e.,
IB(γ) =∞). Meanwhile, once we enforce these constraints, it only remains to
bound the bias due to ρ(w)(z), and so we can re-write (6.8) as{

γB, t
}

= argmin σ2 ‖γ‖2
2 +B2t2

subject to:
n∑
i=1

γiWiρ(1)(Zi) +
n∑
i=1

γi(1−Wi)ρ(0)(Zi) ≤ t

for all ρ(w)(·) with ρ(w)(c) = ρ′(w)(c) = 0

and
∣∣ρ′′(w)(z)

∣∣ ≤ 1
n∑
i=1

γiWi = 1,
n∑
i=1

γi = 0,

n∑
i=1

γiWi(Zi − c) = 0,
n∑
i=1

γi(1−Wi)(Zi − c) = 0.

(6.10)

Given this form, the optimization should hopefully look like a tractable one.
And in fact it is: The problem simplifies once we take its dual, and it can
then be well approximated by a finite-dimensional quadratic program where
we use a discrete approximation to the set of functions with second derivative
bounded by 1. For details, see Section II.B of Imbens and Wager [2019].
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Inference with linear estimators The above discussion suggests that using
τ̂c
(
γB
)

=
∑n

i=1 γ
B
i Yi with weights chosen via (6.10) results in a good point

estimate for for τc if all we know is that |µ′′(w)(z)| ≤ B. In particular, under
this assumption and conditionally on {Z1, ..., Zn}, it attains minimax mean-
squared error among all linear estimators. Because local linear regression is also
a linear estimator, we thus find that τ̂c

(
γB
)

dominates local linear regression
in a minimax sense.3

If we want to use τ̂c
(
γB
)

in practice, though, it’s important to be able
to also provide confidence intervals for τc. And, since τ̂c

(
γB
)

balances out
bias and variance by construction, we should not expect our estimator to be
variance dominated—and any inferential procedure should account for bias.

To this end, recall (6.4), whereby conditionally on {Z1, ..., Zn}, the errors
of our estimator, err := τ̂c − τc, are distributed as

err
∣∣ {Z1, ..., Zn} ∼ N

(
bias, σ2

∥∥γB∥∥2

2

)
. (6.11)

Furthermore, the optimization problem (6.10) yields as a by-product an upper
bound for the bias in terms of the optimization variable t, namely |bias| ≤ Bt.

We can then use these facts to build confidence intervals as follows. Because
the Gaussian distribution is unimodal,

P [|err| ≥ ζ] ≤ P
[∣∣Bt+ σ

∥∥γB∥∥
2
S
∣∣ ≥ ζ

]
, S ∼ N (0, 1) . (6.12)

Thus, we obtain level-α confidence intervals as follows:

P
[
τc ∈ Iα

∣∣ {Z1, ..., Zn}
]
≥ 1− α,

Iα =
(
τ̂c
(
γB
)
− ζBα , τ̂c

(
γB
)

+ ζBα
)
,

ζBα = inf
{
ζ : P

[∣∣Bt+ σ
∥∥γB∥∥

2
S
∣∣ > ζ

]
≤ α, S ∼ N (0, 1)

}
.

(6.13)

In addition to formally accounting for bias, note that these intervals hold con-
ditionally on Zi, and so hold without any distributional assumptions on the
running variable. This is useful when considering regression discontinuities in
non-standard settings.

Example: Discrete running variable A first example of the usefulness
of having conditional-on-Zi guarantees is when the running variable Zi has
discrete support. In this case, the regression discontinuity parameter τc is in
general not point-identified under only the assumption |µ′′(w)(z)| ≤ B because

3Of course, one also needs to verify that τ̂c
(
γB
)

is not the same as local linear regression;
this can be done numerically.
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there may not be any data arbitrarily close to the boundary.4 And, without
point identification, any approach to inference that relies on asymptotics with
specific rates of convergence for τ̂c as discussed in the previous lecture clearly
is not applicable.

In contrast, in our case, the fact that Zi may have discrete support
changes nothing. The confidence intervals (6.13) have coverage conditionally
on {Z1, ..., Zn}, and the empirical support {Z1, ..., Zn} of the running vari-
able is always discrete, so the question of whether the Zi have a density in the
population is irrelevant when working with (6.13). The relevance of a discrete
Zi only comes up asymptotically: If Zi has a continuous density, then the con-
fidence intervals (6.13) will shrink asymptotically at the optimal rate discussed
in last lecture, namely n−2/5. Conversely, if the Zi has discrete support, the
length of the confidence intervals will not go to 0; rather, we end up in a partial
identification problem.

Example: Multivariate running variable So far, we have focused on re-
gression discontinuity designs where treatment is determined by a single thresh-
old: Wi = 1 ({Zi ≥ c}) for some Zi ∈ R. However, the ideas discussed here
apply in considerably more generality: One can let the running variable Zi ∈ Rk

be multivariate, and the treatment region be generic, i.e., Wi = 1 ({Zi ∈ A})
for some set A ⊂ Rk. For example, in an educational setting, Zi ∈ R3 could
measure test results in 3 separate subjects, and A could denote the set of over-
all “passing” results given by, e.g., 2 out of 3 tests clearing a pass/fail cutoff.
Or in a geographic regression discontinuity design, Zi ∈ R2 could denote the
location of one’s household and A the boundary of some administrative region
that deployed a specific policy.

The crux of a regression discontinuity design is that we seek to identify
causal effects via sharp changes to an existing treatment assignment policy; and
we can then apply the same reasoning as before to identify treatment effects
along the boundary of the treatment region A. That being said, while the
extension of regression discontinuity designs to general multivariate settings
is conceptually straight-forward, the methodological extensions require some
more care. In particular, it is not always clear what the best way is to generalize
local linear regression to a geographic regression discontinuity design.5

4When Zi has a discrete distribution, the definition of τc via (6.1) needs careful
interpretation—as we need to be able to talk about µ(w)(z) at values of z that do not
belong to the support of the running variable. All guarantees provided here hold if we define
µ(w)(z) outside of the support of z to be an arbitrary function that interpolates between the
support points of z while satisfying |µ′′(w)(z)| ≤ B.

5When working with geographic regression discontinuities, some authors have tried to
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The minimax linear approach, however, extends direction to a multivariate
setting. When working with a multivariate running variable, one can essentially
write down (6.10) verbatim, and interpret the resulting weighted estimator
similarly to before. The resulting optimization problem is harder (one needs
to optimize over multivariate non-parametric functions with bounded curva-
ture), but nothing changes conceptually. The above figures above illustrate
two weighting functions derived using this approach—once in a geographic set-
ting, and once in an educational setting (a student needed to pass two tests to
avoid a remedial program). Red points denote positive values of γi whereas blue
dots denote negative values of γi; the strength of the color denotes magnitude
of the weight.

Beyond homoskedaticity So far, we have focused on estimation and in-
ference in the case where the noise εi = Yi − µ(Wi)(Zi) was Gaussian with a
known constant variance parameter σ2. In practice, of course, neither of these
assumptions is likely to hold. The upshot is that the conditional Gaussianity
result (6.11) no longer holds exactly; rather, we need to invoke a central limit
theorem to argue that

τ̂c(γ)
∣∣ {Z1, ..., Zn} ≈ N

(
τ̂ ∗c (γ) ,

n∑
i=1

γ2
i Var

[
Yi
∣∣Zi, Wi

])
. (6.14)

However, provided we’re willing to make assumptions under which the Gaussian
approximation above is valid, we can still proceed as above to get confidence

collapse the problem by only considering a univariate running variable that codes distance
to the boundary of A. Such an approach, however, is sub-optimal from a statistical point of
view as it throws away relevant information.
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intervals. Meanwhile, we can (conservatively) estimate the conditional variance
in (6.14) via

V̂n =
n∑
i=1

γ2
i

(
Yi − µ̂(Wi)(Zi)

)2
, (6.15)

where, e.g., µ̂(Wi)(Zi) is derived via local linear regression; note that this bound
is conservative if µ̂(Wi)(Zi) is misspecified, since then the misspecifiaction error
will inflate the residuals.

That being said, one should emphasize that the estimator (6.8) is only
minimax under homoskedastic errors with variance σ2; if we really wanted
to be minimax under heteroskedasticity then we’d need to use per-parameter
variances σ2

i in (6.10). Thus, one could argue that an analyst who uses the
estimator (6.8) but builds confidence intervals via (6.14) and (6.15) is using an
oversimplified homoskedastic model to motivate a good estimator, but then out
of caution and rigor uses confidence intervals that allow for heteroskedasticity
when building confidence intervals. This is generally a good idea, and in fact
something that’s quite common in practice (from a certain perspective, anyone
who runs OLS for point estimation but then gets confidence intervals via the
bootstrap is doing the same thing); however, it’s important to be aware that
one is making this choice.

Bibliographic notes The study of minimax linear estimators in problems of
this type goes back to Donoho [1994], who showed to following result. Suppose
that we want to estimate θ using a Gaussian random vector Y ,

Y = Kv + ε, ε ∼ N (0, σI) , θ = a · v, (6.16)

where the matrix K and vector a are know, but v is unknown. Suppose more-
over that v is known to belong to a convex set V . Then, there exists a linear
estimator, i.e., an estimator of the form θ̂ =

∑n
i=1 γiYi whose risk is within

a factor 1.25 of the minimax risk among all estimators (including non-linear
ones), and the weights γi for the minimax linear estimator can be derived via
convex optimization. From this perspective, the minimax RDD estimator (6.8)
is a special case of the estimators studied by Donoho [1994],6 and in fact his
results imply that this estimator is nearly minimax among all estimators (not
just linear ones).

In a first application of this principle to regression discontinuity designs,
Armstrong and Kolesár [2018] study minimax linear estimation over a class

6Note that the class of functions with second derivative bounded by B is convex.
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of function proposed by Sacks and Ylvisaker [1978] for which Taylor approxi-
mations around the cutoff c are nearly sharp. Our presentation today follows
Imbens and Wager [2019], who consider numerical convex optimization for flex-
ible inference in generic regression discontinuity designs. Finally, Kolesár and
Rothe [2018] advocate worst-case bias measures of the form (6.6) as a way of
avoiding asymptotics and providing credible confidence intervals in regression
discontinuity designs with a discrete running variable.

When the running variable Zi has a discrete distribution, τc is not point
identified and so the problem of estimating this regression discontinuity prob-
lem is formally a partially identified problem. Although we do not pursue this
perspective further here, we note that the bias-aware intervals (6.13) corre-
spond exactly to a type of confidence interval for partially identified parameters
proposed in Imbens and Manski [2004].
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Lecture 7
Balancing Estimators

As emphasized in our discussion so far, the propensity score plays a key role in
the estimation of average treatment effect estimation under unconfoundedness;
we then considered inverse-propensity weighting (IPW) and augmented IPW
(AIPW) as practical methods that leverage propensity score estimates. How-
ever, we did not discuss in detail how to estimate the propensity score such as
to get the best possible statistical guarantees.

Our goal today is to revisit our discussion of IPW and AIPW estimators
for the average treatment effect with an eye towards careful propensity esti-
mation. In doing so, we’ll build on insights from our discussion of regression
discontinuity designs and use convex optimization to directly derive propensity
weights with good finite sample properties.

Review: Why IPW works We’re working under the potential outcomes
model with IID samples {Xi, Yi, Wi} ∈ X ×R×{0, 1}, such that Yi = Yi(Wi)
for a pair of potential outcomes {Yi(0), Yi(1)}. Our goal is to estimate τ =
µ(1)− µ(0), where µ(w) = E [Yi(w)]. As usual, we assume

Unconfoundedness: {Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi (7.1)

Overlap: 0 < η ≤ e(Xi) ≤ 1− η < 1, (7.2)

where e(x) = P
[
Wi = 1

∣∣Xi = x
]

and η is some positive constant. Here, un-
confoundedness is used to argue that controlling for Xi is sufficient for identi-
fying the average treatment effect. Overlap implies that controlling for Xi is
statistically practical.

For simplicity, today, we’ll focus on estimating µ(1), since this allows for
more compact notation while capturing the core conceptual issues. The inverse-
propensity weighted estimator of µ(1) is

µ̂IPW (1) =
1

n

n∑
i=1

WiYi
ê(Xi)

, (7.3)
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where ê(x) is an estimate of the propensity score e(x). To prove consistency of
IPW, we essentially argued as follows:

1. Population balance. Under unconfoundedness, µ(1) = E [WiYi/e(Xi)].

2. Oracle estimator. An oracle version µ̂∗IPW (1) of (7.3) with true propen-
sity scores is unbiased; moreover, under overlap, it has finite variance.

3. Feasible approximation. Assume that ê(Xi) also satisfies the overlap
condition (7.2). Then, by Cauchy-Schwartz,

|µ̂IPW (1)− µ̂∗IPW (1)|

≤

√√√√ 1

n

n∑
i=1

(
1

ê(Xi)
− 1

e(Xi)

)2

√√√√ 1

n

n∑
i=1

(WiYi)
2

≤ 1

η2

√√√√ 1

n

n∑
i=1

(ê(Xi)− e(Xi))
2

√√√√ 1

n

n∑
i=1

(WiYi)
2.

(7.4)

And, while this proof sketch obviously implies consistency, it also is not particu-
larly sharp statistically. In particular, the Cauchy-Schwartz bound (7.4) clearly
does not use any structure of the propensity estimates ê(Xi), and makes rather
crude use of the overlap assumption (7.4). In Lecture 3, we showed that aug-
mented IPW could considerably improve the performance of IPW by using a
regression adjustment and cross-fitting; however, the way we dealt with overlap
still essentially amounts to the argument (7.4).1

Population vs. sample balance In order to understand how to design
better variants of propensity score weighting, it is helpful to start by writing

1With AIPW, we found that whenever the nuisance component estimates converged fast
enough, the estimation error in ê(x) had a vanishing effect on the 1/

√
n-scale and so any

constants in (7.4) vanished into lower-order terms (and we did not discuss them much).
However, if we want to get good behavior in regimes where errors in ê(x) have a meaningful
effect on the error of our average treatment effect (either because of finite sample effects or
due to weaker guarantees on the rates of convergence of nuisance estimates made in Lecture
3), using a sharper argument than (7.4) is valuable.
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the conditional response function µ(w)(x) in terms of a basis expansion, i.e.,2

µ(w)(x) =
∞∑
j=1

βj(w)ψj(x) (7.5)

for some pre-defined set of basis function ψj(·). Under reasonable regularity
conditions, we then have

µ(w) =
∞∑
j=1

βj(w)E [ψj(Xi)] . (7.6)

Given this notation, we can write down a revealing proof demonstrating that
IPW is valid over the population. Under uncondoundedness, Yi = µ(Wi)(Xi)+εi
with E

[
εi
∣∣Xi, Wi

]
= 0, and so (again under regularity conditions)

E
[
WiYi
e(Xi)

]
= E

[
Wi

e(Xi)

∞∑
j=1

βj(w)ψj(Xi)

]

=
∞∑
j=1

βj(w)E
[
Wiψj(Xi)

e(Xi)

]
=
∞∑
j=1

βj(w)E [ψj(Xi)] = µ(1)

(7.7)

In other words, IPW works because weighting by 1/e(Xi) achieves population
balance E [Wiψj(Xi) / e(Xi)] = E [ψj(Xi)] for all basis functions j = 1, 2, ....

This insight provides helpful guidance in how to think about good inverse-
propensity weights. If the key property of the true propensity weights is that
they achieve exact balance on the population, then a reasonable target to strive
for with estimated propensity weights is that they achieve approximate balance
in the sample:

1

n

n∑
i=1

Wiψj(Xi)

ê(Xi)
≈ 1

n

n∑
i=1

ψj(Xi), for all j = 1, 2, . . . (7.8)

The relevant notion of “≈” is above depends on the setting; and we’ll discuss
several examples below. Overall, though, one should expect analyses of inverse-
propensity weighting that go via the fundamental property (7.8) than the more
indirect oracle approximation (7.4) to achieve sharper bounds.3

2The existence of such basis representations is well known in many contexts; for example,
functions of bounded variation on a compact interval can be represented in terms of a Fourier
series. Today, we’ll not review when such representations are available; instead, we’ll just
work under the assumption that an appropriate series representation is given.

3In this context, it’s interesting to recall our “aggregating” estimator from Lecture 2
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Balancing loss functions for propensity estimation As a first example
of learning propensity scores than emphasize finite-sample balance (7.8), con-
sider a simple parametric specification: We assume a linear outcome model
µ(w)(x) = x · β(w) and a logistic propensity model e(x) = 1/(1 + e−x·θ). Be-
cause we have a linear outcome model, achieving sample balance just involves
balancing the covariates Xi.

If we ask for exact balance (which is reasonable if we’re in low dimensions)
and want to use propensity scores given by a logistic model, then (7.8) becomes

1

n

n∑
i=1

(
1 + e−Xiθ̂

)
WiXi =

1

n

n∑
i=1

Xi, (7.9)

where the above equality is of two vectors in Rp. The above condition may
seem like a difficult non-linear equation; however, one can check that (7.9) is
nothing but the KKT-condition for the following convex problem,4

θ̂ = argminθ

{
1

n

n∑
i=1

`θ (Xi, Yi, Wi)

}
,

`θ (Xi, Yi, Wi) = Wie
−Xiθ + (1−Wi)Xiθ,

(7.10)

and so has a unique solution that can be derived by Newton descent on (7.10).
The simple observation suggests that if we believe in a linear-logistic specifi-

cation and want to use an IPW estimator, then we should learn the propensity
model by minimizing the “balancing” loss function `θ (Xi, Yi, Wi) rather than
by the usual method (i.e., logistic regression, meaning maximum likelihood in
the logistic model). Maximum likelihood may be asymptotically optimal from
the perspective of estimating the logistic regression parameters θ; but that’s
not what matters for the purpose of IPW estimation. What matters is that we
fit a propensity model that satisfies (7.8), and for that purpose the loss func-
tion `θ (Xi, Yi, Wi) is better. In the homework, we’ll study IPW with (7.10)
further, and show that in the linear-logistic model this estimator performs well
in terms of both robustness and asymptotic variance.

that applied when Xi had discrete support. Here, one obtains a representation (7.5) where
ψj(x) simply checks whether x is the j-th support point. Then, our aggregating estimator
of the ATE corresponds to IPW with estimated propensity scores ê(x) that account for the
empirical treatment fraction for each value of x, and achieve exact sample balance (7.8).

