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In spite of the recent surge in the popularity of statistical approaches to vision, the joint statistics of coregis-
tered range and light-intensity images have gone relatively unexplored. We investigate statistical correla-
tions between images and the surface shapes that produced them. We determine which linear properties of
range images can be best predicted from simple computations on intensity information, and we determine
those properties of intensity images that best predict range information. We find that significant (up to
r 5 0.45) and potentially exploitable correlations exist between linear properties of range and intensity im-
ages, and we explore the structure of these correlations. © 2003 Optical Society of America

OCIS codes: 150.5670, 330.3790.
1. INTRODUCTION
The study of shape from shading has been a major branch
of vision since the 1970s and has its roots even earlier, in
the photometric investigations of the lunar surface per-
formed in the 1920s.1 Since this time, the standard ap-
proach to the problem has involved modeling the behavior
of light as it travels through space and interacts with sur-
faces and then attempting to invert the image formation
processes. Unfortunately, inverting this process is highly
underconstrained, and various assumptions about image
formation models and their parameters, such as Lamber-
tian surface reflectance, uniform albedo, and shadow-free,
single-point-source illumination, have to be made for this
approach to work. However, these assumptions do not
always hold in natural images, and this often leads to
poor generalization for these algorithms.

There have been some notable exceptions to this trend.
Shape-from-shading algorithms that make use of a direct
association between luminance images and the three-
dimensional (3D) models used to generate them were pre-
sented by Freeman et al.2 and also by Lehky and
Sejnowski.3 In each of these cases the image statistics
used were derived from computer-generated images.
These images make the same assumptions made by tra-
ditional shape-from-shading algorithms. These ap-
proaches suggest that a deeper understanding of the joint
statistics of natural images and their associated 3D struc-
tures might be important for the successful development
of a statistical approach for 3D inference.

There has been considerable recent interest in the sta-
tistics of natural images, particularly in the context of im-
age coding4–7 and scale invariance8,9 as well as in the
joint statistics of neighboring pixels or wavelet
responses.10,11 However, there has been relatively little
investigation into joint statistics of range and luminance
images. We know of only one study that explores these
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joint statistics. It has been observed that human percep-
tion of the length of a line segment on a blank background
depends on the orientation of the line. In a recent study,
Howe and Purves12 examine range images to find that
this bias closely matches the 3D length of these line seg-
ments when projected into range images. The authors go
on to restrict their investigation to only those intervals
that correspond to edges in the luminance image and
show that the finding still holds. This result shows how
investigation into the statistics of range and coregistered
luminance images may help to explain how depth is com-
puted in the brain.

There may be many factors that affect the statistics of
natural images that cannot be inferred from simple physi-
cal models. For example, the statistical relationship be-
tween images and their surfaces will be affected by the
natural statistics of illumination direction, a factor that is
known to heavily influence human performance on shape-
from-shading problems.13 Other factors that influence
this relationship may include the statistics of object size
and shape in natural scenes as well as the natural statis-
tics of the surface properties of those objects. This opens
up the possibility that there may be simple, exploitable
statistical relationships between real images and surface
shapes that have gone overlooked. Discovering these re-
lationships might further the development of vision algo-
rithms that utilize shape-from-shading information. It
may also provide insight into how the human visual sys-
tem is so adept at solving these problems.14

For this study we constructed a database of coregis-
tered high-resolution two-dimensional (2D) color images
and 3D range images using the most recent scanner tech-
nology. We then conducted a first attempt to explore the
statistical correlations between images in these two do-
mains. We searched for simple, local, linear correlations
using linear regression, ridge regression, and canonical
2003 Optical Society of America
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correlation. These techniques allowed us to extract some
simple but interesting statistical trends between inten-
sity and range images. We hope this and future explora-
tion of these data will provide a better understanding of
the statistical distribution and correlations between 2D
images and 3D structures that will provide a solid foun-
dation for an image-based statistical approach for 3D in-
ference.

2. METHODS
To investigate these statistical relationships, we first col-
lected a database of coregistered intensity and range im-
ages (where by coregistered we mean that corresponding
pixels of the two images correspond to the same point in
space). We selected the Riegl LMS-Z360, the most so-
phisticated available long-range scanner, to construct our
image database. The Z360 collects coregistered range
and color data by using an integrated color photosensor
and a time-of-flight laser scanner with a rotating mirror.
The scanner has a maximum range of 200 m and a depth
accuracy of 12 mm. However, for each scene in our data-
base, multiple scans were averaged to obtain an accuracy
of 6 mm. For the purposes of this study, red, green, and
blue color values were combined into one gray-scale light-
intensity value. The measurement of each pixel is
known to be independent. This means that no global im-
age processing or automatic gain control is applied to the
images. All range measurements are reported in meters.
All scanning is performed in spherical coordinates.
Using this scanner, we collected scans of a wide variety
of outdoor scenes. Example range and intensity image
pairs appear in Fig. 1. All scenes in our database are
outdoor shots, taken under sunny conditions during the
week of June 17th, 2002, in western Pennsylvania. The
camera was kept level with the horizon and was posi-
tioned either on the ground or on a tripod, roughly 1 m off
the ground. Over 100 scenes were taken at various
resolutions. However, for this paper we selected a 50-
scene subset of our database with spatial resolution of
22.5 6 2.5 pixels per degree. This removes from our
dataset images with very high or low spatial resolutions.
Extremely dark images were also discarded. The con-
tents of our images include scans of trees and wooded ar-
eas, rocky areas, building exteriors, and sculptures.
Twenty-one images were of urban scenes and twenty-nine
were of rural scenes. Each image required minutes to
scan, hence only stable and stationary scenes were taken.
The average size of our images was 1000 3 604 pixels, for
a total of 30,177,930 pixels.

