
Vision, Modeling, and Visualization (2013)
Michael Bronstein, Jean Favre, and Kai Hormann (Eds.)

Non-Sampled Anti-Aliasing

Thomas Auzinger, Przemyslaw Musialski, Reinhold Preiner, and Michael Wimmer

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Austria

Abstract
In this paper we present a parallel method for high-quality edge anti-aliasing in rasterization. In contrast to tradi-
tional graphics hardware methods, which rely on massive oversampling to combat aliasing issues, we evaluate a
closed-form solution of the associated prefilter convolution. This enables the use of a wide range of filter functions
with arbitrary kernel sizes, as well as general shading methods such as texture mapping or complex illumination
models. Due to the use of analytic solutions, our results are exact in the mathematical sense and provide ob-
jective ground-truth for other anti-aliasing methods and enable the rigorous comparison of different models and
filters. An efficient implementation on general purpose graphics hardware is discussed and several comparisons
to existing techniques and of various filter functions are given.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism
—Hidden line/surface removal I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism —Visible
line/surface algorithms

1. Introduction

The common display and storage format of digital imagery
is a discrete grid of color samples, i.e. a raster image. While
being tremendously useful, it suffers from an inherent lim-
itation: when converting an arbitrary continuous signal into
this format, signal degradation occurs as the finite number of
samples cannot store the full information content of the sig-
nal. This is known as undersampling and gives rise to a mul-
titude of artifacts. Not only is part of the signal lost during
the sampling process, but also some of the high-frequency
details are introduced as low-frequency aliases of the data.
This effect is known as aliasing and constitutes a major field
of research in digital signal processing since day one.

In computer graphics, aliasing has many forms and can
be classified into two main categories: spatial and temporal.
The former is a general concern in image generation which
we address in our work. The latter arises for temporal image
sequences. In the process of generating raster images, there
are, roughly spoken, two major sources of aliasing: (1) un-
dersampling of the interaction of light with surface materials
and (2) undersampling of the visibility of the object geom-
etry. This is a consequence of the fact that the scene data
is discretized by the rasterizer before shading or visibility
computations are executed. Artifacts caused by (1) are, for

Figure 1: Left: Multisampling methods supersample the vis-
ibility function of the scene primitives and determine the
contribution to the output pixel by the ratio of primitive hits.
Right: An optimal edge anti-aliasing method would compute
this contribution with an exact integral of a filter kernel with
the visible area of the primitive.

example, low-frequency patterns in distant textures or miss-
ing highlights. (2) arises under various circumstances, e.g.,
along edges at silhouettes or creases of objects, very small
objects that disappear between the samples, or complicated
detail where features are lost [Cro77]. This is commonly re-
ferred to as edge aliasing and is an active research area in
computer graphics since decades.

Procedures that combat aliasing are called anti-aliasing
and there are two general ways to do so: supersampling and

c© The Eurographics Association 2013.

T. Auzinger et al. / NSAA

prefiltering. The first method evaluates the source signal at
a larger amount of samples and then averages them down
to the desired sample count (cf. Figure 1, left). This is also
called post-anti-aliasing as the downfiltering happens after
the sampling. This method has the conceptual limitation that
it just increases the highest representable signal frequency,
i.e. the Nyquist frequency, but is inadequate for highly fre-
quent signals such as binary visibility. In practice, however,
it often works well enough and is easily combinable with
rasterization, thus widely used in various kinds of render-
ing settings and hardware architectures. Prefiltering goes the
opposite way and eliminates the problematic frequencies be-
fore the sampling step. This is performed by convolving the
source signal with a low-pass filter (cf. Figure 1, right). This
method guarantees valid output and is conceptually correct
in contrast to supersampling. Due to the complexity of the
filter convolution, it is hardly used in rasterization.

As mentioned before, the two main sources of aliasing
in rasterization are shading and visibility and the different
anti-aliasing methods can be applied separately to both chan-
nels. In rasterization, supersampling usually refers to iden-
tical supersampling of both, while multisampling supersam-
ples only the visibility. We present a different approach by
employing prefiltering on the visibility channel (cf. Figure 1,
right). In contrast to depth-buffering methods, we convolve
the visibility signal of the projected scene with a suitable fil-
ter. This eliminates the undesired frequencies robustly from
the source and produces near-perfect edge anti-aliasing. As
all analytic approaches, this requires a closed-form solution
to the prefiltering operation. In our case, we are able to ob-
tain such a solution due to the mathematical simplicity of
the visibility signal, which can be represented by a piece-
wise constant function.