4One interesting aspect of using (7.10) is that it requires us to learn different propensity
models for getting IPW estimates of µ(0) and µ(1); and thus the resulting IPW estimator
of the average treatment effect τ will use propensity estimates from two different propensity
models. This may seem surprising, but is unavoidable if we want to achieve exact balance
(since with have 2p balance conditions for estimating both µ(0) and µ(1), but the propensity
model has only p free parameters θ).
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ATE estimation with high-dimensional confounders As a second ap-
plication of this balancing principle, consider the problem of ATE estimation
in the high-dimensional linear model. We assume that unconfoundedness (7.1)
holds, but only after controlling for covariates Xi ∈ Rp where p may be much
larger than n (e.g., Xi may represent a patient’s genome); moreover, as non-
parametric analysis in high dimensions is generally intractable, we assume that
µ(w)(x) = x · β(w) for some β(w) ∈ Rp. In high dimensions, getting propensity
score estimates that are stable enough for the argument (7.4) to go through
is difficult, so the value of directly targeting balance as in (7.8) is particularly
valuable.

Since we are in high dimensions, finding propensity weights that achieve
exact balance as in (7.9) is not possible; the best we can hope for is approximate
balance. With this in mind, we note that by Hölder’s inequality,

1

n

n∑
i=1

Wiµ(1)(Xi)

ê(Xi)
− 1

n

n∑
i=1

µ(1)(Xi)

=

(
1

n

n∑
i=1

WiXi

ê(Xi)
− 1

n

n∑
i=1

Xi

)
β(1)

≤

∥∥∥∥∥ 1

n

n∑
i=1

WiXi

ê(Xi)
− 1

n

n∑
i=1

Xi

∥∥∥∥∥
∞

‖β(1)‖1

(7.11)

This decomposition suggests a practical meaning for the “≈” term in (7.8),
namely that good inverse-propensity weights should achieve good worst-case
imbalance across all features. But, although this decomposition gives some
helpful insight, it is not easy to act on directly. In particular:

1. It is not obvious how to parametrize ê(Xi) in order to achieve good sup-
norm approximate balance as in (7.11).

2. The above bound is only meaningful with bounds on ‖β(1)‖1, but such
bounds are not typically available (in high-dimensional statistics, it’s
common to assume that β(1) should be sparse, but that still doesn’t
contain its 1-norm).

It turns out, however, that by combining ideas already covered in this class—
namely optimizing for balance and augmented weighting estimators—with
some basic lasso theory we can turn the insight (7.11) into a practical approach
to high-dimensional inference about the ATE.

First, we note that the decomposition (7.11) makes no reference to the spe-
cific form of the inverse-propensity weights, so we can avoid the whole problem
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of parametrization by optimizing for balance directly: For some well chosen
ζ > 0, let

γ̂ = argminγ

 1

n2
‖γ‖2

2 + ζ

∥∥∥∥∥ 1

n

n∑
i=1

(γiWi − 1)Xi

∥∥∥∥∥
2

∞

: γi ≥ 1

 , (7.12)

and then formally use “1/ê(Xi) = γ̂i” for inverse-propensity weighting. As-
suming overlap (7.2), one can use sub-Gaussian concentration inequalities to
check that the true inverse-propensity weights e(Xi) satisfy

1

n2

∥∥∥∥ 1

e(Xi)

∥∥∥∥2

2

≤ η−2

n
,

∥∥∥∥∥ 1

n

n∑
i=1

(γiWi − 1)Xi

∥∥∥∥∥
2

∞

= OP
(
η−2 log(p)

n

)
. (7.13)

Thus, because (7.12) optimizes directly for the 2-norm of the γ as well as
imbalance, we should expect its solution “1/ê(Xi) = γ̂i” to also satisfy the
scaling bounds (7.13) for a good choice of the tuning parameter ζ, even if the
implied propensity estimates ê(Xi) may not be particularly good estimates of
e(Xi).

Second, we can fix the problematic dependence on ‖β(1)‖1 by augmenting
our weighted estimator with a high-dimensional regression adjustment. Specif-
ically, consider “augmented balancing” estimators of the form

µ̂AB(1) =
1

n

n∑
i=1

µ̂(1)(Xi) + γ̂iWi

(
Yi − µ̂(1)(Xi)

)
, µ̂(1)(Xi) = Xiβ̂(1). (7.14)

Then, emulating the argument in (7.11), we can check that

µ̂AB(1) =
1

n

n∑
i=1

Xiβ(1)︸ ︷︷ ︸
sample avg. of µ(1)(Xi)

+
1

n

n∑
i=1

γ̂iWi (Yi −Xiβ(1))︸ ︷︷ ︸
mean-zero noise term

+

(
1

n
(1− γ̂iWi)Xi

)(
β̂(1)− β(1)

)
︸ ︷︷ ︸

bias≤‖ 1
n

(1−γ̂iWi)Xi‖∞‖β̂(1)−β(1)‖
1

.

(7.15)

Thus, much like with AIPW, we find that in augmented balancing the weights
γ̂i only need to correct for the regression error β̂(1)− β(1) rather than the full
signal β(1).

The reason the decomposition (7.15) matters is that, in high dimensional
regression, there are many situations where we know how to get strong bounds
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on ||β̂(1)− β(1)||1. In particular, it is well-known that given sparsity ‖β(1)‖0 ≤
k and under restricted eigenvalue conditions, the lasso can achieve 1-norm error
[e.g., Negahban, Ravikumar, Wainwright, and Yu, 2012]

∥∥∥β̂(1)− β(1)
∥∥∥

1
= OP

(
k

√
log(p)

n

)
. (7.16)

We are now ready to put all the pieces together. Recall that we are in a
high-dimensional linear setting as described above; and furthermore assume
that conditions on Xi are satisfied so that (7.16) holds, and that β(1) is k-
sparse with k �

√
n/ log(p). This sparsity condition is standard when proving

resulting about high-dimensional inference [Javanmard and Montanari, 2014,
Zhang and Zhang, 2014]. Then:

1. Start by running a lasso on the treated units. Given our sparsity condition
k �

√
n/ log(p) and (7.16), we find that the 1-norm error of β̂(1) decays

as oP (1/
√

log(p)).

2. Fit weights γ̂ as in (7.12). By the argument (7.13), we expect the infinity-
norm imbalance to be of order OP (

√
log(p)/n).

3. Estimate µAB(1) via (7.14). Plugging our two bounds from above into
(7.15), we find that

µ̂AB(1)− 1

n

n∑
i=1

Xiβ(1)︸ ︷︷ ︸
sample avg. of µ(1)(Xi)

=
1

n

n∑
i=1

γ̂iWi (Yi −Xiβ(1))︸ ︷︷ ︸
noise term

+oP

(
1√
n

)
,

(7.17)
where the noise term is of scale OP (1/

√
n).

Finally, we can use (7.17) for inference about the sample average of µ(1)(Xi)
by verifying the following self-normalized central limit theorem:∑n

i=1 γ̂iWi (Yi −Xiβ(1))√∑n
i=1 γ̂

2
iW

2
i (Yi −Xiβ(1))2

⇒ N (0, 1) . (7.18)

Wrapping up, we note that the argument used here has been a little bit heuristic
(but it can be made rigorous), and the conclusion of (7.18) may have been
slightly weaker than expected, as we only got confidence intervals for the sample
average of µ(1)(Xi), namely µ̄(1) := n−1

∑n
i=1Xiβ(1) rather than µ(1) itself.
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Getting results about µ(1) would require showing convergence of the γ̂i, which
we have avoided doing here.

That being said, we emphasize that the simple principle of balancing (7.8)
enabled us to design a powerful approach to average treatment effect estima-
tion in high dimensions using a mix of elementary ideas and well known facts
about the lasso. Moreover, the high-level sparsity conditions required by our
argument are in line with the usual conditions required for high-dimensional
inference [Javanmard and Montanari, 2014, Zhang and Zhang, 2014].5 This
highlights the promise of balancing as a general principle for designing good
average treatment effect estimators in new settings.

Closing thoughts Today, we talking about “balancing” as a fundamental
explanation for why inverse-propensity weighting works, and as a principle for
designing inverse-propensity weights that are better than just plugging in esti-
mates ê(Xi) obtained from off-the-shelf predictive methods. We also surveyed
two applications of this idea: The design of covariate-balancing loss functions
for improved estimation of parametric propensity models, and approximate
balance as a guiding principle for high-dimensional ATE estimation.

What we did not do today is to consider balancing estimators as an alter-
native to AIPW in general non-parametric settings as considered in Lecture 3.
Such results are available, but go beyond the scope of this class. As one exam-
ple, Hirshberg and Wager [2021] consider augmented balancing estimators, but
with weights chosen to balance a non-parametric class of functions. They find
that, in considerable generality, the resulting estimator is semiparametrically
efficient, and that the implied propensity scores that arise from solving for bal-
ance are universally consistent for the true propensity scores. Futhermore, they
show that the conditions required for efficiency are in general competitive (al-
though non-overlapping) with those required for AIPW, and that balancing—as
expected—helps a great deal with poor overlap. Instead of requiring a strict
overlap conditions as in (7.2), augmented balancing estimators work under the
minimal condition required for the semiparametric efficient variance to exist,
i.e., E [1/e(Xi)] <∞ and E [1/(1− e(Xi))] <∞.

More broadly, similar balancing phenomena play a key role in other refined
average treatment effect estimators that attain efficiency under more general
conditions than we obtained with our generic plug-in and cross-fit argument
for AIPW in Lecture 3 [Newey and Robins, 2018].

5In fact, digging deeper, one can see that that the augmented balancing estimator dis-
cussed here and the debiased lasso of Javanmard and Montanari [2014] are two instantiations
of exactly the same idea; see Section 3.1 of Athey, Imbens, and Wager [2018] for a further
discussion.
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Bibliographic notes The key role of covariate balance for average treat-
ment effect estimation under unconfoundedness has long been recognized, and
a standard operation procedure when working with any weighted or matching-
type estimators is to use balance as a goodness of fit check [Imbens and Rubin,
2015]. For example, after fitting a propensity model by logistic regression, one
could check that the induced propensity weights satisfy a sample balance con-
dition of the type (7.8) with reasonable accuracy. If the balance condition is
not satisfied, one could try fitting a different (better) propensity model.

The idea of using covariate balance as an idea to guide propensity estimation
(rather than simply as a post-hoc sanity check) is more recent. Early proposals
from different communities include Graham, de Xavier Pinto, and Egel [2012]
Hainmueller [2012], Imai and Ratkovic [2014] and Zubizarreta [2015]. A uni-
fying perspective on these methods via covariate-balancing loss functions is
provided by Zhao [2019]. Meanwhile, Athey, Imbens, and Wager [2018] show
that augmented balancing estimators can be used for ATE estimation in high
dimensions, while Kallus [2020] considers a large class of non-parametric bal-
ancing estimators.

Finally, one should note that that the principles behind balanced estima-
tion apply much more broadly than simply to average treatment effect esti-
mation, and can in fact be used to estimate any linear functional with a well-
behaved Riesz representer, i.e., any functional θ that can be characterized as
θ = E [γ(Xi)Yi] in terms of a well-behaved Riesz representer γ(·).6 One exam-
ple of such a functional effect is the average effect of an infinitesimal nudge to
a continuous treatment (i.e., the average derivative of the conditional response
function with respect to the treatment variable). Chernozhukov, Escanciano,
Ichimura, Newey, and Robins [2022a] and Chernozhukov, Newey, and Singh
[2022b] use this idea to build a family of AIPW-like estimators for general
functionals, while Hirshberg and Wager [2021] consider efficiency properties of
balancing-type estimators in this setting.

6Note that, in the case of estimating µ(1), the Riesz representer is Wi/e(Xi)), and the
balance condition (7.7) is the type of condition typically used to define a Riesz representer.
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Lecture 8
Methods for Panel Data

In this class so far, we’ve mostly worked with independent and identically dis-
tributed data. In many settings, however, the data has more complex structure
that needs to be taken into account both for modeling and inference. Today,
we’ll focus on a specific type of structure that arises with panel (or longitudi-
nal) data: We have data for i = 1, ..., n units across t = 1, ..., T time periods,
and want to use this data to assess the effect of an intervention that affects
some units in some time periods.

A constant treatment effect model For now, we’ll focus on the following
simple sampling model. For all i = 1, . . . , n and t = 1, . . . , T , we observe
an outcome Yit ∈ R and a treatment assignment Wit ∈ {0, 1}. Furthermore,
we assume that the treatments and outcomes are associated via the following
constant effect model,

Yit = Yit(0) +Witτ, for all i = 1, . . . , n, t = 1, . . . , T, (8.1)

where Yit(0) is interpreted as the potential outcome we would have observed
for the i-th unit at time t had they not been treated, and τ is interpreted as a
constant treatment effect. We then seek to estimate τ .

The reason we work with this simple model is that it will allow us to quickly
survey a fairly broad set of approaches to estimation with panel data. However,
one should note that the simple model (8.1) has two major implications:

• There is no treatment heterogeneity, i.e., the treatment affects all units
the same way in all time periods, and

• There are no treatment dynamics, i.e., a unit’s outcome at time t is only
affected by the treatment they receive at time t.

The lack of heterogeneity is not a particularly realistic assumption, but may
still be a reasonable working assumption for a first attempt at a new setting. As
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we’ve found repeatedly so far, if we design an estimator that targets a constant
treatment effect parameter but then apply it to a setting with treatment het-
erogeneity, we’ll usually end up converging to a weighted1 treatment effect—as
will also be the case here.

The second implication, i.e., no dynamics, is more severe, and obviously
not applicable in many settings. For example, in healthcare, if a doctor gets
a patient to exercise more at time t, this will probably affect their health at
times t′ > t, and not just at time t. And there are no general guarantees that
methods that ignore dynamics recover anything reasonable in the presence
of dynamics. We’ll revisit this issue when we talk about dynamic treatment
policies and reinforcement learning a few weeks from now (at which time we’ll
properly account for it). Today, however, we’ll focus on the simplified setting
(8.1), if for no other reason than because it’s a setting that has traditionally
received a considerable amount of attention, is widely used in applied work,
and leads to some interesting statistical questions.

The two-way model The most classical way of instantiating (8.1) is by
specifying a two-way additive structure for Yit(0), such that2

Yit = αi + βt +Witτ + εit, E
[
ε
∣∣α, β, W ] = 0. (8.2)

In other words, we assume that each unit and each time period have a distinc-
tive offset (or fixed effect), and that any deviation from this two-way structure
is due to noise.

The two-way model (8.2) is very restrictive. However, in some simple situ-
ations, it leads to perfectly reasonable point estimates for τ . As a particularly
nice example, consider the case where we only have two time periods (T = 2),
and some units never get treated (Wi. = (0, 0)) while others start treatment
in the second period (Wi. = (0, 1)). Then, OLS in (8.2) has a closed-form
solution,

τ̂ =
1

|{i : Wi2 = 1}|
∑

{i:Wi2=1}

(Yi2 − Yi1)

− 1

|{i : Wi2 = 0}|
∑

{i:Wi2=0}

(Yi2 − Yi1) ,
(8.3)

1Note, however, that the weights may not all be positive; see de Chaisemartin and
D’Haultfoeuille [2018] for a further discussion.

2One thing that’s left implicit in the model below is that the treatment assignments
are strictly exogenous, and may not depend on history. In other words, the assumption
E
[
ε
∣∣α, β, W ] = 0 is like a stronger alternative to unconfoundedness that’s embedded in a

model.
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i.e., we compare after-minus-before differences in outcomes for exposed vs. un-
exposed units. This “difference-in-differences” estimator is one that we might
have derived directly from first principles, without going through (8.2), and
clearly measures a relevant causal effect if exposure Wi2 is randomly assigned.

Similar difference-in-differences arguments apply naturally when we only
have two units, one of which never gets treated, and the other of which starts
treatment at some time 1 < t′ < T . This structure appears in one of the
early landmark studies using two-way modeling by Card and Krueger [1994],
who compared employment outcomes in New Jersey, which raised its minimum
wage, to those in Pennsylvania, which didn’t.

In contrast, two-way models of the form (8.2) can be harder to justify in
situations where both n and T are large and Wit has a generic distribution. By
analogy to the case with only two time periods, the estimator resulting from
running OLS is this two-way layout is still sometimes referred to as difference-
in-differences; however, it no longer has a simple closed form solution.

One virtue of (8.2) is that it has strong observable implications. Among
non-treated (and similarly treated) units, all trends should be parallel—because
units only differ by their initial offset αi. If parallel trends are not seen to hold
in the data, the two-way model should not be used.

Finally, whenever using the two-way model for inference, one should model
the noise term εit as dependent within rows. As a simplifying assumption,
one might take the noise across rows to be IID with some generic covariance
Var [εi.] = Σ; however, as emphasized by Bertrand, Duflo, and Mullainathan
[2004], taking each cell of εit to be independent is hard to justify conceptually
and leads to suspect conclusions in practice. As a sanity check, in the T = 2
case (8.3) where the two-way model is on its strongest footing, the natural
variance estimator takes variances of the differences,

V̂ar [τ̂ ] =
V̂ar

[
Yi2 − Yi1

∣∣Wi2 = 1
]

|{i : Wi2 = 1}|
+

V̂ar
[
Yi2 − Yi1

∣∣Wi2 = 0
]

|{i : Wi2 = 0}|
, (8.4)

which in fact corresponds to inference that’s robust to εit being correlated
within rows. More generally, one could consider inference for (8.2) via a boos-
trap or jackknife that samples rows of the panel (as opposed to individual
cells).

Interactive panel models A natural generalization of (8.2) is to allow units
to have richer “types” that aren’t fully captured by a single offset parameter
αi, and instead to write

Yit = Ai.B
′
t. +Witτ + εit, E

[
ε
∣∣A, B, W ] = 0, A ∈ Rn×k, B ∈ RT×k, (8.5)
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for some rank parameter k. Equivalently, one has Yit = Lit + Witτ + εit for
some rank-k matrix L. The specification (8.5) is considerably more general
than (8.2), and in particular no longer forces parallel trends (for example,
some units may have high baselines but flat trends, whereas others may have
low baselines but rapidly rising trends).