Regions represented by monochrome white noise in
Fig. 1 are areas where no range information is available.
The surface could be out of range, such as sky, or too re-
flective to be measured by the scanner, such as water.
All image patches that contain invalid pixels were ex-
cluded from our calculations.

As is common in the analysis of the natural statistics of
images,6,15 we work with the logarithm of the light-
intensity values rather than intensity itself. One advan-
tage of this is that image contrast, rather than being a
Fig. 1. Two sample image pairs from our database: one from the urban subset, one from the rural subset. The urban image is of
Hammerschlag Hall, Carnegie Mellon University, Pittsburgh. The rural image is of trees and bushes in Schenley Park, Pittsburgh.
Out-of-range regions are depicted using monochrome white noise.
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Fig. 2. Averages of all image patches.
multiplicative factor, becomes an additive factor under log
intensity. This means that linear filters respond to con-
trast rather than raw differences in amplitude, and there-
fore zero-sum linear filters are insensitive to the total con-
trast of each patch.

We transform the range data in the same way, by ap-
plying a logarithmic transform, as was done in previous
studies of pure range data. As described by Huang
et al.,16 a large object and a small object of the same
shape appear identical to the eye when the large object is
positioned appropriately far away and the small object is
close. However, the raw range measurements of the
large, distant object will differ from those of the small ob-
ject by a constant multiplicative factor. In the log range
data, the two objects will differ by an additive constant.
Therefore, a zero-sum linear filter will respond identically
to the two objects.

In this study, we work with 25 3 25 patches of coregis-
tered light intensity and range data. There are
15,577,472 patches in our database subset that contain no
invalid (out-of-range) pixels; 8,872,641 of these patches
were from rural images, and 6,704,831 patches were from
the urban images. We treat our data as 15.6 million ob-
servations of 1250 random variables: 625 luminance
variables, and 625 range variables. With a spatial reso-
lution of 22.5 pixels per degree, each patch subtends a vi-
sual angle of roughly 1.1 deg.
3. RESULTS
A. Patch Averages
In the study of image statistics, it is often assumed that
images are translationally invariant. This assumption is
based on the belief that the probability of seeing any im-
age is equal to the probability of seeing the same image,
only shifted by some distance and in some direction.
However, we do not make this assumption, because some
viewing angles might be more likely than others, and the
range data might not be translationally invariant.
Therefore we must compute the average values of each
point of our 25 3 25 image patches independently. Let N
be the number of patches in our database, and let LP and
RP be the Pth log light-intensity patch (luminance) and
log range patch, respectively. Then

L̄~i, j ! 5
1

N (
P51

N

LP~i, j !, (1)

R̄~i, j ! 5
1

N (
P51

N

RP~i, j !, (2)

where i, j indicates the position within the image patch
and L̄(i, j) and R̄(i, j) denote the patch averages.

The mean log intensity and log range image patches
are shown in Fig. 2. For explanatory purposes, we also
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show the mean nonlog intensity and range patches (which
were computed before the logarithm was applied). As
can be seen in the figure, the average log intensity varies
between 2.7863 and 2.7923 across the 25 3 25 patch, for
a total range of 0.0060. This is a fairly narrow range for
log intensity values, which have a standard deviation of
0.82. This suggests that the mean intensity of luminance
images is roughly translationally invariant.

The average range patch, on the other hand, appears to
exhibit slant relative to the vertical plane. The average
log range values vary between 2.8552 and 2.9244, for a to-
tal range of 0.0692. This is a much broader range for log
range values, which have a standard deviation of approxi-
mately 0.91 log m. Therefore, the structure present in
the average log range patch is considerably more signifi-
cant than the structure present in the average log inten-
sity patch.