While our design deviates significantly from traditional
raster-based pipelines, it is still embarrassingly parallel and
we present an implementation on general-purpose graph-
ics hardware. As the main contribution of our work, we
present a prototypic renderer, which generates raster im-
ages of scenes with general surface shading, such as tex-
tures and non-linear illumination models, that are exactly
anti-aliased up to numerical precision of the graphics hard-
ware. The output images can be considered as non-sampled
anti-aliased (NSAA), since neither the filter nor the visibility
is defined discreetly but completely analytically. As a result,
our method provides a ground truth solution to edge anti-
aliasing. It can serve as an objective reference for quantita-
tive comparisons of various anti-aliasing approaches and can
be used to evaluate the performance of different filters.

The paper is structured as follows: after a review of related
work in Section 2 we describe or framework in Section 3 and
present a discussion and results in Section 4. We conclude
the work in Section 5.

2. Related Work

Before massive sampling became technologically viable
with the z-buffer methodology [Cat74], a considerable body
of work was created which deals with analytic visibility de-
termination. Refer to Sutherland et al. [SSS73] for a sur-
vey of early methods for hidden-surface removal. Extensions
to analytic hidden surface elimination were introduced by
Weiler and Atherton [WA77], who clip polygonal regions
against each other until trivial depth sorting is obtained,
and by Franklin [Fra80], who uses a tiling and blocking
faces. A number of further early works focused on paral-
lelization and performance improvement of the analytic ap-
proach [CJ81, McK87]. Other improvements were made by
Mulmuley [Mul89] and Sharir et al. [SO92] in order to base
the run-time complexity on the actual number of intersec-
tions between the polygons.

The methods for visibility determination were devel-
oped hand-in-hand with filtering methods for anti-aliasing.
Crow [Cro77] posed the problem in his seminal paper and a
pre-filtering solution to it. Catmull was also aware of the im-
portance of anti-aliasing and employed it very early [Cat78,
Cat84]. An analytic algorithm that supports polynomial ap-
proximations of general filters and linear color functions was
given by Duff [Duf89]. Further works developed a justified
filtering methodology [Tur86, Mit87, MN88] and (semi) an-
alytic solutions [McC95, GT96] for the reconstruction prob-
lem.

With the success of commodity graphics hardware, the
research shifted to approximate sampling-based solutions.
Integrated into the graphics pipeline, different strategies
were developed to balance quality and performance require-
ment. Multisample anti-aliasing (MSAA) [AMHH08] per-
forms supersampling of the projected scene visibility. For
(partially) visible primitives, the shading is only executed
once per pixel and a final blending combines the shading
values of the supersamples. An optimization was introduced
with coverage sampling anti-aliasing (CSAA) [You06]. A
technique to supersample both visibility and shading inde-
pendently of each other was introduced with decoupled sam-
pling [RKLC∗11] which is aimed at complex effects such as
depth-of-field and motion blur.

Nonetheless, these methods do not mesh well with the
nowadays popular deferred shading techniques [DWS∗88],
and, in recent years, screen-space post-processing ap-
proaches have been explored very intensively. They are
based on edge-aware smoothing of the framebuffer and
one prominent example is morphological anti-aliasing
(MLAA) [Res09]. While originally introduced a decade ago,
a revival of this field has produced many variants and imple-
mentations on graphics hardware [JGY∗11, CML11, Lot11,
JESG12].

Prefiltering-based anti-aliasing gained traction in the last
few years. Manson and Schaefer [MS11] introduced wavelet
rasterization that can rasterize polygons and parametric

c© The Eurographics Association 2013.

T. Auzinger et al. / NSAA

curves, as well as a method for analytic rasterizing of 2D-
shapes that have curved boundaries and linear color gradi-
ents [MS13]. Another set of works, presented by Auzinger
et al., provides graphics hardware implementations for ana-
lytic anti-aliasing of linear shading [AGJ12] and exact hid-
den surface elimination [AWJ13].