One approach to working with the model (8.5) is synthetic controls [Abadie,
Diamond, and Hainmueller, 2010] and synthetic difference-in-differences
[Arkhangelsky, Athey, Hirshberg, Imbens, and Wager, 2021]. Suppose that
only units in the bottom-right corner of the panel are treated, i.e., Wit =
1 ({i > n0, and t > T0}) for some 1 ≤ n0 < n and 1 ≤ T0 < T . One common
example of this structure arises when we are evaluating the effect of some new
policy; in this case, we have one unit (i = n) that switches from control to
treatment at time t = T0 + 1, while all other units receive control throughout.

The idea of synthetic controls is to artificially re-weight the unexposed
units (i.e., with Wi. = 0) so that their average trend matches the (unweighted)
average trend up to time t0,3

n0∑
i=1

γiYit ≈ α +
1

n− n0

n∑
i=n0+1

Yit, t = 1, ..., T0, (8.6)

where α is an offset parameter analogous to a fixed effect. For example, one
concrete choice of γi is to optimize squared-errors over the simplex:

γ = argminγ′, α

{∥∥∥∥∥
n0∑
i=1

γ′iYi(1:T0) −
1

n− n0

n∑
i=n0+1

Yi(1:T0) − α

∥∥∥∥∥
2

2

:

n0∑
i=1

γ′i = 1, γ′i ≥ 0

}
.

(8.7)

The motivation behind this approach is that, if the weights γ succeed in creating
parallel trends, then they should also be able to balance out the latent factors
Ai.. The upshot is that we can then estimate τ by weighted two-way regression,

τ̂ = argminτ ′, α′, β′

{∑
i, t

γi (Yit − αi − βt −Witτ)2

}
, (8.8)

3The classical approach to synthetic controls following Abadie, Diamond, and Hainmueller
[2010] does not allow for an offset, and instead seeks to match trajectories exactly. However,
if we follow this weighting with a difference-in-differences regression as we do here, then
there’s we can allow for an offset.
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where we used the short-hand γi = 1/(n−n0) for i > n0. Analogously to (8.3),
this has a closed-form solution

τ̂ =
1

n− n0

n∑
i=n0+1

(
1

T − T0

T∑
t=T0+1

Yit −
1

T0

T0∑
t=1

Yit

)

−
n0∑
i=1

γi

(
1

T − T0

T∑
t=T0+1

Yit −
1

T0

T0∑
t=1

Yit

)
.

(8.9)

Moreover, one can check that, under appropriate large-panel asymptotic
(n0, n, T → ∞) this estimator is consistent and allows for asymptotically
normal inference about τ in the low-rank specification (8.5); see Arkhangelsky
et al. [2021] for details.

As an example of this idea consider the above figure, the goal of which
is to illustrate the effect of a cigarette tax enacted in California in 1989 on
smoking. We seek to identify this effect by comparing the prevalence of smoking
in California to that of other states that did not enact a similar tax. The left
panel compares the trend in California to the average trend in other states.
Clearly these trends are not parallel, and so the model (8.2) is misspecified.
The right panel, in contrast, shows how re-weighting the unexposed states
using (8.7) lets us artificially create parallel trends; we can then estimate τ via
(8.8). Note that, here, we also re-weighted the time periods t = 1, ..., T0 via
an analogue of (8.7) and used those weights in the regression (8.8); this is in
general a good thing to do.

One should also note that synthetic controls are far from the only method
that has been proposed for working with interactive fixed effects. Bonhomme
and Manresa [2015] consider clustering the rows of the matrix Y via k-means
and then fitting time-varying baseline models separately for each cluster, while
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Athey, Bayati, Doudchenko, Imbens, and Khosravi [2017] propose estimating
the low-rank baseline model directly via nuclear norm minimization. Finally,
Bai [2009] studies asymptotics of a least-squares fit to (8.5) under specific
assumptions on the factor matrices A and B. At the moment, however, flexible
and general approaches for building uniformly valid confidence intervals for τ
in the model (8.5) appear to be elusive.4

Identification via exchangeability Finally, a third approach to formaliz-
ing (8.1) is via “design-based” assumptions, whereby rows of the treatment
assignment matrix Wi. are taken to be independent of baseline potential out-
comes Yi. conditionally on some observable event. One simple assumption of
this type is

Yi.(0) ⊥⊥ Wi.

∣∣Si, Si =
T∑
t=1

Wit, (8.10)

i.e., that the distribution of treatment assignment for a unit is independent of
their potential outcomes conditionally on the total number of time periods in
which the unit receives treatment. This kind of assumption could be reasonable
in, e.g., a healthcare application where Yit corresponds to a health outcome
and Wit represents receipt of preventive medical care—and we’re worried by
confounding due to unobserved health-seeking behavior (e.g., people who make
sure to see their doctor regularly also take better care of themselves otherwise).

As noted by Arkhangelsky and Imbens [2019], one implication of (8.10) is
that it enables unbiased estimation of τ via a wide variety of linear estimators,
i.e., estimators of the form

τ̂ =
∑
i, t

γitYit (8.11)

for some γ-matrix that only depends on the treatment assignment Wit. As a
first step towards understanding good choices of γ, note that given (8.10) the
rows of Yit(0) are exchangeable conditionally on Si, and so

E
[
τ̂
∣∣W, γ] =

∑
i, t

γitE
[
Yit(0)

∣∣Si]+ τ
∑
i, t

γitWit. (8.12)

4In building confidence intervals, the approach of Arkhangelsky et al. [2021] heav-
ily uses the fact that the treatment assignment region looks like a block Wit =
1 ({i > n0 and t > T0}), while the approach of Bai [2009] relies on strong-signal asymptotics
that enable factor analysis to accurately recover A and B. Methods for inference on W that
require special structure on neither W nor A and B would be of considerable interest.
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Thus, the weighted estimator (8.11) is unbiased whenever
∑

i, t γitWit = 1, and∑
{i:Si=s}

γit = 0 for all t = 1, . . . , and s ∈ S, (8.13)

where S denotes the support of Si. Then, one could try to pick γ by minimizing
variance subject to these unbiasedness constraints,

γ = argminγ′

∑
i, t

γ2
it :
∑
i, t

γitWit = 1,
∑
{i:Si=s}

γit = 0 for all s, t

 , (8.14)

analogously to what we discussed with regression discontinuity designs in Lec-
ture 6. This estimator will be unbiased whenever (8.10) holds and the opti-
mization problem (8.14) is feasible—which it in general will be provided that
Wit has non-trivial variation conditionally on Si (i.e., the dataset must exhibit
several different treatment assignment patterns Wi. with the same Si).

Arkhangelsky and Imbens [2019] go further yet, and note that weighted
estimators of the form (8.11) are also unbiased under the two-way model (8.2)
provided the following constraints hold,∑

t

γit = 0 for all i = 1, ..., n,
∑
i

γit = 0 for all t = 1, ..., T, (8.15)

along with
∑

i, t γitWit = 1. One can check unbiasedness by noting that the
above equality constraints exactly cancel out the fixed effects αi and βt. Then,
based on this observation, they propose a doubly robust estimator

γ = argminγ′
∑
i, t

γ2
it

subject to:
∑
i, t

γitWit = 1,
∑
{i:Si=s}

γit = 0 for all s, t,

∑
t

γit = 0 for all i,
∑
i

γit = 0 for all t.

(8.16)

This estimator will be unbiased whenever (8.2) or (8.10) holds, provided the
above optimization is feasible.

Bibliographic notes The study of panel (or longitudinal) data is a huge
topic whose surface we’ve only scratched today. The list of topics we haven’t
covered today is too long to even attempt an enumeration. Arellano [2003]
and Wooldridge [2010] present an overview of the area, and provide further
references. In particular, there is a large body of work that focuses on ideas
built around differencing (e.g., via generalizations of (8.3)) to identify causal
effects; however, a discussion of such methods is beyond the scope of this class.
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Lecture 9
Instrumental Variables Regression

Unconfoundedness is a powerful assumption, and plays a central role in many
widely used approaches to identifying and estimating treatment effects in ob-
servational studies. In some applications, however, unconfoundedness is simply
not plausible. For example, when studying the effect of prices on demand, it
is unrealistic to assume that potential outcomes of demand (i.e., what demand
would have been at given prices) is independent of what prices actually were.
Instead, it’s much more plausible to assume that prices and demand both re-
spond to each other until a supply-demand equilibrium is reached. Today we’ll
introduce instrumental variables regression, which is a popular approach to
measuring the effects of endogenous (i.e., not unconfounded) treatments.

A structural model In order to understand the principles behind instru-
mental variables regression, it is easiest to start with a simple constant treat-
ment effects model. In the next lecture, we’ll consider the behavior of in-
strumental variables methods in a general non-parametric setting with causal
effects defined in terms of potential outcomes.

To this end, suppose we have outcome-treatment pairs (Yi, Wi) satisfying
a constant treatment effects model, such that

Yi(w) = Yi(0) + wτ, Yi = Yi(Wi). (9.1)

In our discussion so far, the next thing we’ve always done is to assume un-
confoundedness, i.e., {Yi(w)} ⊥⊥ Wi, which under model (9.1) reduces to
Yi(0) ⊥⊥ Wi. We can then re-write (9.1) as

Yi = α +Wiτ + εi, (9.2)

where α = E [Yi(0)], εi = Yi(0) − E [Yi(0)], and E
[
εi
∣∣Wi

]
= 0, and can

consistently estimate τ by running OLS of Yi on Wi.
Today, however, we’re not going to assume unconfoundedness, and instead

allow for a setting where Yi(0) 6⊥⊥ Wi. In this case, (9.2) still holds; however,
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E
[
εi
∣∣Wi

]
6= 0. In other words, (9.2) encodes a structural link between Yi and

Wi (really, it’s just a way of writing (9.1) while hiding the potential outcomes),
but it no longer captures a conditional expectation that can be analyzed using
OLS. In particular, if we try estimating τ̂OLS by regressing Yi on Wi, then in
large samples we’ll converge to

τOLS =
Cov [Yi, Wi]

Var [Wi]
=

Cov [τWi + εi, Wi]

Var [Wi]

= τ +
Cov [εi, Wi]

Var [Wi]
6= τ.

(9.3)

Note that, in the social sciences, it is quite common to write down linear
relations of the form (9.2) that are intended to describe the structure of a
system, but are not to be taken as a short-hand for linear regression. One the
other hand, this is largely the opposite of standard practice in applied statistics
where, when someone writes (9.2), they often don’t mean anything else than
that they intend to run a linear regression of Yi on Wi.

Identification using instrumental variables In order to identify τ in
model (9.2) without unconfoundedness, we need access to more data—and
finding an instrument is one way to move forward. Qualitatively, an instru-
ment is a variable Zi that nudges the treatment level Wi but is uncorrelated
with the noise term εi. For example, following an example of Angrist, Graddy,
and Imbens [2000], consider a demand estimation problem where Wi is the
price of fish and Yi is demand. Then, one idea of an instrument Zi could be
to use weather conditions: Stormy weather makes it harder to fish (and thus
raises prices), but presumably does not affect the demand curve.

Formally, we can add an instrument Zi ∈ R to the structural model (9.2)
as follows:

Yi = α +Wiτ + εi, εi ⊥⊥ Zi

Wi = Ziγ + ηi.
(9.4)

The fact that Zi is uncorrelated with εi (or, in other words, that Zi is exoge-
nous) then implies that

Cov [Yi, Zi] = Cov [τWi + εi, Zi] = τ Cov [Wi, Zi] , (9.5)

and so the treatment effect parameter τ is identified as

τ = Cov [Yi, Zi]
/

Cov [Wi, Zi]. (9.6)
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In other words, by bringing in an instrument, we’ve succeeded in identifying τ
in (9.2) without unconfoundedness. The relation (9.6) also suggests a simple
approach to estimating τ in terms of sample covariances,

τ̂ = Ĉov [Yi, Zi] / Ĉov [Wi, Zi] . (9.7)

In order for this identification strategy to work, the instrument Zi needs to
satisfy 3 key properties. First, Zi must be exogenous, which here means εi ⊥⊥ Zi;
second, Zi must be relevant, such that Cov [Wi, Zi] 6= 0; finally, Zi must satisfy
the exclusion restriction, meaning that any effect of Zi on Yi must be mediated
via Wi. Here, the exclusion restriction is baked in to the functional form (9.4).
In the next lecture, we’ll take a closer look at all these assumption in the
context of a non-parametric specification.

Optimal instruments Above, we assumed that we had access to a single
real-valued instrument Zi, which essentially automatically lead us to the identi-
fication result (9.6). In practice, however, we may have access to many (poten-
tially unstructured) candidate instruments Zi: For example, when studying the
effect of prices on demand for fish, we could consider storminess, year-to-year
variation in the abundance of fish stock, and availability of imported fish as
candidate instruments. This leads to the following more general specification,

Yi = τWi + εi, εi ⊥⊥ Zi, Yi, Wi ∈ R, Zi ∈ Z, (9.8)

where Z may be, e.g., a high-dimensional space.
Because Zi now takes values in a general space Z, the statement (9.6) no

longer makes sense. However, by the same argument as in (9.5), we see that
given any function w : Z → R that maps Zi to the real line, we have

τ =
Cov [Yi, w(Zi)]

Cov [Wi, w(Zi)]
(9.9)

provided the denominator is non-zero (i.e., provided w(Zi) in fact “nudges” the
treatment). In other words, if one has access to many valid instruments, the
analyst is free to compress them into any univariate instrument of their choice.

Now, given the result (9.9), it’s of course natural to ask what the optimal
transformation w(·) is. To do so, note that the estimator suggested by (9.9),

τ̂w =
Ĉov [Yi, w(Zi)]

Ĉov [Wi, w(Zi)]
=

1
n

∑n
i=1

(
Yi − Y

) (
w(Zi)− w(Z)

)
1
n

∑n
i=1

(
Wi −W

) (
w(Zi)− w(Z)

) (9.10)
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with Y = 1
n

∑n
i=1 Yi, etc., is the solution to an estimating equation:

1

n

n∑
i=1

(
w(Zi)− w(Z)

) (
Yi − Y − τ̂w

(
Wi −W

))
= 0. (9.11)

We can thus derive the asymptotic variance of τ̂w via general results about
estimating equations, and find that1

√
n (τ̂w − τ)⇒ N (0, Vw) , Vw =

Var [εi] Var [w(Zi)]

Cov [Wi, w(Zi)]
2 , (9.12)

where we note that Var [εi (w(Zi)− E [w(Zi)])] = Var [εi] Var [w(Zi)] by inde-
pendence of Zi and εi. Thus, the optimal instrument is the one that minimizes
the limiting variance, i.e.,

w∗(·) ∈ argmaxw′
{

Cov [Wi, w
′(Zi)]

2
/ Var [w′(Zi)]

}
. (9.13)

This is a well-known maximization problem, with solution (the objective in
(9.13) is invariant to the scale of w, so any multiple αw∗(z) is also a solution
to (9.13))

w∗(z) = E
[
Wi

∣∣Zi = z
]
. (9.14)

In other words, the optimal instrument w∗(Zi) is nothing but the best predic-
tion of Wi from Zi. Plugging this choice into (9.15), we get

√
n (τ̂w∗ − τ)⇒ N (0, Vw∗) , Vw∗ =

Var [εi]

Var
[
E
[
Wi

∣∣Zi]] . (9.15)

Thus, given a fixed noise level Var [εi], instrumental variable methods can
achieve better precision when Zi can explain more variation in Wi.

Cross-fitting and feasible estimation Given our above finding that the
optimal instrument is the solution to a non-parametric prediction problem,
w∗(z) = E

[
Wi

∣∣Zi = z
]
, one might be tempted to apply the following two-

stage strategy:

1. Fit a non-parametric first stage regression, resulting in estimate ŵ(·) of
E
[
Wi

∣∣Zi = z
]
, and then

1Recall that if θ solves E [ψi(θ)] = 0 for some random function ψi and we estimate

θ̂ via 1
n

∑n
i=1 ψi(θ̂) = 0, then the non-parametric delta-method tells us that, in general,√

n(θ̂ − θ)⇒ N (0, V ) with V = Var [ψi(θ)] /E [ψ′i(θ)]
2
.
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2. Run (9.10) with ŵ(·) as an instrument.

This approach almost works, but may suffer from striking overfitting bias when
the instrument is weak. The main problem is that, if ŵ(Zi) is fit on the training
data, then we no longer have ŵ(Zi) ⊥⊥ εi (because ŵ(Zi) depends on Wi, which
in turn is dependent on εi). This may seem like a subtle problem but, as
pointed out by Bound, Jaeger, and Baker [1995], this may be a huge problem in
practice; for example, they exhibit an example where the instrument Zi is pure
noise, yet the direct two-stage estimator ŵ(Zi) converges to a definite quantity
(namely the simple regression coefficient OLS(Yi ∼ Wi) which, because of lack
of unconfoundedness, cannot be interpreted as a causal quantity).

Thankfully, however, we can again use cross-fitting to solve this problem.
Specifically, we randomly split data into folds k = 1, ..., K and, for each k, fit
a regression ŵ(−k)(z) on all but the k-th fold. We then run

τ̂ = Ĉov
[
Yi, ŵ

(−k(i))(Zi)
] /

Ĉov
[
Wi, ŵ

(−k(i))(Zi)
]
, (9.16)

where k(i) picks out the data fold containing the i-th observation. Now, by
cross-fitting we directly see that ŵ(−k(i))(Zi) ⊥⊥ εi, and so this approach recovers
a valid estimate of τ . In particular, if the regressions ŵ(−k(i))(z) are consistent
for E

[
Wi

∣∣Zi = z
]

in mean-squared error, then the feasible estimator (9.16) is
first-order equivalent to (9.10) with an optimal instrument.

Non-parametric instrumental variables regression One major assump-
tion we’ve made today is that Yi = Wiτ+εi as in (9.8), i.e., that the instrument
acts linearly on Yi. Next time, we’ll talk about how to relax this assumption
using potential outcomes notation. However, another generalization of (9.8)
worth mentioning is what’s commonly called the non-parametric instrumental
variables problem,

Yi = g(Wi) + εi, Zi ⊥⊥ εi, Yi, Wi ∈ R, Zi ∈ Z, (9.17)

where g(·) is some generic smooth function we want to estimate. As before,
because Wi is not independent of εi, we cannot learn g(·) by simply doing a
(non-parametric) regression of Yi on Wi, i.e., g(w) 6= E

[
Yi
∣∣Wi = w

]
.