To better understand the structure observed in the av-
erage range patch, it may be useful to temporarily return
to nonlogarithmic range values. Again, the average
range patch is very close to planar, with the angle of
maximum ascent close to the vertical. This slant arises
from the receding ground plane in most range images.
Recalling that range values are in meters, this result
shows that, on average, within our database, the distance
from the observer to the closest object increases at a rate
of 1.3 m per visual degree in the vertical direction. We
found similar results when we analyzed the rural and ur-
ban subsets of the database separately, with little varia-
tion across the average luminance patch, and an average
incline of 1.5 m/deg in the rural images and 1.0 m/deg in
the urban images.

Clearly, this result is highly sensitive to the choice of
subject matter for each image and to bias in the orienta-
tion of the camera. We do not claim that our results gen-
eralize to the set of all real images. An image database
of aerial photography, for example, is unlikely to contain a
similar statistic. However, images in our database are
typical of rural and urban outdoor scenes. We expect
similar results to be observed in similar image databases.

B. Covariance
To investigate correlational relationships between lumi-
nance and range data, we must understand how the indi-
vidual pixels in the image patches correlate with one an-
other. We now find the covariance between each pair of
pixels in our set of image patches. We begin by centering
our data by subtracting the average patch from each
patch:

L̂P 5 LP 2 L̄, (3)

R̂P 5 RP 2 R̄. (4)

Note that translational invariance is not assumed for
any data; each of the 1250 variables is centered indepen-
dently. Let L and R be the N 3 252 matrices of all cen-
tered log intensity and log range patches, respectively.
Each row of L and R is a vectorized image patch, such
that

L~25m1n !, p 5 L̂p~n, m !,

where LP(0, 0) is the upper left of the image patch, and
LP(24, 0) is the upper right of the patch. The 625
3 625 matrix L8L contains the covariance between each
pair of pixels in the intensity patch. Likewise, R8R is
the range covariance matrix, and L8R is the cross covari-
ance matrix. All of the results reported in the remainder
of this paper can be derived from these matrices.

In the top row of Fig. 3 we show the correlation be-
Fig. 3. (a) Correlation between intensity at pixel (13, 13) and all the pixels of the intensity patch. This represents one row of the
covariance matrix L8L, normalized by variance. (b) Correlation between intensity at pixel (13, 13) and the pixels of the range patch.
This is one row of the matrix L8R, normalized by variance. (c) Correlation between range at pixel (13, 13) and the pixels of the intensity
patch. This is one column of the matrix L8R, normalized. (d) Correlation between range at pixel (13, 13) and the pixels of the range
patch. This is one row of the matrix R8R, normalized. (e) Correlation between intensity and range at pixel (i, i). This represents the
diagonal of the covariance matrix L8R, normalized by variance. (f) Same figure as (e), except measured over rural images only. (g)
Same figure as (e), except measured over urban images only.
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tween a specific pixel and other pixels in the patch. The
correlation is obtained by means of the equation

r 5 cor@X,Y# 5
cov@X,Y#

Avar@X#var@Y#
.

We can make several interesting observations from this
correlation graph. First, we see that neighboring range
pixels are much more highly correlated than neighboring
luminance pixels. This suggests that the low-frequency
components of range data contain much more power than
in luminance images and that the spatial Fourier spectra
for range images drops off more quickly than for lumi-
nance images, which are known to have roughly 1/f spa-
tial Fourier amplitude spectra.8 Because the measure-
ment of each pixel is independent of the others, any
regular distortion of the power spectrum of range images
caused by the scanner must be caused by the divergence
of the laser beam measuring the distance. For the Riegl
LMS-Z360 scanner, the beam divergence is 0.11 degrees,
which is approximately 2 pixels in diameter on the im-
ages in our database (0.04 to 0.05 deg/pixel). Only the
highest spatial frequencies could be influenced by this di-
vergence.

This finding is reasonable because factors that cause
high-frequency variation in range images, such as texture
or occlusion contours, tend also to cause variation in the
luminance image. However, much of the high-frequency
variation found in luminance images, such as shadow and
surface markings, are not observed in range images.

Second, we see that luminance and range values are
negatively correlated, with correlations in the neighbor-
hood of 20.18. Physics-based approaches to shape from
shading consistently conclude that shape-from-shading
inference offers only relative depth information, not abso-
lute depth information. Our findings suggest that, in
natural images brighter pixels have a tendency to be
closer to the observer. It has been observed as far back
as Leonardo da Vinci that humans perceive brighter
objects as closer.17 Artists have made use of this fact
to help create compelling illusions of depth.18,19 Later,
psychologists confirmed this fact in controlled
experiments.20–22 The result presented here is the first
evidence that this relationship actually holds in nature.

