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Abstract

Decoding is a strategy that allows us to assess the amount of information
neurons can provide about certain aspects of the visual scene. In this
study, we develop a method based on Bayesian sequential updating and
the particle filtering algorithm to decode the activity of V1 neurons in
awake monkeys. A distinction in our method is the use of Volterra ker-
nels to filter the particles, which live in a high dimensional space. This
parametric Bayesian decoding scheme is compared to the optimal linear
decoder and is shown to work consistently better than the linear optimal
decoder. Interestingly, our results suggest that for decoding in real time,
spike trains of as few as 10 independent but similar neurons would be
sufficient for decoding a critical scene variable in a particular class of
visual stimuli. The reconstructed variable can predict the neural activity
about as well as the actual signal with respect to the Volterra kernels.

1 Introduction

Cells in the primary visual cortex perform nonlinear operations on visual stimuli. This non-
linearity introduces ambiguity in the response of the neurons. Given a neuronal response,
an optimal linear decoder cannot accurately reconstruct the visual stimulus due to nonlin-
earities. Is there a strategy to resolve this ambiguity and recover the information that is
encoded in the response of these neurons?

Bayesian decoding schemes, which are nonlinear, might be useful in this context . Bayesian
sequential updating or belief propagation, implemented in the form of particle filtering, has
recently been used in estimating the hand trajectories of monkeys based on M1 neuron’s
responses [4] and the location of a rat based on the responses of the place cells in the
hippocampus[3]. However, linear methods have been shown to be quite adequate for de-
coding LGN, motor cortical, or hippocampal place cells’ signals using population vectors
or the optimal linear decoder [10, 5, 8]. Bayesian methods, with proper probability model
assumptions, could work better than the linear methods, but they apparently are not crit-
ical to solving those problems. These methods may be more useful or important in the
decoding of nonlinear visual neuronal responses. Here, we implement an algorithm based
on Bayesian sequential updating in the form particle filtering to decode nonlinear visual
neurons in awake behaving monkeys. The strategy is similar to the one used by Brown et



al. [2] and Brockwell et al. [1] in their decoding of hippocampus place neurons or M1 neu-
rons, except that we introduced the use of Volterra kernels [6, 7, 9] to filter the hypothesis
particle to generate feedback messages. The Volterra kernels integrate information from the
previous 200 ms. This window allows us to backtrack and update the hypotheses within a
200 ms window, so the hypothesis space does not grow beyond 200ms for lengthy signals.
We demonstrated that this method is feasible practically and indeed useful for decoding a
temporal variable in the stimulus input based on cells’ responses and that it succeeds even
when the optimal linear decoder fails.

2 The Approach

Our objective is to infer the time-series of a scene variable based on the ongoing response
of one or a set of visual neurons. A hypothesis particle is then the entire history of the
scene variable of interest up to the present timet, i.e. (x1, x2, . . . , xt) given the observed
neuronal activity(y1, y2, . . . , yt). A key feature of our algorithm is the use of a decoded
or estimated hypothesis to predict the response of the neurons at the next time step. The
premise is that the scene variable we are inferring is sufficient to predict the activity of
the neuron. Since visual neurons have a temporal receptive field and typically integrate
information from the past 100-200 ms to produce a response, we cannot make the Marko-
vian assumption made in other Bayesian decoding studies [1, 2, 3, 4]. Instead, we will use
the receptive field (kernel) to filter each hypothesis particle to generate a prediction of the
neural response. We propose to use the Volterra kernels, which have been used in previous
studies [6, 7, 9] to characterize the transfer function or receptive field of a neuron, to filter
the hypothesis(x̂t, . . . x̂1). The predicted response of the neuron according to the kernels
is based on the stimulus in the last 200 ms, optionally incorporating some lag which we
eliminated by shifting the response forward 40 ms in time to compensate for the 40 ms the
visual signal required to travel from the retina to V1.

Ongoing observation of the activity of

Figure 1: Two sample sinewave gratings.

neurons is compared to the predicted re-
sponse or proposal to yield a likelihood
measure. The likelihood measure of
each hypothesis particle is proportional to
how close the hypothesis’s predicted re-
sponse is to the actual observed neural re-
sponse. As all the existing hypotheses
are weighted by their likelihood measures,
the posterior distribution of the hypothe-
sis is effectively resampled. The hypothe-
ses that tend to generate incorrect propos-
als will die off over time. Conversely, the
hypotheses that give predicted responses

close to the actual response values will not only be kept alive, but also be allowed to give
birth to offspring particles in its vicinity in the hypothesis space, allowing the algorithm to
zoom in to the correct hypothesis more precisely.