Instead, we should interpret (9.17) as a structural model that needs to be
fit using the instrument. Because Zi ⊥⊥ εi and assuming that E [εi] = 0, we can
directly verify that

E
[
Yi
∣∣Zi = z

]
= E

[
g(Wi) + εi

∣∣Zi = z
]

= E
[
g(Wi)

∣∣Zi = z
]

=

∫
R
g(w)f

(
w
∣∣ z) dw, (9.18)
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where f(w
∣∣ z) denotes the conditional density of Wi given Zi = z. This re-

lationship suggests a two-stage scheme for learning g(·), whereby we (1) fit a
non-parametric model f̂(w

∣∣ z) for the conditional density f(w
∣∣ z), preferably

using cross-fitting, and (2) estimate g(w) via a empirical minimization over a
suitably chosen function class G,

ĝ(·) = argming∈G

{
1

n

n∑
i=1

(
Yi −

∫
R
g(w)f̂ (−k(i))

(
w
∣∣Zi) dw)2

}
. (9.19)

In order to solve the inverse problem (9.19) in practice, one approach is to
approximate g(w) in terms of a basis expansion, gK(w) =

∑K
k=1 βkψk(w), where

the ψk(·) are a set of pre-determined basis functions and gK(w) provides an
increasingly good approximation to g(w) as K gets large. Then, (9.19) becomes

β̂ = argminβ

{
1

n

n∑
i=1

(
Yi − m̂(−k(i))(Zi) · β

)2

}
, where

m̂(−k(i))(Zi) =

∫
R
ψk(w) f̂ (−k(i))

(
w
∣∣Zi) dw (9.20)

can be interpreted as a multivariate cross-fit optimal instrument by analogy
to (9.16). Conditions under which this type of approach yields a consistent
estimate of g(·) are discussed in Newey and Powell [2003]. In general, however,
one should note that solving the integral equation (9.18) is a difficult inverse
problem, and so getting (9.20) to work in practice requires careful regularization
(and, even so, one should expect rates of convergence to be slow).

Bibliographic notes The study of statistical estimation in simultaneous
equation models (e.g., for joint modeling of prices and demand) has a long tra-
dition in econometric; see, e.g., Haavelmo [1943] for an early reference. Imbens
[2014] provides a review of this line of work aimed for statisticians, and also
provides references to the recent literature. One should also note that (9.4) is
an instance of a very simple structural equations model [Pearl, 2009]. We’ll
study graphical methods for working with much richer models of this type later
in the class.

The literature on efficient estimation with instrumental variables goes back
to Amemiya [1974], Chamberlain [1987], and others. The formulation of the
efficient estimation problem in terms of non-parametric prediction of Wi in
terms of Zi is due to Newey [1990]; in particular, his results imply that the
estimator (9.10) with w(z) = E

[
Wi

∣∣Zi = z
]

is efficient for τ in the model
(9.8). Belloni, Chen, Chernozhukov, and Hansen [2012] propose estimating
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this first stage regression using the lasso [Hastie, Tibshirani, and Wainwright,
2015].

One question we’ve ignored today is the role of covariates for instrumen-
tal variables regression. Following our approach to unconfoundedness, one can
extend (9.8) such that εi ⊥⊥ Zi

∣∣Xi, i.e., the instrument is only exogenous
after conditioning on Xi, and we have a heterogeneous treatment effect func-
tion identified as τ(x) = Cov

[
Yi, w(Zi)

∣∣Xi = x
]
/ Cov

[
Wi, w(Zi)

∣∣Xi = x
]
;

see Abadie [2003] for a further discussion. Given this setting, one can then
re-visit many of the questions we considered under unconfoundedness. For ex-
ample, Chernozhukov, Escanciano, Ichimura, Newey, and Robins [2022a] show
how to build a doubly robust estimator of the average effect τ = E [τ(X)], and
Athey, Tibshirani, and Wager [2019] propose a random forest estimator of τ(·).
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Lecture 10
Local Average Treatment Effects

Instrumental variables are commonly used to estimate the effect of an en-
dogenous treatment. Last time, we discussed how IV methods can be used
to estimate a treatment parameter in a structural model. In particular, we
showed that in the following two-stage model

Yi = α +Wiτ + εi, εi ⊥⊥ Zi

Wi = Ziγ + ηi,
(10.1)

the parameter τ can be identified via

τ = Cov [Yi, Zi]
/

Cov [Wi, Zi]

=
E
[
Yi
∣∣Zi = 1

]
− E

[
Yi
∣∣Zi = 0

]
E
[
Wi

∣∣Zi = 1
]
− E

[
Wi

∣∣Zi = 0
] , (10.2)

where the second expression is valid only when Zi is binary. Furthermore, this
representation also suggests a natural estimator for τ in terms of empirical
covariances.

In general, however, the causal inference community is often skeptical of
statistical targets that are only defined as parameters in a linear model. Thus,
to further justify the relevance of IV methods to causal inference, today we’ll
revisit their behavior in the context of several concrete applications, e.g., non-
compliance and demand modeling, with causal effects carefully defined in terms
of potential outcomes. Our main finding will be that, in many settings, the
natural IV estimator (10.2) targets a weighted treatment effect; furthermore,
we’ll also consider how to modify (10.2) to get at different weighted estimands.
Today, we’ll focus on questions of identification; the resulting estimation prob-
lems are closely related to the ones discussed last time.

Treatment effect estimation under non-compliance The simplest set-
ting in which we can discuss non-parametric identification using instrumen-
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tal variables is when estimating the effect of a binary treatment under non-
compliance. Suppose, for example, that we’ve set up a randomized study to
examine the effect of taking a drug to lower cholesterol. But although we ran-
domly assigned treatment, some people don’t obey the randomization: Some
subjects given the drugs may fail to take them, while others who were assigned
control may procure cholesterol lowering drugs on their own. In this case, we
have

• An outcome Yi ∈ R, with the usual interpretation;

• The treatment Wi ∈ {0, 1} that was actually received (i.e., did the sub-
ject take the drug), which is not random because of non-compliance; and

• The assigned treatment Zi ∈ {0, 1} which is random.

A popular way to analyze this type of data is using instrumental variables,
where we interpret treatment assignment Zi as an exogenous “nudge” on the
treatment Wi that was actually received.1

If one believed in the structural model (10.1), then one could directly es-
timate τ via (10.2). In practice, however, we may not believe in the constant
treatment effect assumption (10.1); e.g., one might ask whether people who
comply with the treatment also would have responded differently to the treat-
ment than others (maybe they chose to comply because they knew they’d
benefit a lot from it).

A more careful approach starts by writing down potential outcomes. First,
because Wi is non-random and may respond to Zi, we need to have potential
outcomes for the treatment variable in terms of the instrument, i.e., there are
{Wi(0), Wi(1)} such that Wi = Wi(Zi). Second, of course, we need to define
potential outcomes for the outcome, which may in principle respond to both
Wi and Zi: we have {Yi(w, z)}w,z∈{0, 1} such that Yi = Yi(Wi, Zi). Given this
notation, we now revisit our assumptions for what makes a valid instrument:

• Exclusion restriction. Treatment assignment only affects outcomes via
receipt of treatment, i.e., Yi(w, z) = Yi(w) for all w and z.

• Exogeneity. The treatment assignment is randomized, meaning that
{Yi(0), Yi(1), Wi(0), Wi(1)} ⊥⊥ Zi.

1Note that similar statistical patters also arise outside of clinical trials. For example,
when studying the effect of military service on long-term income, one could write Wi for
whether a person actually served in the military, and Zi for the results of the draft lottery
(i.e., did the government assign them to serve).
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• Relevance. The treatment assignment affects receipt of treatment, mean-
ing that E [Wi(1)−Wi(0)] 6= 0.

Finally, we make one last assumption about how people respond to treatment.
Defining each subject’s compliance type as Ci = {Wi(0), Wi(1)}, we note that
there are only 4 possible compliance types here:

Wi(1) = 0 Wi(1) = 1
Wi(0) = 0 never taker complier
Wi(0) = 1 defier always taker

Our last assumption is that there are no defiers, i.e., P [Ci = {1, 0}] = 0; this
assumption is often also called monotonicity. In this case, one obtains a simple
characterization of the IV estimand (10.2) by noting that

E
[
Yi
∣∣Zi = 1

]
− E

[
Yi
∣∣Zi = 0

]
= E

[
Yi(Wi(1))

∣∣Zi = 1
]
− E

[
Yi(Wi(0))

∣∣Zi = 0
]

(exclusion)

= E [Yi(Wi(1))− Yi(Wi(0))] (exogeneity)

= E [1 ({Ci = complier}) (Yi(1)− Yi(0))] . (no defiers)

Thus, assuming that there actually exist some compliers (i.e., by relevance),
we can apply Bayes’ rule to conclude that

τLATE =
E
[
Yi
∣∣Zi = 1

]
− E

[
Yi
∣∣Zi = 0

]
E
[
Wi

∣∣Zi = 1
]
− E

[
Wi

∣∣Zi = 0
]

= E
[
Yi(1)− Yi(0)

∣∣Ci = complier
]
.

(10.3)

Although this is a very simple result, it already gives us some encouragement
that IV methods can be interpreted in a non-parametric setting. The quantity
identified in (10.3) is typically called the complier average treatment effect or,
following Imbens and Angrist [1994], the local average treatment effect (LATE).

When the structural model (10.1) doesn’t hold, the average treatment effect
τATE = E [Yi(1)− Yi(0)] is clearly not identified without more data, because we
don’t have any observations on treated never takers, etc. However, under rea-
sonable assumptions, IV methods let us estimate the most meaningful quantity
we can identify here, namely the average treatment effect among those who are
in fact “nudged” by the instrument.

Supply and demand Next, let’s consider one of the classical settings for
motivating instrumental variables regression: Estimating the effect of prices
on demand. In many settings, it is of considerable interest to know the price
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elasticity of demand, i.e., how demand would respond to price changes. In a
typical marketplace, however, prices are not exogenous—rather, they arise from
an interplay of supply and demand—and so estimating the elasticity requires
an instrument.

One can formalize the relationship of supply and demand via potential
outcomes as follows. For each marketplace i = 1, ..., n, there is a supply
curve Si(p, z) and a demand curve Qi(p, z), corresponding to the supply (and
respectively demand) that would arise given price p ∈ R and some instrument
z ∈ {0, 1} that may affect the marketplace (the instrument could, e.g., capture
the presence of supply chain events that make production harder and thus
reduce supply). For simplicity, we may take Si(·, z) to be continuous and
increasing and Qi(·, z) to be continuous and decreasing.

Given this setting, suppose that first the instrument Zi gets realized; then
prices Pi arise by matching supply and demand, such that Pi is the unique
solution to Si(Pi, Zi) = Qi(Pi, Zi). The statistician observes the instrument
Zi, the market clearing price Pi (“the treatment”) and the realized demand
Qi = Qi(Pi, Zi) (“the outcome”). We say that Zi is a valid instrument for
measuring the effect of prices on demand if the following conditions hold:

• Exclusion restriction. The instrument only affects demand via supply,
but not directly: Qi(p, z) = Qi(p) for all p and z.

• Exogeneity. The instrument is randomized, {Qi(p), Si(p, z)} ⊥⊥ Zi.

• Relevance. The instrument affects prices, Cov [Pi, Zi] 6= 0.

• Monotonicity. Si(Pi, 1) ≤ Si(Pi, 0) almost surely.

Given this setting, we seek to estimate demand elasticity via (10.2).2

Now, although this may seem like a complicated setting, it turns out that
the basic IV estimand admits a reasonably simple characterization. Suppose
that Qi(p) is differentiable, and write Q′i(p) for its derivative.3 Then,

τLATE =
E
[
Qi

∣∣Zi = 1
]
− E

[
Qi

∣∣Zi = 0
]

E
[
Pi
∣∣Zi = 1

]
− E

[
Pi
∣∣Zi = 0

]
=

∫
E
[
Q′i(p)

∣∣Pi(0) ≤ p ≤ Pi(1)
]
P [Pi(0) ≤ p ≤ Pi(1)] dp∫

P [Pi(0) ≤ p ≤ Pi(1)] dp
,

(10.4)

2To be precise, when studying demand elasticity we’d actually run this analysis with
outcome log(Qi) and treatment log(Pi). Here we’ll ignore the logs for simplicity; introducing
logs doesn’t add any conceptual difficulties.

3The differentiability of Qi(·) is not actually needed here: We’ve assumed that Qi(·) is
monotone increasing so that the distributional derivative must exist, and everything goes
through with a distributional derivative.
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i.e., the basic IV estimand can be written as a weighted average of the derivative
of the demand function Qi(p) with respect to price p.

To verify this result, we first note that under the assumptions made here,
i.e., that the instrument suppresses supply and that the supply and demand
curves are monotone increasing and decreasing respectively, the instrument
must have a monotone increasing effect on prices: Pi(1) ≥ Pi(0). Then,

E
[
Qi

∣∣Zi = 1
]
− E

[
Qi

∣∣Zi = 0
]

= E
[
Qi(Pi(1))

∣∣Zi = 1
]
− E

[
Qi(Pi(0))

∣∣Zi = 0
]

(exclusion)

= E [Qi(Pi(1))−Qi(Pi(0))] (exogen.)

= E

[∫ Pi(1)

Pi(0)

Q′i(p) dp

]
(monot.)

=

∫
E
[
Q′i(p)

∣∣Pi(0) ≤ p ≤ Pi(1)
]
P [Pi(0) ≤ p ≤ Pi(1)] dp, (Fubini)

and the denominator in (10.4) can be characterized via similar means.

Threshold crossing and willingness to pay The other natural direction
to extend our basic binary result with non-compliance is to the case of a real-
valued instrument and a binary treatment. This setting could arise, for ex-
ample, in a study of the effect of attending college (Wi ∈ {0, 1}) on lifetime
income (Yi ∈ R), where we consider identification using an instrument Zi that
affects the cost of attending college (e.g., distance to the nearest college, or
subsidies on tuition).

The standard way to model this setting is via a threshold crossing model:
We assume that each subject has a latent and endogenous variable Ui such that

Wi = 1 ({Ui ≥ c(Zi)}) , (10.5)

where c(z) is some cutoff function depending on z. Concretely, in our exam-
ple, one could interpret Ui as the i-th person’s willingness to pay for college
(which captures both their preferences and expected benefit anticipated from
attending), while c(z) represents the “cost” of attending as modulated by the
instrument. Without loss of generality, we can take Ui ∼ Unif([0, 1]), in which
case c(z) = 1− P

[
Wi = 1

∣∣Zi = z
]
. This boundary crossing structure yields a

valid instrument under analogues to our usual assumptions:

• Exclusion restriction. There are potential outcomes {Yi(0), Yi(1)} such
that Yi = Yi(Wi)
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• Exogeneity. The treatment assignment is randomized, meaning that
{Yi(0), Yi(1), Ui} ⊥⊥ Zi.

• Relevance. The threshold function c(Zi) has a non-trivial distribution.

• Monotonicity. The threshold function c(z) is cadlag, non-decreasing.

Finally, define the marginal treatment effect

τ(u) = E
[
Yi(1)− Yi(0)

∣∣Ui = u
]
. (10.6)

Our goal is to show that IV methods recover a weighted average of the marginal
treatment effect τ(u). Here, for convenience, we assume that the instrument
is Gaussian, i.e., Zi ∼ N (0, 1). More general results without Gaussianity are
given in Heckman and Vytlacil [2005].

Under these assumptions, one can check the following. Suppose that τ(u)
is uniformly bounded, and that ϕ(·) is the standard Gaussian density. Then,
the IV estimand (10.2) can be written as 4

τLATE =

∑
z∈S

(∫ c(z)
c−(z)

τ(u) du
)
ϕ(z) +

∫
R\S τ (c (z)) c′ (z)ϕ (z) dz∑

z∈S (c(z)− c−(z))ϕ(z) +
∫
R\S c

′ (z)ϕ (z) dz
, (10.7)

where S ⊂ R is the set of discontinuity points of c(·) and c−(z) = lima↑z c(a).
Thus, we immediately see that τLATE is a convex average of the marginal
treatment function τ(u). We can get some further insight via examples:

Example: Single jump. Suppose that the threshold function c(z) is constant
with a single jump, i.e., c(z) = c0 + δ11 ({z ≥ z1}). Then compliance types
collapse into three principal strata: Never-takers with Ui < c0, compliers with
c0 ≤ Ui < c0 + δ1, and always takers with Ui ≥ c0 + δ1. Furthermore, just
as before, our estimand corresponds to the average treatment effect over the
compliers (10.3).

Example: Multiple jumps. Now let there be K jumps, with cutoff function
given by c(z) = c0 +

∑K
k=1 δk1 ({z ≥ zk}). Then,

τLATE =

∑K
k=1 E

[
τ(Ui)

∣∣ c−(zk) ≤ Ui < c(zk)
]

(c(zk)− c−(zk))ϕ(zk)∑K
k=1 (c(zk)− c−(zk))ϕ(zk)

. (10.8)

In other words, we recover a convex combination of average treatment effects
over compliance strata defined by the jumps in c(·). These weights depend on

4Note that because c(z) is monotone increasing it must also have bounded variation, and
so we can write c(z) = c0+

∫ z

−∞ c′(a) da for some non-negative Lebesgue-measurable function
c′(z).
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the size of the stratum (in U -space) and the density function of the instrument
at zk.