In psychology literature, this effect is known as relative
brightness.23 Possible explanations are offered as to why
such a perceptual bias exists. One common explanation
is that light coming from distant objects has a greater
tendency to be absorbed by the atmosphere. Under cer-
tain weather conditions, such as smog, it is possible for
the tendency of the atmosphere to absorb light to out-
weigh its tendency to scatter light toward the eyes. How-
ever, all of the images in our database were taken in clear
and sunny conditions. Furthermore, the range of opera-
tion for the LMS-Z360 scanner is roughly 200 m, and
most of our images were taken under much shorter range.
Atmospheric effects are not considered effective until dis-
tances considerably further than this.24

Another explanation that is given is that nearby objects
reflect more light to our eyes.23 For any given point on
an object, the total amount of light that is reflected from
that point and into our eye is inversely proportional to the
square of the distance to that point. However, the area of
the retina occupied by that object also decreases propor-
tionally with the square of the distance to that object.
Therefore the amount of light per unit area on the retina
remains the same. Except under extreme conditions on a
discrete sensor array, this causes perceived brightness to
remain the same.

Other explanations are physiological or psychological
in nature and thus cannot explain the trend observed in
our database. For example, it has been suggested the
bias is a combination of the observations that bright ob-
jects appear larger (an effect known as irradiance) and
larger objects appear closer.20 Another explanation has
been that bright objects are seen more clearly and clear
objects are seen as closer, owing to scattering of light in
the atmosphere (the aerial perspective).22 Other theories
involve the presence of a third, background stimulus.
Studies have shown that against gray or dark back-
grounds, brighter stimuli appear closer. However,
against a white background, darker stimuli appear
closer.25 Higher order statistical analysis would be
needed to search for a physical basis to trends involving
the statistical relationship between three stimuli in our
database.

As with the patch average results, the correlation
found in this database may be dependent on bias in the
camera position or orientation. Owing to limitations of
the camera, no object in our images is closer than 2 m
away, and all of the scenes in our images were brightly lit.
The results we obtain might be different if the camera
were consistently placed in shaded, cluttered locations,
looking out into brightly lit clearings. For example,
scenes typical to predators may be different than those
typical to prey and therefore may have different statis-
tics.

On inspection of the images in our database, we sus-
pected that the major cause of the correlation was the ef-
fects of shadows within the environment. For example,
leafy foliage constitutes a significant portion of the data-
base. Since the source of illumination comes from above,
and outside any tree, the outermost leaves of a tree or
bush are typically the most illuminated. Deeper into the
tree, the foliage is more likely to be shadowed by neigh-
boring leaves. On the other hand, urban environments
contain more flat surfaces and fewer concavities or places
of shadow. We expected the correlation to be much stron-
ger for the rural scenes.

To test this hypothesis, we repeated the analysis on the
rural image subset and the urban image subset indepen-
dently. In the bottom row of Fig. 3 we plot the correla-
tion between range and intensity pixels at each location
in the image patch. As can be seen from the figure, the
correlations for the rural dataset have strengthened to
20.32, while those for the urban dataset are considerably
weaker, in the neighborhood of 20.06.

If the correlation found in the original dataset were due
to atmospheric effects, we would expect the correlation to
be equally strong in both datasets. The average depth in
the urban database (32 m) was similar to that of the rural
database (40 m), so atmospheric effects should be similar
in both datasets. However, the correlation seems to come
almost entirely from the rural scenes.
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We feel that the true source of the correlations comes
from the statistics of surfaces in natural images and the
effects of shadows on these surfaces. In nature, surfaces
often have concavities and interiors. Because the light
source is typically positioned outside of these concavities,
the interiors of these concavities tend to be in shadow and
more dimly lit than the object’s exterior. At the same
time, these concavities will be farther away from the
viewer than the object’s exterior. Thus the correlation
found in an image database should depend a great deal on
the statistics of surface shape. In rural images, the leafy
structure of foliage and the rocky texture of stone provide
an abundance of concavities at any spatial scale. The
smooth surfaces of building exteriors offer far fewer op-
portunities for self-shadowing. It is still possible that
significant negative correlation may be observed in data-
bases of indoor scenes. Crumpled fabrics and cluttered
environments often contain shadowed concavities.

Langer and Zucker26 observed that for continuous
Lambertian surfaces of constant albedo, lit by a hemi-
sphere of diffuse lighting and viewed from above, a ten-
dency for brighter pixels to be closer to the observer can
be predicted from the equations for rendering the scene.
Intuitively, the reason for this is that under diffuse light-
ing conditions the brightest areas of a surface will be
those that are the most exposed to the sky. When viewed
from above, the peaks of the surface will be closer to the
observer. Although these theoretical results have not
been extended to more general environments, our results
show that in natural scenes, these tendencies remain,
even when scenes are viewed from the side, under bright
light from one direction. In spite of these differences,
both phenomena seem related to the observation that con-
cave areas are more likely to be in shadow.

Finally, we observe that there is structure in the cova-
riance between luminance and range pixels. Not only is
the luminance of a pixel correlated with distance at that
same pixel, but the same luminance value is even more
highly correlated with distance at pixels lower in the
patch. This is the first indication of many from our da-
tabase that bright surfaces tend to face upward. In the
remainder of the paper, we present different ways of view-
ing and understanding these correlations and their struc-
tures.