These last methods are the most similar to our work but
have a major limitation. Fully analytic rasterization requires
an integrable shading function defined on the projected sur-
face to obtain a closed-form solution. So far, this was only
shown for linear functions and can be extended to poly-
nomials. Common shading functions are non-linear due to
perspective interpolation, normal vector normalization or
trigonometric functions. In this work we sidestep this prob-
lem by analytically anti-aliasing only the visibility signal
and thus allowing general shading.

3. Non-Sampled Anti-Aliasing

Our aim is to produce a perfectly edge anti-aliased raster
image by analytically solving the convolution

wP =
∫

χP(x)W (s− x) dx (1)

of the visible projected area of a primitive P (given by its
characteristic function χP) with a prefilter W at a given
sample location s (usually a pixel center). The weight wP
is then used to blend the shading samples at s. In terms
mulitsampling, this equates to taking an infinite amount
of visibility samples xi around s, and using their weighted
sum ∑i W (xi − s) for the final blending. Common multisam-
pling techniques restrict their sample positions to a rectan-
gular pixel region, whereas our method applies a radially
symmetric prefilter of arbitrary extent, thereby allowing for
unbiased reconstruction of the image signal.

Our proposed analytic pipeline consists of three main
stages, depicted in Figure 2: (1) Primitive gathering: first,
the relevant primitives that have to be considered for the
prefiltering at each sample location are listed. These are all
primitives that intersect the support of the filter kernel when
placed at the individual pixel centers. (2) Weight computa-
tion: given the list of relevant primitives per sample, their
contribution to the final sample color is computed by analyt-
ically evaluating the convolution given by equation 1. These
weights are used in a final (3) Blending stage, where the
primitives are rasterized and the fragments are blended with
weights of the previous stage.

Our framework was developed with current graphics ar-
chitecture in mind and efficiently utilizes the rasterization
pipeline as well as the GPGPU capabilities of modern GPUs.
Conceptually, our framework can accommodate arbitrary 2D
primitives and every regular spacing of sample locations. In
our implementation, however, we assume triangles as input
and pixel centers as our sample locations. The individual

10 2 1 0
21 2 1 1
21 2 2 1
10 1 1 0

...

GB B G G G B ...

...00 1 3 4 4 5Parallel Scan

Histogram Rasterization

Primitive Gathering
O�set Bu�er

Fragment
Histogram

Primitive ID Bu�er

w ci i i

Weight Bu�er

Final Blending

Polygon
Input

...

Analytic Pre�ltering

Exact Visibility
wG wB

cG cB

Figure 2: Overview of our NSAA pipeline and its three main
stages: primitive gathering (green, Section 3.1), weight com-
putation (red, Section 3.2), and final blending (blue, Sec-
tion 3.3). Intermediate buffers are shown in gray.

stages of our pipeline, as shown in Figure 2, will be de-
scribed in detail in the following sections.

3.1. Primitive Gathering

Convolution can be imagined as placing a prefilter at each
sample location and evaluating the corresponding integral
with each primitive (cf. Eq. 1). Mathematically, such a fil-
ter function should have infinite support to provide the best
possible low pass performance and it would rapidly vanish
with increasing distance from its center. As numerical preci-
sion is limited and minor changes in a filter are not visually
perceivable, it is safe to place a cutoff at a certain distance
from the center. In this way the influence region of the filter
kernel around each sample location is limited and only close
primitives are relevant. This considerably reduces the work-
load for large scenes or large output images as otherwise the
number of possible pairings would grow with the product of
primitive and sample count.

Given a set of input primitives, the first task of our algo-
rithm is to list all the primitives that intersect the filter kernel
of a given sample. As the number of intersecting primitives

c© The Eurographics Association 2013.