Example: Continuous cutoff. If the threshold function c(z) has no jumps, then
we recover the following weighted average of the marginal treatment effect
function

τLATE =

∫
R
τ (c (z)) c′ (z)ϕ (z) dz

/ ∫
R
c′ (z)ϕ (z) dz. (10.9)

In order to prove (10.7), the key task is in characterizing Cov [Yi, Zi]; an expres-
sion for the denominator of (10.2) can then be obtained via the same argument.
First, note that

Cov [Yi, Zi] = Cov [Yi(0) + (Yi(1)− Yi(0))Wi, Zi]

= Cov [(Yi(1)− Yi(0))Wi, Zi]

= Cov [(Yi(1)− Yi(0))1 ({Ui ≥ c(Zi)}) , Zi]
= Cov [τ(Ui)1 ({Ui ≥ c(Zi)}) , Zi] ,

where the first equality follows from the exclusion restriction, while the sec-
ond and fourth follow from Assumption exogeneity. Now, write H(z) =
E [τ(Ui)1 ({Ui ≥ c(z)})]. Because Zi is standard Gaussian, Lemma 1 of Stein
[1981] implies that

Cov [H(Zi), Zi] = E [H ′(Zi)] , (10.10)

where H ′(Zi) denotes the distributional derivative of H(·). Furthermore, by
Corollary 3.1 of Ambrosio and Dal Maso [1990],

−H ′(z) =

{(∫ c(z)
c−(z)

τ(u) du
)
δz for z ∈ S,

τ (c (z)) c′ (z) else,
(10.11)

where δz is the Dirac delta-function at z. The representation (10.7) follows
directly, noting that the minus-signs also appear in the denominator and thus
get canceled out.

Estimating the marginal treatment effect Throughout this lecture,
we’ve taken it as a given that we’re going to target the estimand (10.2), and
then have sought to interpret it in different settings. However, when we get to
work with a continuous instrument, it’s possible to target a wider variety of
estimands. To this end, a first key result is that the marginal treatment effect
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(10.6) is identified at continuity points of c(z) via a “local IV” construction
[Heckman and Vytlacil, 1999],

τ(c(z)) =
d
dz
E
[
Yi
∣∣Zi = z

]
d
dz
P
[
Wi = 1

∣∣Zi = z
] , (10.12)

under regularity conditions whereby the ratio of derivatives is well defined. For
intuition, note that this estimator has the same general form as the linear IV
estimator (10.2), except that regression coefficients of Yi and Wi on Zi have
been replaced with derivatives of the conditional response function. Then, once
we have an identification result for the marginal treatment effect, we can use
it to build estimators for various weighted averages of τ(u).

To verify (10.12), we start with the following observation: At any point u
around which c(Zi) has continuous support,

τ(c) = − d

dc
E
[
Yi
∣∣ c(Zi) = c

]
. (10.13)

To check this fact, it suffices to note that

E
[
Yi
∣∣ c(Zi) = c

]
= E

[
Yi(0) + 1 ({Ui ≥ c}) (Yi(1)− Yi(0))

∣∣ c(Zi) = c
]

= E [Yi(0) + 1 ({Ui ≥ c}) (Yi(1)− Yi(0))] = E [Yi(0)] +

∫ 1

c

τ(u)du,

where the first equality is due to (10.5) and the exclusion restriction, the second
is due to exogeneity, and the third is an application of Fubini’s theorem; (10.13)
then follows via the fundamental theorem of calculus. Next, we can use the
chain rule to check that

d

dz
E
[
Yi
∣∣Zi = z

]
=

d

dc
E
[
Yi
∣∣ c(Zi) = c

]
c′(z). (10.14)

Finally, recall that by assumption Ui ∼ Unif([0, 1]) independently of Zi, and so
c′(z) = −(d/dz)P

[
Wi = 1

∣∣Zi = z
]
. The result (10.12) follows by combining

(10.13) with (10.14).

Bibliographic notes The idea of interpreting the results of instrumental
variables analyses in terms of the local average treatment effect goes back to
Imbens and Angrist [1994]. Our presentation of the analysis of clinical trials
under non-compliance follows Angrist, Imbens, and Rubin [1996], while the
local average treatment effect for supply-demand curves is discussed in Angrist,
Graddy, and Imbens [2000].
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Threshold crossing models of the form (10.5) have a long tradition in eco-
nomics, where they are often discussed in the context of selection: People make
choices if their (private) value from making that choice exceeds the cost. They
are sometimes also called the Roy model following Roy [1951]. In the earlier
literature, such selection models were often studied from a parametric point
of view (without using instruments); for example, Heckman [1979] considers a
problem where a treatment effect in a model of the type (10.5), and achieves
identification by relying on joint normality of latent variable Ui and potential
outcomes rather than on a source of exogenous randomness.

More recently, Heckman and Vytlacil [2005] have advocated for such selec-
tion models as a natural framework for understanding instrumental variables
methods, and have studied methods that target a wide variety estimands be-
yond the LATE that may be more helpful in setting policy; in particular, the
identification result (10.12) for the marginal treatment effect is discussed in
Heckman and Vytlacil [1999]. For a discussion of semiparametrically efficient
estimation of functions of the marginal treatment effect, see Kennedy, Lorch,
and Small [2019].
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Lecture 11
Policy Learning

So far, we’ve focused on methods for estimating causal effects in various sta-
tistical settings. In many application areas, however, the fundamental goal of
performing a causal analysis isn’t to estimate treatment effects, but rather to
guide decision making: We want to understand treatment effects so that we
can effectively prescribe treatment and allocate limited resources. The prob-
lem of learning optimal treatment assignment policies is closely related to—but
subtly different from—the problem of estimating treatment heterogeneity. On
one hand, policy learning appears easier: All we care about is assigning peo-
ple to treatment or to control, and we don’t care about accurately estimating
treatment effects beyond that. On the other hand, when learning policies, we
need to account for considerations that were not present when simply esti-
mating treatment effects: Any policy we actually want to use must be simple
enough we can actually deploy it, cannot discriminate on protected character-
istics, should not rely on gameable features, etc. Today, we’ll discuss how to
learn treatment assignment policies by directly optimizing a relevant welfare
criterion.

Policy learning For our purposes, a treatment assignment policy π(x) is a
mapping

π : X → {0, 1} , (11.1)

such that individuals with features Xi = x get treated if and only if π(x) = 1.
Our goal is to find a policy that maximizes expected utility which, assuming
potential outcomes {Yi(0), Yi(1)} such that Yi = Yi(Wi), can be written as
(today, we’ll always consider Yi to be a utility to avoid discussions of risk
preferences, etc.)

V (π) = E [Yi (π(Xi))] . (11.2)

Furthermore, today, we’ll consider a setting where a subject-matter specialist
has outlined a class Π of policies over which we’re allowed to optimize.
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Given this setting, for any class of policies Π, the optimal policy π∗ (if it
exists) is defined as

π∗ = argmax {V (π′) : π′ ∈ Π} , (11.3)

while the regret of any other policy is

R(π) = sup {V (π′) : π′ ∈ Π} − V (π). (11.4)

Our goal is to learn a policy with guaranteed worst-case bounds of R(π̂); this
criterion is called the minimax regret criterion.

Exploring and exploiting To learn a good policy π, we need access to
training data with exogenous assignment in the treatment assignment. For
today, we’ll assume we have access to i = 1, . . . , n IID samples (Xi, Yi, ,Wi) ∈
X × R× {0, 1} sampled under unconfoundedness and overlap,

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi, Yi = Yi(Wi),

0 < η ≤ e(Xi) ≤ 1− η < 1, e(x) = P
[
Wi = 1

∣∣Xi = x
]
,

(11.5)

and seek to use this data for learning a policy π̂. Once we’re done learning,
we intend to deploy our policy: On our future samples we’ll set Wi = π̂(Xi),
and hope that the expected outcome E [Yi] with Yi = Yi(π̂(Xi)) will be large.
In this second stage, there is no more randomness in treatment effects, so we
cannot (non-parametrically) learn anything about causal effects anymore.

In engineering applications, the first phase is commonly caller “exploring”
while the second phase is called “exploiting”. There is a large literature on
bandit algorithms that seek to merge the explore and exploit phases using a
sequential algorithm; today, however, we’ll focus on the “batch” case where the
two phases are separate. Another major difference between our setting today
and the bandit setting is that we’ve only assumed unconfoundedness (11.5),
and in general will still need to worry about estimating propensity scores to
eliminate confounding, etc. In contrast, in the bandit setting, exploration is
carried out by the analyst, so the data collection process is more akin to a
randomized trial.

Policy learning via empirical maximization If the optimal policy π∗ is
a maximizer of the true quality function V (π) over π ∈ Π, then it is natural to
learn π̂ by maximizing an estimated quality function:

π̂ = argmax
{
V̂ (π) : π ∈ Π

}
. (11.6)
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If we know the treatment propensities, then it turns out we have access to a
simple, unbiased choice for V̂ (π) via inverse-propensity weighting:

V̂IPW (π) =
1

n

n∑
i=1

1 ({Wi = π(Xi)})Yi
P
[
Wi = π(Xi)

∣∣Xi

] ,
π̂IPW = argmax

{
V̂IPW (π) : π ∈ Π

}
.

(11.7)

In other words, we average outcome across those observations for which the
sampled treatment Wi matches the policy prescription π(Xi), and use inverse-
propensity weighting to account for the fact that some relevant potential out-
comes remain unobserved.

When the treatment propensities are known, we can readily check that, for
any given policy π, the IPW estimate V̂IPW (π) is unbiased for V (π):

E
[
V̂ (π)

]
= E

[
1 ({Wi = π(Xi)})Yi
P
[
Wi = π(Xi)

∣∣Xi

]]

= E

[
1 ({Wi = π(Xi)})Yi(π(Xi))

P
[
Wi = π(Xi)

∣∣Xi

] ]

= E

[
E

[
1 ({Wi = π(Xi)})
P
[
Wi = π(Xi)

∣∣Xi

] ∣∣Xi

]
E
[
Yi(π(Xi))

∣∣Xi

]]
= E [Yi(π(Xi))] = V (π),

(11.8)

where the second equality follows by consistency of potential outcomes and the
third by unconfoundedness.

Regret bounds The above unbiasedness result suggests that V̂IPW (π) may
be a reasonable estimate of the policy value. However, our approach to learning
via (11.7) doesn’t just involve evaluation a single policy π; rather, we learn by
taking an argmax. Thus, before using the estimator π̂IPW , it’s important to
understand the properties of this maximization step—both statistically and
computationally.

Here, we study properties of the policy learned by maximizing the IPW
objective (11.7) in terms of the regret criterion (11.4). Letting π∗ be any
maximizer of V (π) over Π, we see that

R (π̂IPW ) = V (π∗)− V (π̂IPW )

= V (π∗)− V̂IPW (π∗) + V̂IPW (π∗)− V̂IPW (π̂IPW )

+ V̂IPW (π̂IPW )− V (π̂IPW ) .
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Here, π∗ is predetermined and so the term V (π∗)− V̂IPW (π∗) can be read-
ily studied following (11.8), while we note that V̂IPW (π∗)− V̂IPW (π̂IPW ) ≤ 0
by definition of π̂IPW . However, because π̂IPW is chosen in terms of
the value estimates V̂IPW (·), we cannot use the same analyses to bound
V̂IPW (π̂IPW )− V (π̂IPW ). To get around the issue of π̂IPW being chosen in
a data-driven way, we adopt a conservative approach: We upper bound this
term by the worst error V̂IPW (π) takes over any policy π ∈ Π, resulting in a
bound

R (π̂IPW ) ≤ 2 sup
{∣∣∣V̂IPW (π)− V (π)

∣∣∣ : π ∈ Π
}
. (11.9)

Given this reduction, we can turn any bound on the right-hand side of (11.9)
into a regret bound for π̂IPW .

Bounding terms like (11.9) is a standard question in empirical process the-
ory; however, it relies on technical tools beyond the scope of this presentation.
The simplest available bounds take on the following form: Let VC(Π) denote
the “Vapnik-Chervonenkis dimension” of Π,1 and assume that VC(Π) is fi-
nite. Assume furthermore that |Yi| ≤ M and η ≤ e(Xi) ≤ 1 − η, so that the
summands in (11.7) are bounded by M/η. Then, one can show that

sup
{∣∣∣V̂IPW (π)− V (π)

∣∣∣ : π ∈ Π
}

= OP

(
M

η

√
VC(Π)

n

)
, (11.10)

and thus the regret R (π̂IPW ) is bounded to the same order by (11.9). Kitagawa
and Tetenov [2018] provide a proof of this result, and also give references to the
broader relevant literature as well as examples of VC(Π) for some widely used
classes Π. The high-level insight we get from (11.10) is that we should expect
the regret of π̂IPW to be small whenever n is much larger than the dimension
of the policy class Π.

Policy learning as weighted classification In order to better understand
the optimization in (11.7), it’s helpful to reparametrize our problem, starting
from the value function itself. The value function can be decomposed as V (π) =
E [Yi(0)] + E [(Yi(1)− Yi(0))π(Xi)], highlighting its dependence on both the
baseline effect and the average treatment effect among those treated by π(·).
Now, the baseline effect is unaffected by policy choice, and so it’s helpful to
re-center our objective such as to focus on the part of the problem we can work

1In many practical cases, one can essentially think of VC(Π) as capturing the number of
parameters needed to specify an element of Π.
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with, namely the conditional average treatment effect:

A(π) = 2E [Yi (π(Xi))]− E [Yi(0) + Yi(1)] ,

= E [(2π(Xi)− 1) τ(Xi)]
(11.11)

Here, A stands for the “advantage” of the policy π(·). Of course, π∗ is still
the maximizer of A(π) over π ∈ Π, etc. We can similarly re-express the IPW
objective: π̂IPW maximizes ÂIPW (π), where

ÂIPW (π) = 2 V̂IPW (π)− 1

n

n∑
i=1

(
WiYi
e(Xi)

+
(1−Wi)Yi
1− e(Xi)

)
=

1

n

n∑
i=1

(2π(Xi)− 1)

(
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

)
,

(11.12)

where by an analogous derivation to (11.8) we see that ÂIPW (π) is unbiased
for AIPW (π).

The new for (11.12) gives us several insights on the for of the IPW objective
for policy learning. First, for intuition, we note that

ÂIPW (π) =
1

n

n∑
i=1

(2π(Xi)− 1) ΓIPWi , ΓIPWi =
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

, (11.13)

where the ΓIPWi are IPW-scores familiar from our analysis of average treatment
effect estimation; specifically, the IPW estimate of the average treatment effect
is τ̂IPW = n−1

∑n
i=1 ΓIPWi . Thus, we see that ÂIPW (π) is like an IPW estimator

for the ATE, except we “earn” the treatment effect for the i-th sample when
π(Xi) = 1, and “pay” the treatment effect when π(Xi) = 0.

Meanwhile, for the purpose of optimization, we can write the objective as

ÂIPW (π) =
1

n

n∑
i=1

(2π(Xi)− 1) sign (Γi)︸ ︷︷ ︸
classification objective

|Γi|︸︷︷︸
sample weight

. (11.14)

In other words, maximizing ÂIPW (π) is equivalent to optimizing a weighted
classification objective. This means that we can use any software for weighted
minimization of a classification loss to learn π̂IPW .2

2As a note of caution: We’ve found that policy learning via empirical maximization is
computationally equivalent to weighted optimization of a classification objective. In practice,
however, we often carry out classification by optimization a surrogate objective (rather than
the basic classification objective), e.g., the using the hinge or logistic loss, and so it may
be tempting to seek to learn policies by weighted minimization of a similar surrogate loss.
The guarantees presented here, however, do not extend to such an approach. For example,
it’s possible to design situations where learning with a “logistic” surrogate for (11.14) makes
us prioritize people who would benefit the least from treatment (rather than the most); see
Wager [2020b] for a discussion.
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Efficient scoring rules for policy learning Although the IPW policy
learning method discussed above has some nice properties (e.g.,

√
n regret

consistency), we may still ask whether it is the best possible such method.
To get a better understanding of this issue, it is helpful to turn back to our
discussions of ATE estimation.

In order to learn a good policy π̂, it is intuitively helpful to start with a
good method Â(π) for evaluating the quality of individual policies π. And here,
we can start by noting that

A(π) = 2E [Yi (π(Xi))]− E [Yi(0) + Yi(1)]

= E [Yi (π(Xi))]− E [Yi (1− π(Xi))] .
(11.15)

In other words, A(π) is the ATE in an experiment where we compare deploying
the policy π(·) to and experiment where we always deploy the opposite of π(·).

Now, given this formulation as an ATE estimation problem, we know that
the oracle IPW estimator is OK, but not efficient. The oracle AIPW estima-
tor Â∗AIPW (π) that estimates A(π) by averaging an efficient score attains the
semiparametric efficiency bound; and, in our case,

Â∗AIPW (π) =
1

n

n∑
i=1

(2π(Xi)− 1) Γ∗i ,

Γ∗i := µ(1)(Xi)− µ(0)(Xi) +Wi

Yi − µ(1)(Xi)

e(Xi)

− (1−Wi)
Yi − µ(0)(Xi)

1− e(Xi)
.

(11.16)

Furthermore, assuming the existence of oP (n−1/4)-consistent regression adjust-
ments for µ̂(w)(x) and ê(x) we can construct a doubly robust estimator that
emulates the efficient oracle:

ÂAIPW (π) =
1

n

n∑
i=1

(2π(Xi)− 1) Γ̂i,

Γ̂i := µ̂
(−k(i))
(1) (Xi)− µ̂(−k(i))

(0) (Xi)

+Wi

Yi − µ̂(−k(i))
(1) (Xi)

ê(−k(i))(Xi)
− (1−Wi)

Yi − µ̂(−k(i))
(0) (Xi)

1− ê(−k(i))(Xi)
,

(11.17)

and note that this is also a weighted classification objective.
We already know from lecture 3 that ÂAIPW (π) is pointwise asymptotically

equivalent to Â∗AIPW (π), i.e., for any fixed policy π the difference between the
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two quantities decays faster than 1/
√
n. However, more is true: If Π is a VC

class, then

√
n sup

{∣∣∣ÂAIPW (π)− Â∗AIPW (π)
∣∣∣ : π ∈ Π

}
→p 0. (11.18)

This result, along with an empirical process concentration argument then imply
that the regret of policy learning with the AIPW-scoring rule is bounded on
the order of

R (π̂AIPW ) = OP

(√
V ∗VC(Π)

n

)
, π̂AIPW = argmaxπ∈Π

{
ÂAIPW (π)

}
,

V ∗ = E
[
τ 2(Xi)

]
+ E

[
Var

[
Yi(0)

∣∣Xi

]
1− e(Xi)

]
+ E

[
Var

[
Yi(1)

∣∣Xi

]
e(Xi)

]
.

See Athey and Wager [2021] for details, as well as lower bounds. Effectively,
the above bound is optimal in a regime where treatment effects just barely
peek out of the noise.