C. Convex Range Filters
In the next three subsections, we will search for those
properties in intensity images that correlate most
strongly with convexity in range images. We begin by
defining a linear filter that models convexity.

We model three types of convexity: vertical convexity,
horizontal convexity, and isotropic (nondirectional) con-
vexity. Vertical convexity is modeled as the second verti-
cal derivative of a Gaussian:

G~x, y ! 5
1

sA2p
expS 2

x2 1 y2

s 2 D , (5)

FV * R 5
]2

]y2 @G~x, y ! * R~x, y !#

5
]2G

]y2 * R, (6)
where R is the range image and s is set to 6. The second
derivative of a function detects the rate of change in the
slope of a surface. Recalling that higher range values are
more distant, we see that this linear filter will respond
strongly for a surface whose tangent plane faces upward
toward the top of the patch and downward toward the
bottom. This defines vertical convexity. Note that, ac-
cording to this definition of convexity, corners and points
near occlusion boundaries on a foreground object are also
considered convex.

Horizontal convexity is modeled similarly, as the sec-
ond horizontal derivative of a Gaussian. Isotropic con-
vexity is modeled as a Laplacian of Gaussian:

FH * R 5
]2G

]x2 * R~x, y !, (7)

FI * R 5 ¹2@G~x, y ! * R~x, y !#, (8)

FI 5 FV 1 FH . (9)

All three filters were normalized to form zero-mean unit
vectors:

(
i, j

F~i, j ! 5 0, (10)

(
i, j

F~i, j !2 5 1. (11)

These three filters are shown in Fig. 4(a).

D. Weighted Averages
Convolving the range filter with the range data provides a
measure of surface convexity at each point. We now ask,
How do the pixels of a patch in the intensity image covary
with this measure of surface convexity? To answer this
question, we compute the covariance between the inten-
sity image and the range filter’s response. Note that this
covariance is equal to the average of all intensity patches,
weighted by filter response:

cov@LP , F • RP# 5 L8RFR (12)

5
1

N (
P51

N

~F • RP 2 E@F • RP# !

3 ~LP 2 E@LP# ! (13)

5
1

N (
P51

N

~F • RP 2 F • R̄ !~LP 2 L̄ !

5
1

N (
P51

N

~F • R̂P!L̂P

5 E@~F • R̂P!L̂P#, (14)

where F • RP is the dot product of the linear filter F with
the range patch RP .

These covariances (or weighted averages) are shown in
Fig. 4(b). In Fig. 4(c) we show the correlation between
the range filter response and each log intensity pixel.
The vertical convexity response correlates positively with
light intensity toward the top of the patch, and it corre-
lates negatively with light intensity toward the bottom of
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the patch. This suggests that items that are vertically
convex, such as spheres or horizontal cylinders, are more
likely to be well lit toward the top of the convexity,
whereas concave items are more likely to be bright to-
ward the bottom and dark toward the top.

The weighted average for the horizontal convex filter
FH shows positive correlation with light toward the upper
central region of the patch, and this positive correlation
extends downward and toward the sides of the patch.
One possible explanation for high correlation with inten-
sity toward the top of the patch is that areas of positive
Gaussian curvature, such as a sphere, are more common
than areas of negative Gaussian curvature, such as the
horn of a trumpet. Some studies have suggested that hu-
mans have a perceptual bias toward positive Gaussian
curvature.27 It is possible that this bias is matched in
nature. If this were the case, horizontally convex regions
would tend to be vertically convex as well and would
therefore also tend to be brighter toward the top.

E. Linear Correlations
In the preceding subsection we observed that our linear
models of convexity correlate with the intensity of light in
that region. We now ask three questions: Can we use
these correlations to predict the convexity response?
What linear intensity filter yields a response that corre-
lates most highly with convexity response? How well do
these filter responses correlate?

To answer these questions, we perform linear regres-
sion on the range filter response. The regression coeffi-
cient FL is the linear filter that minimizes the sum
squared error between the two filter responses:

FL 5 arg min
FL

(
P51

N

~FL • L̂P 2 FR • R̂P!2.
It can also be shown that the vector FL maximizes
cor@FL • LP , FR • RP#, just as the vector L8RFR (the
weighted average) lies in the direction of the vector that
maximizes cov@FL • LP , FR • RP#.

Let FR be the 252 3 1 column vector of range filter co-
efficients for a single linear range filter, and let FL be the
252 3 1 column vector of regression coefficients. Then
the regression coefficients are computed as follows28:

FL 5 ~L8L!21L8~RFR!. (15)

Note that L8RFR is simply the weighted average,
cov@LP , FR • RP#, in vector form, and that L8L is simply
the covariance matrix of the log intensity values.