T. Auzinger et al. / NSAA

PprojPcons
h

W

(a)

h
r

Vproj
Vcons

(b) (c)

Figure 3: (a) For a given projected primitive Ppro j we need
to rasterize the conservative area Pcons in order to address all
placements of the prefilter kernel where it intersects Ppro j.
(b) A triangle is conservatively enlarged by scaling it around
its incenter according to its incircle radius r and the ker-
nel radius h. (c) During rasterization, all dark red locations
outside the minimum conservative box are discarded to re-
duce the number primitive IDs whose convolution evaluates
to zero as they lie outside of Pcons. Note that the light red
region still report superfluous IDs but are small compared to
the triangle areas.

per sample can vary strongly depending on the scene, it is
beneficial to store the per sample primitive lists in a linear,
tightly packed buffer (cf. Figure 2). This primitive ID buffer
is computed in two steps:

1. List Offset Computation: First, the required list sizes
for each sample are computed. This is easily achieved by
an initial scene rasterization pass, that accumulates a his-
togram of intersecting primitives using additive blending.
In a following GPGPU pass, a parallel scan [HB10] over
the linearized histogram buffer is performed to obtain a
list offset buffer, which contains the index of each sam-
ples’ first list element in the primitive ID buffer.

2. Filling the Primitive ID Lists: In a second scene raster-
ization pass, the list offsets are used to scatter the prim-
itive ID of each primitive to the corresponding positions
in the primitive ID buffer. As the histogram count above,
this can be performed conflict-free for concurrently writ-
ing threads by employing atomic counters. For this task,
we use an additional count buffer of the same length as the
offset buffer. The buffer index of each primitive ID is then
given as the sum of the offset and the count. The resulting
primitive ID buffer is then transfered to the next stage for
analytic visibility and weight computation.

Note that both rasterization passes are performed without
shading or depth buffering. All primitive IDs are collected
and visibility is computed at the next stage.

Conservative Rasterization. Due to the finite extent of
our radial prefilters, primitives can be relevant for a given
sample location without overlapping it, but intersecting only
the prefilter support. We therefore compute a conservative
coverage of all relevant sample locations when rasterizing a

primitive during the histogram, primitive gathering, and the
final blending stage. Similar to Hasselgren et al. [HAMO05],
this is achieved by an image-space thickening of the primi-
tives according to the kernel radius (cf. Figure 3a): in each
rasterization pass, we make use of the geometry shader stage
to first obtain the projection Ppro j of an input triangle P,
and then compute the required vertex offsets that produce a
conservative triangle Pcons. Offsetting an image space ver-
tex Vpro j to its new conservative position Vcons basically
equates to scaling its corresponding triangle around the cen-
ter of its incircle by a factor of r+h

r , where r is the radius
of the incircle, and h denotes the support radius of the filter
kernel (cf. Figure 3b). The resulting enlarged primitive Pcons
is then rasterized, and all its conservative fragments are pro-
cessed accordingly. To reduce the number of unnecessarily
evaluated fragments, which can become significant for acute
triangles, we discard any fragments outside a conservative
triangle clipping box in the pixel shader (cf. Figure 3c).

3.2. Analytic Weight Computation

In this stage we compute the exact contribution of all primi-
tives to the given sample locations. As shown in Figure 2,
it consists of two main steps. The analytic visibility step
performs hidden surface elimination and outputs the visible
parts of all primitives for the given view direction. This con-
stitutes the exact visibility signal on which we apply pre-
filtering. Note that in traditional depth-buffering the visi-
bility signal is (super)sampled directly, whereas we rely on
a closed-form solution of the filter convolution integral to
avoid any undersampling issues. Assuming triangular prim-
itives, the visible regions are polygons and the convolution
can be decomposed into a sum of integrals over the linear
boundary segments of each polygon. For both the visibility
and the prefiltering step we employ previous works and a
summary of both is provided in the next paragraphs.

The hidden surface elimination is performed with the help
of the analytic visibility method of Auzinger et al. [AWJ13].
It is a parallel algorithm that computes the boundaries of all
visible regions of the scene primitives. This is achieved by
taking the primitive geometry as input and determining the
edge intersection between projected triangles. After a sort-
ing of the intersections along their respective edges, occlu-
sions are detected with the help of prefix sum computations.
Similar to various scanline methods, this method propagates
visibility information along the edges by counting both the
start- and endpoints of occlusions and reporting the visible
parts of the primitives. We also inherit this method’s limi-
tations and require non-intersecting and consistently orien-
tated triangles as input to our implementation. The output of
this step is a set of line segments which constitute the bound-
aries of all visible regions of all scene primitives. Note that
this step does not depend on the output of the primitive gath-
ering section of our pipeline and can run concurrently with
it or on another device.

c© The Eurographics Association 2013.