The role of the policy class Π This problem setup may appear unusual.
We started with a non-parametric model (i.e., µ(w)(x) and e(x) can be generic),
in which case the Bayes-optimal treatment assignment rule is simply πbayes(x) =
1 ({τ(x) > 0}). However, from this point, our goal was not to find a way to
approximate πbayes(x); rather, given another, pre-specified class of policies Π,
we want to learn a nearly regret-optimal representative from Π. For example,
Π could consist of linear decision rules, k-sparse decision rules, depth-` decision
trees, etc. Note, in particular, that we never assumed that πbayes(·) ∈ Π.

The reason for this tension is that the features Xi play two distinct roles
here. First, the Xi may be needed to achieve unconfoundedness

{Yi(0), Yi(1)} ⊥⊥ Wi

∣∣Xi. (11.19)

In general, the more pre-treatment variables we have access to, the more plau-
sible unconfoundedness becomes. In order to have a credible model of nature,
it’s good to have flexible, non-parametric models for e(x) and µ(w)(x) using a
wide variety of features.

On the other hand, when we want to deploy a policy π(·), we should be
much more careful about what features we use to make decisions and the form
of the policy π(·):

• We should not use certain features, e.g., features that are difficult to
measure in a deployed system, features that are gameable by participants
in the system, or features that correspond to legally protected classes.
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• We may have budget constraints (e.g., at most 15% of people get treated),
or marginal budget constraints (e.g., the total amount of funds allocated
to each state stays fixed, but we may re-prioritize funds within states).

• We may have functional form constraints on π(·) (e.g., if the policy needs
to be communicated to employees in a non-electronic format, or audited
using non-quantitative methods).

Given any such constraints set by a practitioner, we can construct a class of al-
lowable policies Π that respects these feature exclusion, budget, and functional
form constraints.

Bibliographic notes The idea behind our discussion today was that, when
learning policies, the natural quantity to focus on is regret as opposed to, e.g.,
squared-error loss on the conditional average treatment effect function. This
point is argued for in Manski [2004]. For a discussion of exact minimax regret
policy learning with discrete covariates, see Stoye [2009].

The insight that policy learning under unconfoundedness can be framed as
a weighted classification problem—and that we can adapt well known result
results from empirical risk minimization to to derive useful regret bounds—
appears to have been independently discovered in statistics [Zhao, Zeng, Rush,
and Kosorok, 2012], computer science [Swaminathan and Joachims, 2015], and
economics [Kitagawa and Tetenov, 2018]. Properties of policy learning with
doubly robust scoring rules are derived in Athey and Wager [2021]. The latter
paper also considers policy learning in more general settings, such as with
“nudge” interventions to continuous treatments or with instruments used to
identify the effects of endogenous treatments.

Today, we’ve discussed rates of convergence that scale as
√

VC(Π)/n. This
is the optimal rate of convergence we can get if seek guarantees that are uni-
form over τ(x); and the rates are sharp when the strength of the treatment
effects decays with sample size at rate 1/

√
n. However, if we consider asymp-

totics for fixed choices of τ(x), then super-efficiency phenomena appear and
we can obtain faster than 1/

√
n rates [Luedtke and Chambaz, 2020]; this phe-

nomenon is closely related to “large margin” improvements to regret bounds
for classification via empirical risk minimization.

Finally, the topic of policy learning is an active area with many recent
advances. Bertsimas and Kallus [2020] extend the principle of learning policies
by optimizing a problem-specific empirical value function to a wide variety of
settings, e.g., inventory management. Luedtke and van der Laan [2016] discuss
inference for the value of the optimal policy. Finally, Kallus and Zhou [2021]
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consider the problem of learning policies in a way that is robust to potential
failures of unconfoundedness.
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Lecture 12
Evaluating Dynamic Policies

In many real-world applications, “treatment” is just a one-shot decision that
can be set to 0 or 1, but rather an ongoing set of decisions. Consider, for
example, the case of antiretroviral therapy (ART) for HIV-positive patients.
It is understood that HIV reduces CD4 white blood cell count, and that pa-
tients are at risk of contracting AIDS-defined illnesses once CD4 count is low;
the use of ART can help preserve CD4 counts, but it is a very intensive form
of medication. Traditional guidelines for treating HIV recommend beginning
ART when CD4 count is low; but recent guidelines recommend ART as soon
as HIV is diagnosed. To study problems like this, we need to allow for treat-
ment assignment policies that vary across time, and respond to time-varying
covariates (e.g., CD4 count).

The goal of today’s lecture is to provide a brief introduction to working with
dynamic treatment policies in the context of the potential outcomes model.
Unlike in our earlier discussion of panel data, we’ll allow for generic dynamics
(e.g., a poor treatment choice yesterday may worsen a patient’s outcomes today,
which in turn will make more likely the adoption of an aggressive treatment
regime tomorrow). The problem of evaluating and learning dynamic policies is
often called reinforcement learning in the engineering community.

Statistical setting As always, our statistical analysis starts with the speci-
fication of potential outcomes, a target estimand, and an identifying assump-
tion. Suppose we have data on i = 1, . . . , n IID patients, observed at times
t = 1, . . . , T . At each time point, we observe a set of (time-varying) covariates
Xit as well as a treatment assignment Wit ∈ {0, 1}. Finally, once we reach
time T , we also observe an outcome Yi ∈ R.

To reflect the dynamic structure of the problem, we let any time-varying
observation depend on all past treatment assignments. Thus, for each Xit ∈ Xt,
we define 2t−1 potential outcomes Xit(w1:(t−1)) such that Xit = Xit(Wi(1:(t−1))),
while for the final outcome we have 2T potential outcomes Yi(w1:T ) such that
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Yi = Xit(Wi(1:T )). Finally, the the treatment assignment Wit may depend
on Xi(1:t) as well as past values of treatment; and, to reflect this possibility,
we need to define potential outcomes for treatment, Wit(w1:(t−1)), such that
Wit = Wit(Wi(1:(t−1))).

Next, we need to define an estimand. In the dynamic setting, the number
of potential treatment allocation rules grows exponentially with the horizon T ,
and so does the number of questions we can ask. Some common estimands are:

• Evaluate a fixed treatment choice, i.e., for some pre-specified w ∈ {0, 1}T ,
estimate

V (w) = E [Yi(w)] . (12.1)

• Evaluate a treatment policy. For this purpose, a policy is a set of
mappings πt : Xt → {0, 1} that, at each time point sets treatment
Wit = π(Xit). Then, the value of the policy π is

V (π) = E [Yi(π1(Xi1), π2(Xi1, π1(Xi1), Xi2(π1(Xi1)), . . .)] . (12.2)

This notation is fairly verbose, because it allows time-t covariates (which
inter into our choice of time-t action) to depend on past treatments.

There are also several questions that can be raised in terms of randomized
treatment assignment rules (including perturbations to the treatment assign-
ment distribution used to collect the data).

There are several natural unconfoundedness-type assumptions that can be
used to identify our target estimands. One option is to posit sequential uncon-
foundedness (or sequential ignorability),

{(potential outcomes after time t)} ⊥⊥ Wit

∣∣ {(History at time t)} , (12.3)

i.e., we assume that Wit is always “uncounfounded” in the usual sense given
data that was collected up to time t. A stronger assumption is to posit complete
randomization

{(all potential outcomes)} ⊥⊥ W1:T . (12.4)

Complete randomization leads to easier statistical analysis, but may force us
to explore some unreasonable treatment assignment rules (e.g., what if you
enroll someone in a cancer trial, and they’re randomized to the arm “start
chemotherapy in one year”, but after one year it turns out they’re already
cured and so don’t need chemotherapy). Today, we’ll focus on methods that
work under sequential unconfoundedness.
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Treatment-confounder feedback Working with sequential unconfounded-
ness gives rise to a subtle difficulty that is not present in the basic (single-
period) setting, namely treatment-confounder feedback.

To see what may go wrong, consider the following simple example adapted
from Hernán and Robins [2020], modeled after an ART trial with T = 2 time
periods. Here, Xit ∈ {0, 1} denotes CD4 count (1 is low, i.e., bad), and
suppose that Xi1 = 0 for everyone (no one enters the trial very sick), and Xi1

is randomized with probability 0.5 of receiving treatment. Then, at time period
2, we observe Xi2 and assign treatment Xi2 = 1 with probability 0.4 if Xi2 = 0
and with probability 0.8 if Xi2 = 1. In the end, we collect a health outcome
Y . This is a sequential randomized experiment.

n Xi1 Wi1 Xi2 Wi2 Mean Y
2400 0 0 0 0 84
1600 0 0 0 1 84
2400 0 0 1 0 52
9600 0 0 1 1 52
4800 0 1 0 0 76
3200 0 1 0 1 76
1600 0 1 1 0 44
6400 0 1 1 1 44

We observe data as in the Table above (the last column is the mean outcome
for everyone in that row). Our goal is to estimate τ = E [Y (1)− Y (0)], i.e.,
the difference between the always treat and never treat rules. How should we
do this? As a preliminary, it’s helpful to note that the treatment obviously
does nothing. In the first time period,

E
[
Yi
∣∣Wi1 = 0

]
= E

[
Yi
∣∣Wi1 = 1

]
= 60,

and this is obviously a causal quantity (since Wi1 was randomized). Moreover,
in the second time period we see by inspection that

E
[
Yi
∣∣Wi2 = 0, Wi1 = w1, Xi2 = x

]
= E

[
Yi
∣∣Wi2 = 1, Wi1 = w1, Xi2 = x

]
,

for all values of w1 and x, and again the treatment does nothing.
However, some simple estimation strategies that served us well in the non-

dynamic setting do not get the right answer. In particular, here are some
strategies that do not get the right answer:
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• Ignore adaptive sampling, and use

τ̂ = Ê
[
Y
∣∣W = 1

]
− Ê

[
Y
∣∣W = 0

]
=

6400× 44 + 3200× 76

6400 + 3200
− 2400× 52 + 2400× 84

2400 + 2400

= 54.7− 68 = −13.3.

• Stratify by CD4 count at time 2, to control for adaptive sampling:

τ̂0 = E
[
Y
∣∣W = 1, Xi2 = 0

]
− E

[
Y
∣∣W = 0, Xi2 = 0

]
= 76− 84 = −8

τ̂1 = E
[
Y
∣∣W = 1, Xi2 = 1

]
− E

[
Y
∣∣W = 0, Xi2 = 1

]
= 44− 52 = −8

τ̂ =
(3200 + 2400)τ̂0 + (6400 + 2400)τ̂1

3200 + 2400 + 6400 + 2400
= −8.

The problem with the first strategy is obvious (we need to correct for biased
sampling). But the problem with the second strategy is more subtle. We know
via sequantial randomization that

Yi(· · · ) ⊥⊥ Wi2

∣∣Xi2,

and this seems to justify stratification. But what we’d actually need for strat-
ification is:

Yi(· · · ) ⊥⊥ (Wi1, Wi2)
∣∣Xi2,

and this is not true by design. To see what could go wrong, imagine that there
are 3 types of people (stable, responder, acute), and tabulate their time-2 CD4
values as follows (these categories are usually called principal strata):

Wi1 = 0 Wi1 = 1
stable Xi2 = 0 Xi2 = 0

responder Xi2 = 1 Xi2 = 0
acute Xi2 = 1 Xi2 = 1

These principal strata are unobservable (just like compliance types in IV anal-
yses), but can still provide insights. For example:

• E
[
Y
∣∣W = 1, Xi2 = 0

]
is an average over stable or responder patients,

whereas E
[
Y
∣∣W = 0, Xi2 = 0

]
is simply an average over stable patients.

So the difference τ̂0 is not estimating a proper causal quantity.

• E
[
Y
∣∣W = 1, Xi2 = 1

]
is an average over acute patients, whereas in con-

trast E
[
Y
∣∣W = 0, Xi2 = 1

]
is an average over responder or acute pa-

tients. So the difference τ̂1 is not estimating a proper causal quantity.

In other words, in sequentially randomized trials, stratification does not control
for confounding.

98



Sequential inference for sequential ignorability Since stratification
doesn’t work, we now move to study a family of approaches that do. Here,
we focus on estimating the value of a policy V (π) as in (12.2); note that evalu-
ating a fixed treatment sequence is a special case of this strategy. To this end,
it’s helpful to define some more notation:

• We denote by Ft = σ ({X1, W1, . . . , Wt−1, Xt}) the filtration containing
all information until the period-t treatment is chosen.

• We use the shorthand Eπ to denote expectations with treatment set using
policy π such that, e.g., (12.2) becomes V (π) = Eπ [Y ].

• We define the value function

Vπ,t(X1, W1, . . . , Wt−1, Xt) = Eπ
[
Y
∣∣Ft] (12.5)

that measures the expected reward we’d get if we were to start following
π given our current state as captured by Ft.

This notation lets us concisely express a helpful principle behind fruitful esti-
mation of V (π) (note that, given (12.5), we could say that the overall value of
a policy is Vπ,0): By the chain rule, we see that

Eπ
[
Vπ,t+1(X1, W1, . . . , Wt, Xt+1)

∣∣Ft] = Eπ
[
Eπ
[
Y
∣∣Ft+1

] ∣∣Ft]
= Eπ

[
Y
∣∣Ft] = Vπ,t(X1, W1, . . . , Wt−1, Xt).

(12.6)

The implication is that, given a good estimate of Vπ,t+1, all we need to be able
to do is to get a good estimate of Vπ,t; then we can recurse our way backwards
to V (π). The question is then how we choose to act on this insight.

Finally, the Eπ notation from (12.5) lets us also capture sequential ignor-
ability in terms of more tractable notation. We can always factor the joint
distribution of (X1, W1, . . . , XT , WT , XT+1) as (where we used the short-hand
Y = XT+1)

Pπ [X1, W1, . . . , XT , WT , Y ]

= Pπ [X1]
T∏
t=1

Pπ
[
Wt

∣∣Ft]Pπ [Xt+1

∣∣Ft, Wt

]
.

(12.7)

Here, unconfoundedness implies that terms in the factorization that don’t in-
tegrate over Wt don’t depend on the policy π, i.e.,

Pπ [X1] = P [X1]

Pπ
[
Xt+1

∣∣Ft, Wt

]
= P

[
Xt+1

∣∣Ft, Wt

]
,

(12.8)

for all policies π.
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Inverse-propensity weighting A first step in making (12.6) useful is taking
a change of measure. Given our training sample, it’s easy to measure expecta-
tions E according to the training treatment assignment distribution; but here,
we instead seek expectations with respect to the “off-policy” distribution, with
treatment assigned according to π. To carry out the change of measure, we note
that (recall that X1, W1, . . . , Wt−1, Xt are fixed by the conditioning event)

Vπ,t(X1, W1, . . . , Wt−1, Xt)

= Eπ
[
Vπ,t+1(X1, W1, . . . , Wt, Xt+1)

∣∣Ft]
= E

[
Pπ
[
Wt, Xt+1

∣∣Ft]
P
[
Wt, Xt+1

∣∣Ft] Vπ,t+1(X1, W1, . . . , Wt, Xt+1)
∣∣Ft]

= E

[
Pπ
[
Wt

∣∣Ft]Pπ [Xt

∣∣Ft, Wt

]
P
[
Wt

∣∣Ft]P [Xt

∣∣Ft, Wt

] Vπ,t+1(X1, W1, . . . , Wt, Xt+1)
∣∣Ft]

= E

[
1 ({Wt = πt(. . . , Xt)})
P
[
Wt = πt(. . . , Xt)

∣∣Ft]Vπ,t+1(X1, W1, . . . , Wt, Xt+1)
∣∣Ft] ,

where the key step here was the last equality which used the fact that, by
unconfoundedness, Pπ

[
Xt

∣∣Ft, Wt

]
= P

[
Xt

∣∣Ft, Wt

]
.

Now, to turn this fact into an estimator of V (π), we write down our change
of measure relationship for each t = 1, ..., T :

V (π) = E [Vπ,1(X1)] ,

Vπ,1(X1) = E
[

1 ({W1 = π1(X1)})
P [W1 = π1(X1, )]

Vπ,2(X1, W2, X2)
∣∣F1

]
,

etc. Then we can start backwards-substituting, always replacing expressions in
terms of Vt for ones in terms of Vt+1, until only Vπ, T+1(· · · ) = Eπ

[
Y
∣∣FT+1

]
=

Y is left. Finally, we recover

V (π) = E

[
T∏
t=1

1 ({Wt = πt(. . . , Xt)})
P
[
Wt = πt(. . . , Xt)

∣∣Ft]Y
]
, (12.9)

which leads naturally leads to an IPW-type estimator

V̂IPW (π) =
1

n

n∑
i=1

γiT (π)Yi,

γit(π) = γi(t−1)(π)
1 ({Wt = πt(. . . , Xt)})
P
[
Wt = πt(. . . , Xt)

∣∣Ft] ,
(12.10)
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where γi0(π) = 0. This estimator averages outcomes whose treatment trajec-
tory exactly matches π, while applying an IPW correction for selection effects
due to measured (time-varying) confounders. Our derivation immediately im-
plies that the IPW estimator is unbiased if we know the inverse-propensity
weights γiT exactly.

Backwards regression adjustment As always, the other way to leverage
(12.6) and sequential unconfoundedness is via a regression adjustment. This
approach again proceeds by backwards iteration. First, for t = T , we can use
sequential unconfoundedness to check that

Vπ,T (X1, W1, . . . , XT ) = Eπ
[
Y
∣∣FT ]

= Eπ
[
Y
∣∣FT , WT = πT (X1, W1, . . . , XT )

]
= E

[
Y
∣∣FT , WT = πT (X1, W1, . . . , XT )

]
.

(12.11)

We can then take this as a non-parametric regression problem, and seek to
learn V̂π,T (X1, W1, . . . , XT ). Then, in the recursive step, we note that if we

have a reasonable estimate of V̂π, t+1, then

Vπ,t(X1, W1, . . . , Xt) ≈ E
[
V̂π, t+1(. . . , Xt+1)

∣∣Ft, Wt = πt(. . . , Xt)
]
. (12.12)

We can again keep recursing backwards, until we recover an estimate of V̂ (π).
Unlike IPW, formal analysis of the regression adjustment method is more del-
icate, as we need to carefully quantify how regression errors propagate as we
iterate backwards. Note that, in the reinforcement learning literature, the
backwards-recursive regression based approach is typically referred to as Q-
learning.