The regression coefficients for our three convexity fil-
ters are shown in Fig. 5(b). We see that the results are
highly noisy. To illustrate why, we perform singular-
value decomposition on the symmetric matrix L8L
5 U8DU, so that U is an orthonormal matrix whose col-
umns are eigenvectors of L8L and D is a diagonal matrix
of eigenvalues. We then have

FL 5 UD21U8L8~RFR!, (16)

U8FL 5 D21U8L8~RFR!. (17)

This shows that when FL is projected into the principal
components of the luminance images, the coefficients are
equal to those of L8(RFR) divided by the corresponding
eigenvalue. This has the effect of amplifying the values
of those components with the least variance in the image
database, which are therefore the most prone to noise.
In the case of natural images, the eigenvectors of lowest
eigenvalue are the high-frequency components of the im-
ages, and the nth eigenvalue of L8L is roughly propor-
tional to 1/n.8,15 Thus the high-frequency components
Fig. 4. Convexity weighted averages. (a) Image and surface plots of the three convex range filters, (b) covariance between intensity
patch pixels and range filter response, (c) correlation between intensity and range filter response.
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Fig. 5. Linear regression results. Correlation values can be found in Table 1. (a) Convex range filters, (b) ordinary least-squares
regression kernels (intensity image filters), (c) ridge regression kernels.
have considerably smaller eigenvalues, and so noise in
the high-frequency bands of the weighted averages will be
amplified considerably in the regression coefficients. In
Fig. 6 we show the coefficients of the principal compo-
nents of the weighted averages and the regression kernels
for our three range filters.

We wish to compensate for the possibility that the large
high-frequency coefficients that we observe in the regres-
sion kernels are due to noise. We use a standard tech-
nique known as ridge regression to simultaneously mini-
mize both sum squared error and the total length of the
intensity filter vector FL . Ridge regression reduces
those coefficients that are the least useful in predicting
the range filter response,

Fig. 6. Principal components coefficients. (a) Convex range fil-
ter, (b) principal components coefficients of weighted average, (c)
principal components coefficients of ordinary least-squares re-
gression kernels.
F̃L 5 arg min
FL

F (
P51

N

~FL • L̂P 2 FR • R̂P!2

1 l(
i, j

FL~i, j !2G ,

where F̃L is the ridge-regression optical filter, and l is a
parameter of the regression. It can be shown28 that solv-
ing for this equation yields

F̃L 5 ~L8L 1 lI!21L8~RFR!. (18)

For each range filter, we used cross validation to find
the value of l used. For each of the 50 images in our da-
tabase, we computed the covariance matrices L8L and
L8(RFR) from the image subset consisting of each of the
49 remaining images. We then computed F̃L for a range
of values of l and tested the sum squared error yielded by
each F̃L on the one remaining image. l was chosen to be
the value that yielded the smallest mean error of the 50
tests.

The resulting ridge-regression kernels are shown in
Fig. 5(c). We see that convexity in range images is best
predicted by brighter luminance above the point of con-
vexity, accompanied by darker luminance below. We also
see that there is a remarkable resemblance between the
regression kernel for isotropic convexity with a Lamber-
tian sphere lit from above.



1300 J. Opt. Soc. Am. A/Vol. 20, No. 7 /July 2003 Brian Potetz and Tai Sing Lee
In addition to showing which properties of intensity im-
ages are most correlated with specific linear properties of
range images, regression analysis also provides a mea-
sure of how strong these relationships are. The values of
r for each filter are shown in Table 1. The correlational
values for the convexity filters are significant, but they
are not sufficient to accurately predict convexity from an
intensity image in any practical application. However, it
should be noted that the original log range image could be
fully reconstructed, up to an additive constant, from the
response to the isotropic convex filter alone, by using de-
convolution. This is because the convex range filters
used in this experiment contain all spatial frequencies ex-
cept very low and very high spatial frequencies. There-
fore correlations near 1 would signify that nearly perfect
reconstruction of the range image could be achieved from
linear processing on the intensity image. Perfect recon-
struction is a difficult goal, considering that the images in
this database are complex natural images and they con-
tain surfaces that violate the assumptions described in
Section 1. Even humans, who could not accurately esti-
mate a complete range image from a natural image, must
rely on several monocular and binocular cues to estimate
depth information. Modern shape-from-shading tech-
niques typically perform poorly on these images.

To estimate the total predictive power of these simple
correlation-based techniques, we use regression to predict
a single range pixel from the 25 3 25 intensity patch.
The results are shown in Fig. 5 and Table 1. Predicting a
single range pixel from each intensity patch provides a
way to predict the original range image without introduc-
ing noise due to deconvolution. The correlation for this
filter is 0.21. It is can be shown from Eq. (15) that

cov@FL • LP , FR • RP# 5 var@FL • LP#, (19)

cor@FL • LP , FR • RP#2 5
var@FL • LP#

var@FR • LR#
.

(20)

This means that 4% of the total variation in range images
can be explained by the intensity image by using simple
second-order statistic techniques.