T. Auzinger et al. / NSAA

In the following prefiltering step, we exploit the geometric
simplicity of the polygonal visible regions when evaluating
integrals over them. Previous works on analytic filter convo-
lution, such as the method of Manson and Schaefer [MS13]
and Auzinger et al. [AGJ12], decompose the convolution
over each visible region (cf. Eq. 1) into a sum of integrals
over its boundary. Furthermore, they support linear shading
functions which also contains our case of the constant char-
acteristic function χP. Each summand of the convolution de-
composition can be expressed in closed form and evaluated
with the numerical precision of the hardware.

In contrast to these previous works, we do not employ
full analytic shading as advanced shading effects cannot be
solved in closed form. We use the two methods of Auzinger
et al. [AGJ12, AWJ13] just for visibility prefiltering. This
can be seen as a substitution for the depth-buffering in the
traditional 3D graphics pipeline. Hidden surface elimination
is performed once per frame and yields the aforementioned
set of boundary line segments that is used as input to the pre-
filtering step together with the primitive ID buffer. As each
buffer entry id is associated with a sample location s, we
store the result of the filter convolution

∫
χid(x)W (s− x) dx

at the corresponding entry of the weight buffer. This can be
executed in parallel for all entries of the primitive ID buffer
and allows efficient utilization of massively parallel hard-
ware architectures. The filled weight buffer constitute the
output of this step.

3.3. Final Blending

For each sample location s and all its corresponding primi-
tives Pi, the previous stage outputs an analytically computed
weight wi that encodes the primitive’s relative contribution
to the final color of the sample (cf. Figure 2). We are left to
compute a shading value ci for each primitive. In traditional
rasterization, shading is performed directly at the sample lo-
cation (usually the pixel center or the centroid of contribut-
ing subsamples). Due to the positive extent of our prefilter,
it cannot be guaranteed that the projected primitive overlaps
the sample location. In this case we project the sample loca-
tion onto the primitive, i.e. we take the point on the primitive
with minimal distance to the sample location as our shading
location.

By issuing another rasterization pass, we can now com-
pute the shading value ci at this point, for example via
texturing or non-linear illumination and interpolation mod-
els. As each sample location gets contributions from vari-
ous primitives, we employ conventional blend operations to
aggregate the final sample color. Using a normalized pre-
filter kernel ensures that ∑i wi ≤ 1 for all weights wi asso-
ciated with a sample location. 1 − ∑i wi gives the weight
of the background and is non-zero if the support of the
local prefilter is not completely covered by the projected
scene primitives. Thus, the final color of a sample is given
by ∑i wici +(1−∑i wi)cB where cB denotes the background

color. Note that no depth buffering is used in this final raster-
ization step and that the scene visibility was already resolved
by the weight computation stage which assigns zero weight
to occluded primitives.

In this work we use a single shading value per primitive
and sampling location. Supersampling of the shading chan-
nel is a promising future extensions of our framework for
which the optimal sample positioning poses the biggest chal-
lenge. Current multisampling approaches place the shading
sample inside the projected area of the primitive whereas the
correct solution would require a placement inside the visi-
ble projected area. Otherwise it is possible to obtain shad-
ing values from hidden parts of the scene. For general tri-
angular scenes, the visible regions of a single input primi-
tive can already consist of several non-convex polygons and
an efficient sampling of these regions would deliver the op-
timal anti-aliasing quality for rasterization. This would re-
quire fundamental changes to our pipeline, however, as the
shading sample locations do not coincide any longer with the
rasterization grid of common graphics hardware.

4. Results and Applications

We developed a prototype implementation of our method us-
ing the graphics API DirectX 11 and the GPGPU framework
CUDA. The rasterization steps in both the primitive gather-
ing and final blending stage of our pipeline use traditional
rasterization with deactivated depth buffering. The parallel
scan and the weight computation stage rely on the flexibility
and parallel performance of general-purpose graphics hard-
ware. In the following sections we provide an evaluation of
the anti-aliasing performance of our implementation.