A doubly robust estimator Where there’s an IPW and a regression based
estimator, there’s going to be a doubly robust estimator also. To construct
one, it’s helpful to consider the last step of the regression-estimator (12.12):

We’ve derived a good value estimate V̂π, 1(X1), and conclude by setting

V̂REG(π) =
1

n

n∑
i=1

V̂π, 1(Xi1). (12.13)

Now, what would a one-step doubly robust correction look like? If we trust
V̂π, 2 a little more than V̂π, 1, we could consider using

V̂ (π) =
1

n

n∑
i=1

(
V̂π, 1(Xi1) + γi1(π)

(
V̂π, 2(Xi1, Wi1, Xi2)− V̂π, 1(Xi1)

))
,
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i.e., on the event where Wi1 matches π in the first step, we use V̂π, 2 to debias

V̂π, 1. Here, the γit are the inverse-propensity weights as in (12.10).

Then next natural question, of course, is why not debias V̂π, 2 using V̂π, 3
when Wi2 also matches π in the second step? And we can do so, and can
proceed along until we get to the end of the trajectory, where we interpret
Vπ, T+1 = Y . The expression we get directly by plugging in a doubly robust

score to replace V̂π, t is rather unwieldy, but we can rearrange to sum to get

V̂AIPW (π) =
1

n

n∑
i=1

(
γiTYi

+
T∑
t=1

(
γi(t−1)(π)− γit(π)

)
V̂π, t(Xi1, . . . , Xit)

)
,

(12.14)

which we recognize as a generalization of the AIPW estimator of Robins, Rot-
nitzky, and Zhao [1994] for the non-dynamic case.

Bibliographic notes The study of sequential decision rules is a huge topic
we’ve only scratched the surface of. Hernán and Robins [2020] is a good text-
book reference. In the statistics literature, a lot of the early results on esti-
mation under sequential ignorability are due to Robins, going back to Robins
[1986]. Two helpful references in this line of work are Murphy [2005] and
Robins [2004]. The form of the AIPW estimator (12.14) was independently
derived by Jiang and Li [2016] and Zhang, Tsiatis, Laber, and Davidian [2013];
see also Thomas and Brunskill [2016].
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Lecture 13
Structural Equation Modeling

For most of this class, we’ve framed causal questions in terms of a potential
outcomes model. There is, however, a large alternative tradition of causal
analysis based on structural equation modeling. We saw one example of a
structural equation model (SEM) in Lecture 9, when introducing instrumental
variables methods: We wrote

Yi = α +Wiτ + εi, (13.1)

but did not assume Wi to be uncorrelated with εi; we then discussed how an
exogenous instrument could be used to identify τ . We called (13.1) a “struc-
tural” model because it’s not short-hand for an application of least-squares
regression; rather, it’s a claim that if we had set Wi = w, then we would
observe an outcome Yi(Wi = w) = α + wτ + εi.

Our goal today is to survey general results on SEMs: We’ll go over how
to represent non-parametric SEMs via a directed acyclic graph (DAG), and
discuss a general approach to identifying causal effects in such models via the
“do calculus.” Overall, we’ll find that non-parametric SEMs present a powerful
and abstract approach to causal inference that sheds new light on familiar
identification strategies (e.g., unconfoundedness) and helps unlock some new
ones (e.g., the front door criterion). On the other hand, the abstraction of
SEMs is less helpful in formalizing some other estimation strategies discussed in
class, such as the regression discontinuity design or LATE-focused instrumental
variables methods.

Non-parametric SEM Let (X1, ..., Xp) denote a set of p random variables
with joint distribution P, some of which may be observed by the statistician
and others not. One can always represent this joint distribution in terms of a
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DAG G, meaning that P factors as

P [X1, ..., Xp] =

p∏
j=1

P
[
Xj

∣∣ paj] , (13.2)

where paj stands for the parents of Xj in the graph G (i.e., paj =
{Xi : Eij = 1}, where Eij denotes the presence of an edge from i to j in G).
The decomposition (13.2) becomes a structural model once we further posit
the existence of deterministic functions fj(·), j = 1, . . . , p, such that

Xj = fj (paj, εj) , (13.3)

where the εj ∼ Fj are mutually independent noise terms. The difference be-
tween (13.2) and (13.3) is that the former merely characterizes the sampling
distribution of X, while the latter lets us also reason about how the value of
Xj would change if we were to alter the value of its parents.1

Given a SEM (13.3), a causal query involves exogenously setting the values
of some nodes of the graph G, and seeing how this affects the distribution of
other nodes. Specifically, given two disjoint sets of nodes W, Y ⊂ X, the causal
effect of setting W to w on Y is written P

[
Y
∣∣ do(W = w)

]
, and corresponds

to deleting all equations corresponding to nodes W in (13.3) and plugging in
w for W in the rest. In the case where we intervene on a single node Xj, one
can check that

P
[
X
∣∣ do(Xj = xj)

]
=

{
P [X] /P

[
Xj = xj

∣∣ paj] if Xj = xj

0 else.
(13.4)

One of the major goals of (non-parametric) structural equation modeling is to
provide general methods for answering causal queries in terms of the observed
distribution of X using only information provided by the structural model
(13.3).2

1In other words, given (13.2), there always exists a set of functions fj(·) for which (13.3)
when X is drawn according to P. The model (13.3) becomes structural once we assert that
the fj(·) would not change even if we change the sampling distribution of some upstream
variables.

2Today, we’ll never make any functional form assumptions on the model (13.3). For
concreteness, you may always assume that Xj is discrete and fj indexes over distributions
for Xj in terms of the values of its parents paj . Thus, inference in the linear model (13.1)
will not be covered by our discussion today.
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The do calculus One nice fact about non-parametric SEM is that there exist
powerful abstract tools for reasoning about causal queries. In particular, Pearl
[1995] introduced a set of rules, called the do calculus, which lets us verify
whether causal queries are answerable in terms of the graph G underlying
(13.3).

To understand do calculus, it is helpful to first recall how graphs encode con-
ditional independence statements in terms of d-separation, defined as follows.
Let X, Y and Z denote disjoint sets of nodes, and let p be any (undirected)
path from a node in X to a node in Y . We say that Z blocks p if there is a
node W on p such that either (i) W is a collider on p (i.e., W has two incoming
edges along p) and neither W nor any of its descendants are in Z, or (ii) W is
not a collider and W is in Z. We say that Z d-separates X and Y if it blocks
every path between X and Y .

The motivation behind this definition is that, as shown by Geiger, Verma,
and Pearl [1990], d-separation encodes every conditional independence state-
ment implied by the graph factorization (13.2), i.e., we can deduce X ⊥⊥ Y

∣∣Z
from (13.2) if and only if Z d-separates X and Y in the graph G. Motivated
by this fact, we write d-separation as (X ⊥⊥ Y

∣∣Z)G.
Do calculus provides a way to simplify causal queries by referring to d-

separation on various sub-graphs of G. To this end define GX the subgraph of
G with all edges incoming to X deleted, GX the subgraph of G with all outgoing
edges from X deleted, GXZ the subgraph of G with all outgoing edges from
X and incoming edges to Z deleted, etc. Then, for any disjoint sets of edges
X, Y, Z, W the following equivalence statements hold.

1. Insertion/deletion of observations: If
(
Y ⊥⊥ Z

∣∣X, W)
GX

then

P
[
Y
∣∣ do(X = x), Z = z, W = w

]
= P

[
Y
∣∣ do(X = x), W = w

]
.

(13.5)

2. Action/observation exchange: If
(
Y ⊥⊥ Z

∣∣X, W)
GXZ

then

P
[
Y
∣∣ do(X = x), do(Z = z), W = w

]
= P

[
Y
∣∣ do(X = x), Z = z, W = w

]
.

(13.6)

3. Insertion/deletion of actions: If
(
Y ⊥⊥ Z

∣∣X, W)
G

XZ(W )

where Z(W ) is

the set of Z nodes that are not ancestors of any W node in GX , then

P
[
Y
∣∣ do(X = x), do(Z = z), W = w

]
= P

[
Y
∣∣ do(X = x), W = w

]
.

(13.7)
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When applying the do calculus, our goal is to apply these 3 rules of inference
until we’ve reduced a causal query to a query about observable moments of P,
i.e., conditional expectations that do not involve the do-operator and that only
depend on observed random variables. As shown in subsequent work, the do
calculus is complete, i.e., if we cannot use the do calculus to simply a causal
query then it is not non-parametrically identified in terms of the structural
equation model; see Pearl [2009] for a discussion and references.

Example 1: Back-door criterion Suppose have disjoint sets of nodes
X, Y, W , and want to query P

[
Y
∣∣ do(W = w)

]
. Suppose moreover that X

contains no nodes that are downstream for W , and that X d-separates W and
Y once we block all downstream edges from W , i.e., that(

Y ⊥⊥ W
∣∣X)

GW
. (13.8)

Then, we can identify the effect of W on Y via

P
[
Y
∣∣ do(W = w)

]
=
∑
x

P [X = x]P
[
Y
∣∣X = x, W = w

]
. (13.9)

To verify (13.9), we can use the rules of do calculus as follows:

P
[
Y
∣∣ do(W = w)

]
=
∑
x

P
[
X = x

∣∣ do(W = w)
]
P
[
Y
∣∣X = x, do(W = w)

]
=
∑
x

P [X = x]P
[
Y
∣∣X = x, do(W = w)

]
=
∑
x

P [X = x]P
[
Y
∣∣X = x, W = w

]
,

where the first equality is just the chain rule, the second equality follows from
rule #3 because X is upstream from W and so (X ⊥⊥ W )GW

, and the third
equality follows from rule #2 by (13.8).

The back-door criterion is of course closely related to unconfoundedness,
and the identification strategy (13.9) exactly matches the standard regression
adjustment under unconfoundedness. To understand the connection between
(13.8) and unconfoundedness, consider the case where Y and W are both sin-
gletons and W has no other downstream variables in G other than Y . Then,
blocking downstream arrows from W can be interpreted as leaving the effect
of W on Y unspecified, and (13.8) becomes

FY (w) ⊥⊥ W
∣∣X, (13.10)
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where FY (w) = fY (w,X, εY ) leaves all but the contribution of w unspecified in
(13.3). The condition is clearly analogous to unconfoundedness (although the
fundamental causal model is different).

One useful consequence of this back-door criterion result is that we can
now reason about the main conditional independence condition (13.8) via the
graphical d-separation rule. Consider, for example, the graph below. By apply-
ing d-separation above, one immediately sees that (13.8) holds if we condition
on {X1, X2} or {X2, X3}, but not if we only condition on X2. In contrast, the
classical presentation based on unconfoundedness asks the scientist to simply
assert a conditional independence statement of the type (13.10), and does not
provide tools like d-separation that could be used to reason about when such
a condition might hold in the context of slightly more complicated stochastic
models.

W Y

X1 X2 X3

U1 U2

Example 2: Front-door criterion Another application of do calculus that
results in something much less familiar arises in the following graph. We still
want to compute P

[
Y
∣∣ do(W = w)

]
, but now do not observe U and so cannot

apply the backdoor criterion. However, if there exists a variable Z which, like
in the graph below, fully mediates the effect of W on Y without being affected
by U , we can use it for identification.

W Z Y

U

We proceed as follows. First, following the same line of argumentation as
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before, we see that

P
[
Y
∣∣ do(W = w)

]
=
∑
z

P
[
Z = z

∣∣ do(W = w)
]
P
[
Y
∣∣Z = z, do(W = w)

]
=
∑
z

P
[
Z = z

∣∣W = w
]
P
[
Y
∣∣Z = z, do(W = w)

]
,

where the first equality is the chain rule and the second equality is from the
back-door. We have to work a little harder to resolve the second term, however.
Here, the main idea is to start by taking one step backwards before proceeding
further:

P
[
Y
∣∣Z = z, do(W = w)

]
= P

[
Y
∣∣ do(Z = z), do(W = w)

]
= P

[
Y
∣∣ do(Z = z)

]
=
∑
w′

P [W = w′]P
[
Y
∣∣Z = z, W = w′

]
,

where the first equality follows from rule #2, the second equality follows from
rule #3, and the last is just the backdoor adjustment again. Plugging this in,
we find that

P
[
Y
∣∣ do(W = w)

]
=
∑
z

P
[
Z = z

∣∣W = w
]∑

w′

P [W = w′]P
[
Y
∣∣Z = z, W = w′

]
. (13.11)

This identification formula is often called the front-door criterion. Interestingly,
even though it queries about a do(W = w) intervention, it still integrates over
the observed distribution of P [W = w′].

Example 3: Instrumental variables A last setting of interest, pictured
below, represents the instrumental variables setting. We want to estimate
P
[
Y
∣∣ do(W = w)

]
, and there’s an unobserved confounder U that prevents us

from applying the back-door criterion:

Z W Y

U
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We’d want to use an instrument Z that exogenously nudges W for identifica-
tion. Here, however, do calculus does not help us: There’s no way to identify
P
[
Y
∣∣ do(W = w)

]
in the graph below. And, in fact, there’s no way something

like an instrument could ever help us: Adding more nodes to a graph just makes
it strictly harder to satisfy the d-separation conditions used for do calculus.

What went wrong here? Note that, when discussing IV methods in pre-
vious lectures, we had to be very careful with our assumptions. We typically
needed to assume something more than just the SEM above (e.g., monotonic-
ity of response to the instrument) and, even so, we could usually only identify
non-standard causal quantities like the local average treatment effect—and we
used carefully crafted relationships between potential outcomes to express these
facts. In contrast, embedding further assumptions like monotonicity into SEM
appears challenging.

SEMs and potential outcomes Structural equation modeling and poten-
tial outcome modeling are of course closely related, and share the same over-
arching goal. They both let us reason about how exogenously changing one
variable could affect others. And, in a simple two-node graph W → Y , they
are in fact the same: One can create a one-to-one mapping between potential
outcomes Y (w) and the SEM representation fY (w, εY ).

More generally, however, the SEM and potential outcomes formalisms do
not match. When working with potential outcomes, all causal effects corre-
spond to specific manipulations, i.e., we cannot even ask causal questions that
aren’t of the form “what would Y be if I experimentally set these other vari-
ables to specific values” [Holland, 1986]. In contrast, SEM lets us ask causal
questions that do not reduce to manipulations. Consider the following simple
DAG:

W Z

Y

Furthermore, write z(w) := fZ(w, εZ) for the value Z would have taken had
we set W to w. With SEMs, nothing stop us from querying about objects like

P
[
Y
∣∣ do(W = 0), do(Z = z(w = 1))

]
= fY (w = 0, z = fZ(w = 1, εZ), εY ) .

(13.12)
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On the other hand, in the potential outcomes setting, queries of this type
don’t really make sense (did we set W to 0 or 1?), unless we augment the
graph with more nodes so that the specified query corresponds to a well defined
manipulation in the augmented graph.

Questions of this type have led to considerable debate in the causal infer-
ence community. Some proponents of potential outcomes modeling argue that
the ability of SEM to identify causal effects that do not correspond to manipu-
lations is a flaw of the SEM framework. On the other hand, Pearl argues that
the inability of the potential outcomes framework to express non-manipulable
causal effects is a limitation of that framework.

Bibliographic notes The do calculus was proposed by Pearl [1995], and
today’s notes in large part follow the exposition of that paper, including the
examples of the front- and back-door criteria. A recent overview of the corre-
sponding literature is given in Pearl [2009]. One should note that structural
equation models are not the only way of representing causal effects in complex
sampling designs using DAGs; other approaches have also been developed by
Robins [1986] and Spirtes, Glymour, and Scheines [1993]. In particular, the
approach of Robins [1986] builds on the potential outcomes framework, and
thus does not allow us to reason able non-manipulable causes; see Robins and
Richardson [2010] for further discussion. For a broader discussion of the role of
SEMs in empirical work, see Imbens [2019], Pearl and Mackenzie [2018], and
references therein.
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Lecture 14
Adaptive Experiments

So far, we’ve mostly focused on data collected in an IID setting. In the context
of a randomized trial, the IID setting involves pre-committing to experiment
on a certain number of study participants, and assigning each of them to treat-
ment with a certain pre-specified probability. In many settings, however, the
structure of an IID randomized trial may be too rigid. For example, in a
vaccine trial, if we notice that some candidate vaccines are failing to produce
antibodies, then we may want to eliminate them from the study (for both cost
and ethical reasons).

Today, we’ll survey some results on the design of adaptive experiments,
which enable the analyst to shift their data collection scheme in response to
preliminary findings. There is a wide variety of methods (often called bandit
algorithms), that can be used to accomplish this task. Our goal is to review
how such adaptive experimentation schemes can be used to mitigate the cost
of having bad intervention arms in our experiment, and also discuss some
challenges in doing inference with adaptively collected data.

Setting and notation We are interested in studying the relative value of
k = 1, . . . , K candidate actions, and to do so have access to a stream of
t = 1, . . . , T experimental subjects. Each subject has IID potential outcomes,
and we observe the potential outcome corresponding to our action,

Yt(k) ∼ Fk, Yt = Yt(Wt), (14.1)

where Wt is the action taken at time t and Fk is the potential outcome dis-
tribution for the k-th arm. We write µk = E [Yt(k)] for the mean of Fk, and
define regret as

RT =
T∑
t=1

(µ∗ − µWt) , µ∗ = sup {µk : 1 ≤ k ≤ K} (14.2)
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as the (expected) shortfall in rewards given our sequence of actions. Through-
out, we write

nk,t =
t∑

j=1

1 ({Wj = k}) , µ̂k,t =
1

nk,t

t∑
j=1

1 ({Wj = k})Yj (14.3)

for the cumulative number of times the k-th arm has been drawn and the
current running average of rewards from it. Clearly, in a randomized trial
where Wt is uniformly (and non-adaptively) distributed on {1, . . . , K}, regret
scales linearly in T , i.e., RT ∼ T

∑K
k=1 (µ∗ − µk) /K.

A first goal of adaptive experimentation schemes is to do better, and achieve
sub-linear regret. In order to do so, any algorithm will first need to explore
the sampling distribution to figure out which arms k = 1, . . . , K are the most
promising, and then exploit this knowledge to attain low regret.