The above calculation estimates how well the intensity
image predicts the complete range image and all of its
properties. However, we expect that some properties of
range images are more easily predicted than others. In
the next subsection, we examine those properties of range
images that can be best predicted from the luminance im-
age.
F. Canonical Correlation
We have now seen that the responses to convex linear
range filters correlate with the responses of certain inten-
sity filters. Our approach so far has been to choose spe-
cific range filters and investigate their relationship with
coregistered light intensity. In this subsection we extract
the filters or features in both domains that are most cor-
related with or predictive of one another. What we would
now like to know is, What linear properties of range im-
ages are most easily predicted by the intensity image?
Is FV the range filter whose regression will yield the high-
est correlation between the filter responses, or are there
other range filters that are more correlated with the in-
tensity data?

To answer this question, we use a technique known as
canonical correlation. Canonical correlation finds the
pair of vectors, FL

1 and FR
1 that maximizes the correlation

cor@FL
1
• LP , FR

1
• RP#.

It then finds vectors FL
2 and FR

2 that maximize correlation
subject to the constraint that cor@FL

2
• LP , FL

1
• LP# 5 0

and cor@FR
2
• RP , FR

1
• RP# 5 0. The process repeats

until the vectors span the space of image and range
patches. It can be shown that FL

n and FR
n are propor-

tional to the nth eigenvectors of the matrices
(L8L)21(L8R)(R8R)21(R8L) and (R8R)21(R8L)(L8L)21

3 (L8R), respectively.29 Because the correlation we
seek to minimize is independent of the magnitude of the
vectors FL

n and FR
n , we can constrain each filter to have

unit variance (var@FL
n
• LP# 5 1) without affecting the

value of the correlations. Let FL and FR denote the 252

3 252 matrices of these eigenvectors. Then, not only do
FL and FR whiten the space of intensity and range
patches, but cor@FL

n
• LP , FR

m
• RP# Þ 0 implies that m

5 n.
Once again, the resulting linear filters contain a great

deal of high-frequency noise. By combining ridge regres-
sion with canonical correlation, we obtain a much cleaner
result. This technique is known as canonical ridge,30,31

and it is equivalent to finding eigenvectors of the matrices
(L8L 1 IlL)21(L8R)(R8R 1 IlR)21(R8L) and (R8R
1 IlR)21(R8L)(L8L 1 IlL)21(L8R). The results are
shown in Fig. 7.

First, it is not surprising that the resulting filters are
all highly localized in Fourier space. If the range filters
in Fig. 7 had power in all spatial frequencies, then decon-
Table 1. Linear Regression Results for the Three Linear Convexity Filtersa

Range Filter l r r̃ r̃R r̃U

FV 0.3 0.1358 0.1353 0.1760 0.1026
FH 0.7 0.0447 0.0436 0.0744 0.0542
FI 0.5 0.1053 0.1046 0.1409 0.0862
FP 10.0 0.2147 0.2142 0.3784 0.0769

a r is the correlation between the intensity filter response and the ordinary least squares regression range filter response (cor@FL • LP , FR • RP#). r̃ is
the correlation after ridge regression. r̃R and r̃U are the correlations in the rural and urban datasets, respectively. The fourth filter, FP is the single-pixel
response filter shown in row four of Fig. 5.
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volution would allow us to reconstruct the complete range
image from prediction on the basis of a single intensity fil-
ter. We already have seen that the ability to reconstruct
the full range image from correlational statistics is lim-
ited.

The next point to observe in these results is that verti-
cal convexity is not the property of range images that is
most easily predicted from optical images. The pair of
vectors that exhibits the greatest correlation is the dc
component of images, which responds strongly to bright
image patches, paired with a planar range filter that re-

Fig. 7. Canonical correlation filters. (a) First eight canonical
ridge filters for the entire (50-image) database. Below each fil-
ter is the dc component strength, normalized on a scale from 21
to 11. Below each filter pair is listed the correlation strength r.
(b) First four canonical filters for the rural database. (c) First
three canonical filters for the urban database.
sponds strongly to surfaces with gradients pointing up-
ward and away from the observer. This tells us that the
correlation between surfaces facing upward and bright
image patches is the highest correlation among all pairs
of linear intensity and range filters. The correlation is
0.28. This means that 0.282, or 8% of all variation in the
overall brightness of a patch of image can be explained by
the vertical component of its orientation, and visa versa.
In other words, just knowing the overall intensity of an
image patch reduces the uncertainty of the vertical slope
of that patch by 8%.

The next two canonical variates show vertical convex-
ity. Both of them show that convex surfaces are corre-
lated with bright intensity values that fall somewhere
above the area of the surface that is closest to the ob-
server. This trend continues in basis-vector pairs of
lower correlation. In general, it appears that many of
the first several intensity basis vectors resemble how the
corresponding range filter would appear if it were ren-
dered as a surface and lit from above.