4.1. Evaluation

We use well established test pattern to asses the quality of
our method. The first pattern is a zoneplate, which features
concentric rings with decreasing width to introduce increas-
ing frequencies at the outer rings. The result of our method
using a Gaussian filter with a radius of two pixels is illus-
trated in Figure 4 top right. The color pattern is applied with
texture mapping. As one can easily see, the result is free of
undersampling artifacts due to the exact prefiltering even at
the demanding outer rim. Furthermore, the use of radial fil-
ters avoids the introduction of anisotropy artifacts along the
image diagonal.

As a second test case we employ a binary log grid to in-
vestigate the anti-aliasing quality of straight lines. Using the
same prefilter as above, we notice no perceivable artifacts in
the result shown in Figure 5 top right.

A simple test scene in Figure 7 shows the correct occlu-
sion handling and a non-linear shading model that has no
closed-form solution. By restricting our analytic prefiltering
to the visibility signal, sample-based shading models such as
texture mapping are supported by our framework.

c© The Eurographics Association 2013.

T. Auzinger et al. / NSAA

MSAA 1 MSAA 4 CSAA 32Q SMAA NSAA (our method)

Figure 4: Comparison of common anti-aliasing techniques with our method (NSAA) using a Gaussian prefilter. The second row
depicts a cutout of the top row zoneplate test pattern that was rasterized using the stated method.
Note that the performance of anti-aliasing methods is tied to the associated sampling characteristics. If the sampling is changed
after applying anti-aliasing, artifacts in the form of excessive blurring or aliasing are introduced. We refer the reader to the
electronic version of this paper to inspect the top row pattern close to their native resolution of 10242. The cutouts are added as
a convenience for readers of the printed version.

MSAA 1 MSAA 4 CSAA 32Q SMAA NSAA (our method)

Figure 5: Comparison of common anti-aliasing techniques with our method (NSAA) using a Gaussian prefilter. The second
row depicts a cutout of the top row log grid test pattern that was rasterized using the stated method. See Figure 4 for a further
explanation of the two rows.

4.2. Ground Truth Generation

One possible application of our method is the objective com-
parison of approximative anti-aliasing methods. In the first
and second row of Figures 4 and 5 we compare our out-
put with widely used multi-sampling methods. MSAA1 to
MSAA4 are sampling pattern that are specified by both the
OpenGL and DirectX standards, while CSAA 32Q is the
highest quality version of a NVidia specific variant. We

also compare with SMAA, the post-processing method of
Jimenez et al. [JESG12], which operates on the output im-
age of a rendering system. As can be seen, all methods show
various kinds of undersampling artifacts in the outer regions
of the zoneplate or along the straight lines. As our method
provides an analytically obtained reference, it can be con-
sidered as ground truth and any divergence from it can be
quantified with a suitable error metric.

c© The Eurographics Association 2013.

T. Auzinger et al. / NSAA

CSAA 32Q NSAA area filter NSAA tent filter NSAA Gauss filter

Figure 6: Comparison of different prefilters. Since our methods provides an exact evaluation of the filter convolution with the
visibility signal, our results can be used to directly compare prefilters on general scenes. A comparison with CSAA 32Q is given
to show that aliasing artifacts of common multisampling techniques would dominate the effects of different filter functions. We
show the results for three radially symmetric filters each with a radius of two pixel: a constant area filter, a cone shaped tent
filter and a Gaussian. See Figure 4 for a further explanation of the two rows.

Figure 7: A sequence of torus models rasterized with our technique using a Gaussian prefilter of a radius of two pixels. Note
that we correctly handle self occlusions of the torus geometry without using any depth buffering methodology. The silhouette
exhibits high-quality anti-aliasing and we support general shading models such as texture mapping and Phong shading.