Optimism in the face of uncertainty One notable early solution to the
explore-exploit trade-off problem in adaptive experiments in the upper confi-
dence band (UCB) algorithm of Lai and Robbins [1985]. The algorithm pro-
ceeds as follows. First, initialize each arm using t0 draws and then,

• At each time t = Kt0 + 1, Kt0 + 2, . . ., construct a confidence interval
Ûk,t for µk based on data collected up to time t− 1, and

• Pick action Wt corresponding to the confidence interval Ûk,t with the
largest upper endpoint, and observe Yt = Yt(Wt).

At a high level, the motivation behind UCB is that we always want to explore
the arm with the most upside. At the beginning of time we have a lot of uncer-
tainty about each arm, and so we optimistically sample all of them. Over time,
however, we’ll collect enough data from the bad arms to be fairly sure they’re
suboptimal, and at that point UCB will start sampling them less. There are
many different variants of UCB considered in practice that arise from different
constructions for the confidence interval Ûk,t used for arm selection.

To get an understanding of why UCB controls regret, consider a simplifica-
tion of the sampling model (14.1) with Gaussian Fk, i.e.,

Yt(k) ∼ N
(
µk, σ

2
)
, (14.4)

where σ2 is known. We run UCB with confidence intervals1

Ûk,t = µ̂k,t−1 ± σ
√

4 log(T )
/
nk,t−1. (14.5)

1Here, the Gaussianity and known σ and T assumptions help simplify the proof; one can
get rid of them at the expense of a slightly more delicate algorithm and argument.
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One can then verify the following. Under our sampling assumptions, UCB with
intervals (14.5) and t0 = 1 initial draws has regret bounded as

RT =
∑
k 6=k∗

16σ2 log(T )

µk∗ − µk
+ (µk∗ − µk) with prob. at least 1−K/T, (14.6)

where k∗ denotes the optimal arm. This result immediately implies that UCB
in fact succeeds in finding and effectively retiring sub-optimal arms reasonably
fast, thus resulting in regret that only scales logarithmically in the regret.
Interestingly, the dominant term in (14.6) is due to “good” arms for which
µ∗ − µk is small; intuitively, the reason these arms are difficult to work with
is that it takes longer to be sure that they’re sub-optimal. This implies that
the cost of including some really bad arms in an adaptive experiment may be
limited, since an algorithm like UCB will be able to discard them quickly.

Finally, one should note that the upper bound (14.6) appears to allow for
unbounded regret due to quasi-optimal arms for which µk∗ − µk is very small.
This is simply an artifact of the proof strategy, that focused on the case where
effects are strong. When effects may be weak, one can simply note that the
worst-case regret due to any given arm k is upper bounded by T (µk∗ − µk);
and, combining this bound with the bound implied by (14.6), we find that the
worst-case regret for any combination of arms µk is bounded on the order of
K
√
T log(T ).

A regret bound for UCB In order to prove (14.6), we first note that regret
RT can equivalently be expressed as

RT =
∑
k 6=k∗

nk,T (µk∗ − µk) . (14.7)

Our main task is thus to bound nk,T , i.e., the number of times UCB may pull
any sub-optimal arm; and it turns out that UCB is essentially an algorithm
reverse-engineered to make such an argument go through. To this end, the first
thing to check is that, with probability 1 − 1/T and every arm k = 1, ..., K,
we have

µk ≤ µ̂k,t−1 + σ
√

4 log(T )
/
nk,t−1 (14.8)
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for all t = K + 1, . . . , T . This is true because, writing ζk,j for the j-th time
arm k was pulled, we have

P
[

sup
K<t≤T

{
µk − µ̂k,t−1 − σ

√
4 log(T )

/
nk,t−1 ≥ 0

}]
≤ P

[
sup

1≤j≤nk,T

{
µk − µ̂k,ζk,j − σ

√
4 log(T )

/
j ≥ 0

}]

= P

[
sup

1≤j≤nk,T

{
µk −

1

j

j∑
l=1

Y ′l (0)− σ
√

4 log(T )
/
j ≥ 0

}]

≤ P

[
sup

1≤j≤T

{
µk −

1

j

j∑
l=1

Y ′l (0)− σ
√

4 log(T )
/
j ≥ 0

}]
≤ 1/T,

where the equality follows by stationarity of the data-generating process (here,
Y ′l (k) are independent draws from N (µk, σ

2)), and the last line is an applica-
tion of Hoeffding’s inequality together with a union bound. By another union
bound, we see that (14.8) holds for all bounds with probability at least 1−K/T .

Then, on the event where (14.8) holds for all arms, we see that we can only
pull arm k under the following (necessary but not sufficient) conditions, where
k∗ denotes the optimal arm:

Wt = k =⇒ µ̂k,t−1 + σ
√

4 log(T )
/
nk,t−1 ≥ µ̂k∗,t−1 + σ

√
4 log(T )

/
nk∗,t−1

=⇒ µ̂k,t−1 + σ
√

4 log(T )
/
nk,t−1 ≥ µk∗

=⇒ µk + 2σ
√

4 log(T )
/
nk,t−1 ≥ µk∗

=⇒ nk,t−1 ≤ 16σ2 log(T )/ (µk∗ − µk)2 .

Thus, when (14.8) holds for all arms, pulling the k-th arm simply becomes
impossible once nk,t−1 passes a certain cutoff. Plugging this bound on nk, T
into the regret expression

RT =
∑
k 6=k∗

(µk∗ − µk)nk,T , (14.9)

we obtain (14.6).

Adaptive randomization schemes UCB is a simple approach to adap-
tive experimentation with strong bounds on excess regret from sampling sub-
optimal arms. However, from a practical point of view, it has some fairly
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serious limitations. First, and most importantly, UCB cannot be understood
as an adaptive randomized experiment: The choice of action Wt is a determin-
istic function of past observations. This makes it difficult to interface between
UCB and methods designed for the IID setting that explicitly rely on random-
ization. Second, one might be qualitatively concerned that the form of the
UCB algorithm is too closely linked to the proof technique, and this may make
it difficult to generalize UCB to more complicated sampling designs2

One popular alternative to UCB that helps address these issues is Thomp-
son sampling [Thompson, 1933]. Thompson sampling is a heuristic algorithm
based on Bayesian updating. To start, we pick a prior Πk,0 on the potential
outcome distribution Fk in (14.1). Then, for each time t = 1, . . . , T , we

• Compute probabilities ek,t−1 that each arm k is the best arm, i.e.,

ek,t−1 = PΠ·,t−1 [µk = µ∗] , (14.10)

• Randomly choose an action Wt ∼ Multinomial(e·,t−1), and

• Observe Yt = Yt(Wt) and update the posterior Π·,t.

Although Thompson sampling looks superficially very different from UCB, it
ends up having a very similar statistical behavior to it. Just like UCB, Thomp-
son sampling regularly explores every arm until it becomes effectively sure that
the arm is not good (i.e., the posterior probability of the arm being best drops
below 1/T ); and intuition from, say, the Bernstein–von Mises theorem suggests
that this should happen with roughly the same amount of information as when
the upper confidence band of an arm falls below the whole confidence interval
of some better arm.

Methodologically, meanwhile, Thompson sampling presents a rather desir-
able alternative to UCB. The actions taken during Thompson sampling are
randomized (with adaptive randomization probabilities that depend on past
data), thus opening the door to a tighter connection with the causal inference
literature. And the main tuning parameter in Thompson sampling, namely the
set of priors Π·,0, is often easier to reason about in practice than the choice of
confidence band construction for UCB.

2Even in the slightly more general case where σ2
k is unknown and may vary across arms,

one needs to adapt the form of the UCB confidence intervals (14.5) so that they allow for
a different proof that builds on different concentration inequalities, and there are several
choices for how to do so.
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Inference in adaptive experiments Both UCB an Thompson sampling
provide powerful approaches to adaptive data collection that don’t occur much
regret even when some very bad arms may be initially under consideration.
However, once we’ve collected this data, we will often want to analyze it and,
e.g., provide confidence statements for the underlying problem parameters.
Such analysis, however, is considerably more difficult than in the IID setting.
For example, in the case of estimating µk, two natural estimators that imme-
diately come to mind include the sample mean

µ̂AV Gk = µ̂k,T =
1

n−1
k,T

t∑
j=1

1 ({Wj = k})Yj (14.11)

and, in the case of Thompson sampling, the inverse-propensity weighted esti-
mator

µ̂IPWk =
1

T

T∑
t=1

1 ({Wt = k})Yt
et,k

. (14.12)

However, due to the adaptive data-collection scheme, neither of these estima-
tors has an asymptotically normal limiting distribution, thus hindering their
use for making confidence intervals.

Perhaps surprisingly, however, it’s possible to design adaptively weighted
estimates of µk that do admit a Gaussian pivot. One example of such weighting
scheme is

µ̂AWk =
T∑
t=1

1 ({Wt = k})Yt√
et,k

/ T∑
t=1

1 ({Wt = k})
√
et,k

, (14.13)

which, under reasonable regularity conditions, satisfies

V̂
−1/2
k

(
µ̂AWk − µk

)
⇒ N (0, 1) ,

V̂k =
T∑
t=1

(
1 ({Wt = k})

(
Yt − µ̂AWk

)
√
et,k

)2 / (
T∑
t=1

1 ({Wt = k})
√
et,k

)2

.
(14.14)

The reason these weights help restore a CLT is that they are “variance sta-
bilizing”, meaning that the variance of the resulting estimator is predictable
in the sense required by relevant central limit theorems. To verify (14.13), we
note that

µ̂AWk − µk =
T∑
t=1

1 ({Wt = k}) (Yt − µk)√
et,k

/ T∑
t=1

1 ({Wt = k})
√
et,k

, (14.15)
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and start by focusing on the numerator of the above expression. Let

Mt =
t∑

j=1

1 ({Wj = k}) (Yj − µk)√
ej,k

(14.16)

be its partial sum. Because Wt is randomly chosen given information up to
time t, we see that Wt is independent of Yt(k) conditionally on M1:(t−1), and
thus Mt is a martingale:

E
[
Mt

∣∣M1:(t−1)

]
= Mt−1. (14.17)

Furthermore, thanks to our weighting scheme, we can check that

Var
[
Mt

∣∣M1:(t−1)

]
= σ2

k, σ2
k = Var [Yt(k)] . (14.18)

Given these two facts, one can use a martingale central limit theorem as given
in, e.g., Helland [1982], that provided the et,k do not decay too fast,3

MT

/√
Tσ2

k ⇒ N (0, 1) . (14.19)

The central limit theorem (14.14) follows by noting that

T∑
t=1

(
1 ({Wt = k})

(
Yt − µ̂AWk

)
√
et,k

)2 / (
Tσ2

k

)
→p 1 (14.20)

by martingale concentration (again provided the propensities don’t decay too
fast), and that the denominators of µ̂AWk and V̂

1/2
k cancel out in (14.14). The

key step in this proof that would not have held for alternative estimators (such
as the unweighted sample mean) is (14.18).

Bibliographic notes This line of work on bandit algorithms builds on early
results from Lai and Robbins [1985] on the UCB algorithm. Lai and Robbins
[1985] showed that a variant of UCB achieves regret scaling of the form (14.6),
and that this behavior is asymptotically optimal. A more recent analysis of
UCB without parametric assumptions on the reward distribution Fk is given
in Auer, Cesa-Bianchi, and Fischer [2002], while Agrawal and Goyal [2017]
provide analogous bounds for Thompson sampling. Thanks to its Bayesian

3One tension here is that, in general, adaptively weighted CLTs require the sampling
probabilities et,k to decay slower that 1/t, which rules out sampling schemes that get the
optimal log(T ) regret with strong signals.
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specification, Thompson sampling can be generalize to a wide variety of adap-
tive learning problems; see Russo, Van Roy, Kazerouni, Osband, and Wen
[2018] for a recent survey.

The line of work on inference with adaptively collected data via variance-
stabilizing weighting is pursued by Luedtke and van der Laan [2016] and Hadad,
Hirshberg, Zhan, Wager, and Athey [2021]. One should note that this is not
the only possible approach to inference in adaptive experiments. In particular,
a classical alternative to inference in this setting starts from confidence-bands
based on the law of the iterated logarithm and its generalizations that hold
simultaneously for every value of t; see Robbins [1970] for a landmark survey
and Howard, Ramdas, McAuliffe, and Sekhon [2021] for recent advances.

Finally, all approaches to adaptive experimentation discussed today are
essentially heuristic algorithms that can be shown to have good asymptotic
behavior (i.e., neither UCB nor Thompson sampling can be derived directly
from an optimality principle). In the Bayesian case (i.e., where we have an
actual subjective prior for Fk rather than just a convenience prior as used by
Thompson sampling to power an algorithm with frequentist guarantees), it
is possible to solve for the optimal regret-minimizing experimental design via
dynamic programming [Gittins, 1979].
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riences agricoles: Essai des principes. Roczniki Nauk Rolniczych, 10:1–51,
1923.

Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treat-
ment effects. Biometrika, 108(2):299–319, 2021.

Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–
688, 1995.

Judea Pearl. Causality. Cambridge University Press, 2009.

Judea Pearl and Dana Mackenzie. The Book of Why: The New Science of
Cause and Effect. Basic Books, 2018.

Herbert Robbins. Statistical methods related to the law of the iterated loga-
rithm. The Annals of Mathematical Statistics, 41(5):1397–1409, 1970.

127



James M Robins. A new approach to causal inference in mortality studies with
a sustained exposure period: Application to control of the healthy worker
survivor effect. Mathematical Modelling, 7(9-12):1393–1512, 1986.

James M Robins. Optimal structural nested models for optimal sequential
decisions. In Proceedings of the second seattle Symposium in Biostatistics,
pages 189–326. Springer, 2004.

James M Robins and Thomas S Richardson. Alternative graphical causal mod-
els and the identification of direct effects. Causality and Psychopathology:
Finding the Determinants of Disorders and their Cures, pages 103–158, 2010.

James M Robins and Andrea Rotnitzky. Semiparametric efficiency in multivari-
ate regression models with missing data. Journal of the American Statistical
Association, 90(429):122–129, 1995.

James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regres-
sion coefficients when some regressors are not always observed. Journal of
the American Statistical Association, 89(427):846–866, 1994.

Peter M Robinson. Root-n-consistent semiparametric regression. Economet-
rica, 56(4):931–954, 1988.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity
score in observational studies for causal effects. Biometrika, 70(1):41–55,
1983.

Paul R Rosenbaum and Donald B Rubin. Reducing bias in observational stud-
ies using subclassification on the propensity score. Journal of the American
Statistical Association, 79(387):516–524, 1984.

Andrew D Roy. Some thoughts on the distribution of earnings. Oxford Eco-
nomic Papers, 3(2):135–146, 1951.

Donald B Rubin. Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal of Educational Psychology, 66(5):688, 1974.

Donald B Rubin. For objective causal inference, design trumps analysis. The
Annals of Applied Statistics, 2(3):808–840, 2008.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng
Wen. A tutorial on Thompson sampling. Foundations and Trends in Machine
Learning, 11(1):1–96, 2018.

128



Jerome Sacks and Donald Ylvisaker. Linear estimation for approximately linear
models. The Annals of Statistics, 6(5):1122–1137, 1978.

Daniel O Scharfstein, Andrea Rotnitzky, and James M Robins. Adjusting for
nonignorable drop-out using semiparametric nonresponse models. Journal
of the American Statistical Association, 94(448):1096–1120, 1999.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, Prediction,
and Search. Springer-Verlag, New York, 1993.

Charles M Stein. Estimation of the mean of a multivariate normal distribution.
The Annals of Statistics, 9(6):1135–1151, 1981.

Jörg Stoye. Minimax regret treatment choice with finite samples. Journal of
Econometrics, 151(1):70–81, 2009.

Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit
feedback through counterfactual risk minimization. The Journal of Machine
Learning Research, 16(1):1731–1755, 2015.

Donald L Thistlethwaite and Donald T Campbell. Regression-discontinuity
analysis: An alternative to the ex post facto experiment. Journal of Educa-
tional Psychology, 51(6):309–317, 1960.

Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evalu-
ation for reinforcement learning. In International Conference on Machine
Learning, pages 2139–2148, 2016.

William R Thompson. On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika, 25(3/4):285–294,
1933.

Lu Tian, Ash A Alizadeh, Andrew J Gentles, and Robert Tibshirani. A simple
method for estimating interactions between a treatment and a large number
of covariates. Journal of the American Statistical Association, 109(508):
1517–1532, 2014.

Mark J van der Laan and Sherri Rose. Targeted learning: Causal inference for
observational and experimental data. Springer Science & Business Media,
2011.

Mark J van der Laan and Daniel Rubin. Targeted maximum likelihood learning.
The International Journal of Biostatistics, 2(1), 2006.

129



Mark J van der Laan, Eric C Polley, and Alan E Hubbard. Super learner.
Statistical applications in genetics and molecular biology, 6(1), 2007.

Stefan Wager. Cross-validation, risk estimation, and model selection: Com-
ment on a paper by Rosset and Tibshirani. Journal of the American Statis-
tical Association, 115(529):157–160, 2020a.

Stefan Wager. On regression tables for policy learning: Comment on a paper
by Jiang, Song, Li and Zeng. Statistica Sinica, 2020b.

Stefan Wager, Wenfei Du, Jonathan Taylor, and Robert J Tibshirani. High-
dimensional regression adjustments in randomized experiments. Proceedings
of the National Academy of Sciences, 113(45):12673–12678, 2016.

Jeffrey M Wooldridge. Econometric Analysis of Cross Section and Panel Data.
MIT press, 2010.

Baqun Zhang, Anastasios A Tsiatis, Eric B Laber, and Marie Davidian. Robust
estimation of optimal dynamic treatment regimes for sequential treatment
decisions. Biometrika, 100(3):681–694, 2013.

Cun-Hui Zhang and Stephanie S Zhang. Confidence intervals for low dimen-
sional parameters in high dimensional linear models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 76(1):217–242, 2014.

Qingyuan Zhao. Covariate balancing propensity score by tailored loss functions.
The Annals of Statistics, 47(2):965–993, 2019.

Qingyuan Zhao, Dylan S Small, and Ashkan Ertefaie. Selective inference for
effect modification via the lasso. arXiv preprint arXiv:1705.08020, 2017.

Yingqi Zhao, Donglin Zeng, A John Rush, and Michael R Kosorok. Estimating
individualized treatment rules using outcome weighted learning. Journal of
the American Statistical Association, 107(499):1106–1118, 2012.
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