Another important observation is that the basis vectors
of lower frequency appear earlier within the bases and
that vertical frequencies are favored. The canonical cor-
relation bases are independent of the variance of each
component, and so this result is not related to the power
spectrum of intensity or range images. It means that
when linear correlations with intensity data are used,
lower-frequency components of the range image are more
easily predicted than high-frequency components.

In Figs. 7(b) and 7(c) we show the canonical filters for
rural and urban scenes, respectively. Although the rural
and urban datasets are disjoint, the first several canoni-
cal filters are qualitatively similar between the two
datasets. However, the correlations are much stronger
in the rural dataset. In fact, throughout this paper, cor-
relations in the rural images have been stronger than
those in the urban images. However, it is worth noting
that the relative strengths of the correlations is not the
same for all properties of range images. The discrepancy
between correlations among individual points (bright pix-
els tend to be closer) is quite high: 0.32 versus 0.06.
The discrepancy between the correlations for the first ca-
nonical filter is smaller: 0.46 versus 0.15, and the dis-
crepancy between the correlations for the second canoni-
cal filter is smaller still: 0.23 versus 0.12. There is a
similar discrepancy between the correlations for the con-
vexity filters. This suggests that the trends measured by
these correlations (that surfaces tilted upward are
brighter and that convex objects are brightest directly
above the convexity) are more robust in natural images
and less dependent on locale.

Finally, it should be pointed out that the correlation co-
efficient for the strongest canonical filter measures 0.46
in rural scenes. This means that 21% of all variation in
the overall brightness of an image patch in rural images
can be explained by the tilt of its underlying surface.
This is the strongest statistical trend found in this paper.

4. DISCUSSION
In this paper we have shown that the relationship be-
tween the shape of objects and their images depends on
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statistical trends that cannot be inferred from physical
models of light. We have found that this relationship is
intimately related to the statistics of lighting directions,
the statistics of camera or head orientation, and the sta-
tistics of surface shapes in natural scenes. These are
sources of information that have not been seriously ex-
ploited by traditional shape-from-shading techniques,
which instead typically rely on handcrafted environmen-
tal priors, such as smoothness and curvature constraints,
that have not been verified in natural images. Some of
the statistical trends shown here have been suspected by
psychologists and artists in the past. In this paper we
show the extent to which they hold true in the natural en-
vironment, and we explore the structure and causes of
these trends. This, and future investigations like this,
may help us to understand how these statistical trends
might be taken advantage of by computers and by the hu-
man brain.

Psychophysical experiments show that humans are
able to compute some shape information from shading in
a parallel manner.32 This suggests that the computation
is both local and fast. Neurophysiological experiments
on awake monkeys also implicated the early visual cortex
in the mediation of shape-from-shading pop-out
perception.33 Simple, local statistical relationships be-
tween shape and shading like those found in this paper
may be exploited by the brain to achieve this level of per-
formance. For example, the image in Fig. 8 gives us an
instantaneous perception of convexity and concavity for
each stimulus in the array. This may be related to the
relatively high degree of correlation between shape con-
vexity and the vertical intensity gradient.

Factoring spaces of high dimensionality is highly useful
for performing computations in that space. In this study
we used regression and correlation techniques to discover
linear bases in the range domain and the luminance do-
main that are correlated with each other. This image ba-
sis provides a factorization of image space that is based
on its utility in predicting 3D surface characteristics.
Principal components analysis and independent compo-
nents analysis are useful in image coding and compres-

Fig. 8. Convex and concave stimuli defined by shading.
sion. However, these techniques are limited in that they
rely only on the statistics of images themselves and do not
take into account the relevance of particular properties of
images to the computational task at hand. For the solu-
tion of any given visual problem, the most important
characteristics of an image are not always the ones that
vary the greatest, such as the first principal components.
In fact, rare events are the often most salient and mean-
ingful. The characteristics in images that are most use-
ful for solving a particular problem depend on the nature
of the problem. The codes that we have obtained might
be more relevant to the task of inferring 3D structure
from 2D information.

The results in this paper are only the first steps in an
investigation into the statistical relationship between
shape and shading. We have explored only the simplest
relationships between intensity and range images. The
methods used in this paper make two strong linearity as-
sumptions. First, the only properties of images consid-
ered were their response to linear filters. All previous
literature in shape from shading depends on highly non-
linear properties of images. It is possible that stronger
results could be achieved by considering such properties.
The second assumption of linearity is the measure of cor-
relation between range and intensity image properties.
Linear regression finds only properties of range and opti-
cal images that are related in a linear fashion. Other
measures of relation, such as mutual information, need to
be explored. Also, Fig. 3(b) suggests that the correlations
measured in this paper occur at spatial distances beyond
25 pixels at 20 pixels/deg. The exact extent of this corre-
lation remains unknown.
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