4.3. Performance

In this section we provide an overview of the performance
characteristics of our method. For the presented test patterns
in Figures 4-6, which consist of up to 20k triangles, we ob-
tain near-interactive frame rates on a GeForce 680 with 4GB
device memory. As expected, the weight computation stage
is the bottleneck of our pipeline. More than 90% of the com-
putation time is spent on the exact visibility and the analytic
prefiltering, whereas less than 5% of the time is consumed
by the rasterization-based sections of the pipeline. Due to the
necessity of storing IDs and weights for all primitive frag-

ments, the memory requirement are in the 100MB range for
the aforementioned test scenes. A future extension of our
framework that we are planning to develop is a tile-based
rendering approach. For complex scenes, both the increased
amount of geometry and textures would limit the available
memory for our method. Using an adaptive screen-space
tiling, depending on the available memory, would expand
the capabilities of our framework to rasterize nearly arbi-
trary scenes. Even when processing only parts of a scene,
we expect an adequate saturation of the processing elements
of the graphics hardware.

c© The Eurographics Association 2013.

T. Auzinger et al. / NSAA

5. Conclusion

We presented an analytic prefiltering framework to perform
exact edge anti-aliasing with polynomial filter functions. An
implementation on graphics hardware was described and its
evaluation given. Furthermore, we showed the capability of
our system to serve as a ground truth for the evaluation of
sample-based anti-aliasing methods.

The main limitations of our work stem from the employed
analytic visibility method, which does not support inter-
secting primitives and requires consistently orientated input.
This is also the most promising avenue for future work as the
analytic visibility method could be generalized to accommo-
date not only intersecting triangles but also transparency ef-
fects. The framework can also be extended to allow for sep-
arable filter to give a complete framework for the evaluation
of prefilter performances.

References

[AGJ12] AUZINGER T., GUTHE M., JESCHKE S.: Analytic anti-
aliasing of linear functions on polytopes. Comp. Graph. Forum
31, 2pt1 (May 2012), 335–344. 3, 5

[AMHH08] AKENINE-MÖLLER T., HAINES E., HOFFMAN N.:
Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick,
MA, USA, 2008. 2

[AWJ13] AUZINGER T., WIMMER M., JESCKE S.: Analytic vis-
ibility on the GPU. Comp. Graph. Forum 32, 2pt4 (2013), 409–
418. 3, 4, 5

[Cat74] CATMULL E. E.: A subdivision algorithm for computer
display of curved surfaces. PhD thesis, 1974. AAI7504786. 2

[Cat78] CATMULL E.: A hidden-surface algorithm with anti-
aliasing. In Proc. of SIGGRAPH ’78 (New York, NY, USA,
1978), ACM, pp. 6–11. 2

[Cat84] CATMULL E.: An analytic visible surface algorithm for
independent pixel processing. In Proc. of SIGGRAPH ’84 (New
York, NY, USA, 1984), ACM, pp. 109–115. 2

[CJ81] CHANG P., JAIN R.: A multi-processor system for hidden-
surface-removal. SIGGRAPH Comput. Graph. 15, 4 (Dec. 1981),
405–436. 2

[CML11] CHAJDAS M. G., MCGUIRE M., LUEBKE D.: Sub-
pixel reconstruction antialiasing for deferred shading. In Proc. of
I3D ’11 (New York, NY, USA, 2011), ACM, pp. 15–22. 2

[Cro77] CROW F. C.: The aliasing problem in computer-
generated shaded images. Commun. ACM 20, 11 (Nov. 1977),
799–805. 1, 2

[Duf89] DUFF T.: Polygon scan conversion by exact convolution.
Proc. of Raster Imaging and Digital Typography 1989 (1989),
151–168. 2

[DWS∗88] DEERING M., WINNER S., SCHEDIWY B., DUFFY
C., HUNT N.: The triangle processor and normal vector shader:
a vlsi system for high performance graphics. In Proc. of SIG-
GRAPH ’88 (New York, NY, USA, 1988), ACM, pp. 21–30. 2

[Fra80] FRANKLIN W. R.: A linear time exact hidden surface
algorithm. In Proc. of SIGGRAPH ’80 (New York, NY, USA,
1980), ACM, pp. 117–123. 2

[GT96] GUENTER B., TUMBLIN J.: Quadrature prefiltering for

high quality antialiasing. ACM Trans. Graph. 15, 4 (Oct. 1996),
332–353. 2

[HAMO05] HASSELGREN J., AKENINE-MÖLLER T., OHLSSON
L.: Conservative rasterization. In GPU Gems 2: Program-
ming Techniques for High-Performance Graphics and General-
Purpose Computation (Gpu Gems), Pharr M., Fernando R.,
(Eds.). Addison-Wesley Professional, 2005. 4

[HB10] HOBEROCK J., BELL N.: Thrust: A parallel template
library, 2010. Version 1.7.0. 4

[JESG12] JIMENEZ J., ECHEVARRIA J. I., SOUSA T., GUTIER-
REZ D.: Smaa: Enhanced subpixel morphological antialiasing.
Comp. Graph. Forum 31, 2pt1 (May 2012), 355–364. 2, 6

[JGY∗11] JIMENEZ J., GUTIERREZ D., YANG J., RESHETOV
A., DEMOREUILLE P., BERGHOFF T., PERTHUIS C., YU H.,
MCGUIRE M., LOTTES T., MALAN H., PERSSON E., AN-
DREEV D., SOUSA T.: Filtering approaches for real-time anti-
aliasing. In ACM SIGGRAPH 2011 Courses (New York, NY,
USA, 2011), ACM, pp. 6:1–6:329. 2

[Lot11] LOTTES T.: FXAA-Whitepaper. Tech. rep., NVIDIA,
2011. 2

[McC95] MCCOOL M. D.: Analytic antialiasing with prism
splines. In Proc. of SIGGRAPH ’95 (New York, NY, USA, 1995),
ACM, pp. 429–436. 2

[McK87] MCKENNA M.: Worst-case optimal hidden-surface re-
moval. ACM Trans. Graph. 6, 1 (Jan. 1987), 19–28. 2

[Mit87] MITCHELL D. P.: Generating antialiased images at low
sampling densities. In Proc. of SIGGRAPH ’87 (New York, NY,
USA, 1987), ACM, pp. 65–72. 2

[MN88] MITCHELL D. P., NETRAVALI A. N.: Reconstruction
filters in computer-graphics. In Proc. of SIGGRAPH ’88 (New
York, NY, USA, 1988), ACM, pp. 221–228. 2

[MS11] MANSON J., SCHAEFER S.: Wavelet rasterization.
Comp. Graph. Forum 30, 2 (2011), 395–404. 2

[MS13] MANSON J., SCHAEFER S.: Analytic rasterization of
curves with polynomial filters. Comp. Graph. Forum 32, 2pt4
(2013), 499–507. 3, 5

[Mul89] MULMULEY K.: An efficient algorithm for hidden sur-
face removal. In Proc. of SIGGRAPH ’89 (New York, NY, USA,
1989), ACM, pp. 379–388. 2

[Res09] RESHETOV A.: Morphological antialiasing. In Proc. of
HPG ’09 (New York, NY, USA, 2009), ACM, pp. 109–116. 2

[RKLC∗11] RAGAN-KELLEY J., LEHTINEN J., CHEN J.,
DOGGETT M., DURAND F.: Decoupled sampling for graphics
pipelines. ACM Trans. Graph. 30, 3 (May 2011), 17:1–17:17. 2

[SO92] SHARIR M., OVERMARS M. H.: A simple output-
sensitive algorithm for hidden surface removal. ACM Trans.
Graph. 11, 1 (Jan. 1992), 1–11. 2

[SSS73] SUTHERLAND I. E., SPROULL R. F., SCHUMACKER
R. A.: Sorting and the hidden-surface problem. In Proc. of
AFIPS ’73 (New York, NY, USA, 1973), ACM, pp. 685–693. 2

[Tur86] TURKOWSKI K.: Anti-aliasing in topological color
spaces. In Proc. of SIGGRAPH ’86 (New York, NY, USA, 1986),
ACM, pp. 307–314. 2

[WA77] WEILER K., ATHERTON P.: Hidden surface removal us-
ing polygon area sorting. In Proc. of SIGGRAPH ’77 (New York,
NY, USA, 1977), ACM, pp. 214–222. 2

[You06] YOUNG P.: Coverage Sampled Antialiasing. Tech. rep.,
NVIDIA, 2006. 2

c© The Eurographics Association 2013.