After weighting, resampling and reproducing, the hypothesis particles are propagated for-
ward according to the prior statistical distribution on how the scene variable tends to
progress. That is,p(xt|xt−1) yields a proposed hypothesis about the stimulus at timet + 1
based on the existing hypothesis which is defined att and earlier times. These hypotheses
are then filtered though the Volterra kernels to predict the distributionp(yt|xt−200,...,t−1),
thus completing the loop. The entire flow-chart of our inference system is shown in Figure
4. Each step is described in detail below.



3 Neurophysiological Experiment

We applied the ideas above to the data ob-

Figure 2: A sample time series of the scene
variable, with a sample spike train below.

tained by the following experiment. This
experiment sought to understand the en-
coding and decoding of temporal visual in-
formation by V1 neurons. In each exper-
imental session, a movie (2.2 seconds per
trial) of a sinewave grating stimulus was
presented while the monkey had to main-
tain fixation on a spot within a0.8o × 0.8o

window. The sinewave grating was con-
strained to move along one dimension in a
direction perpendicular to the grating with
a step size in phase drawn from a random
pink noise distribution which follow a 1/f

power spectrum in the Fourier domain, approximating the statistical correlational structures
in natural temporal stimuli. To ensure continuity of the input signals we took the cosine
of the phase, which is related to the image intensity value at a local area within the recep-
tive field. In decoding the cos(phase), a hidden variable, was the scene variable inferred.
A sample stimulus is given in Figure 2. This scene variable, through the Volterra kernel
procedure, can predict the neural responses of this class of stimulus reasonably well.

400 trials of different sequences were presented. The known pair sequences of stimulus and
response in these trials were used to estimate the Volterra kernels by correlating the input
x with the neural responsey. In addition, one particular stimulus sequence is repeated
60-80 trials to obtain a PSTH, which is smoothed with a 10 ms window to give an estimate
of the instantaneous firing rate. In our decoding work, we take the PSTH as input to our
algorithm; this is considered equivalent to assuming simultaneous access to a number of
identical, independent neurons. When the neurons are different, a kernel derivation for
each neuron is necessary.

4 Volterra Kernels

Volterra kernels have been used to characterize a cell’s transfer function. With Volterra
kernels with memory lengthL, the responseyt can be predicted by convolution of the
kernels with the inputxt,

y(t) = yt = ho +
L∑

τ=1

hτxt−τ +
L∑
τ2

L∑
τ1

hτ1,τ2xt−τ1xt−τ2 ,

whereh0 corresponds to the mean firing rate,hτ is the first order kernel andhτ1,τ2 the
second order kernel. We restrict allτ ’s to be positive, so we only consider causal filters.
This equation is easily expressed in matrix form asY = XH, where time is now indexed
by matrix row inY andX. H contains the concatenation of the terms

[h0 h1 · · · hL h1,1 h1,2 · · · hL,L]′ ,

and rowt of X is similarly

[1 xt−1 · · · xt−L (xt−1 xt−1) · · · (xt−L xt−L)]

The standard solution for this regression problem isH = (X ′X)−1
X ′Y . That is,

the parameters of the kernels are derived using the regression technique by correlat-
ing the input and the output, and are compensated by the covariance in the input, i.e.
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Figure 3: The first and second order Volterra kernels of a V1 cell (left) and a typical pre-
diction of the neuronal response compared to the actual response (right).

H = (X ′X)−1X ′Y . Because of the correlations in the input signalxt, the matrix(X ′X)
is ill conditioned. Instead of directly inverting this matrix, singular value decomposition
can be used, asUSU ′ = X ′X whereUS−1U ′ = (X ′X)−1 andS is a diagonal matrix.
Only the firstn largest dimensions as ranked by their eigenvalue are included, wheren is
chosen to account for99% of the variance in X [7].

Figure 3 depicts an example of the first and second order Volterra kernels and also shows
a typical example of their accuracy in predicting the response PSTHyt. For a majority of
these neurons, the Volterra kernels recovered are capable of predicting the neural response
to the input stimulus with a high level of accuracy. This observation forms the basis of
success for our scheme of particle filtering.

5 Decoding Scheme

We apply Bayesian decoding to the problem of determining the visual stimulus variable
xt for some time stept, given observations of the neural responses(y1, y2, . . . , yt). The
global flow of the algorithm is shown in Figure 4.

5.1 Particle Prediction

At each time step of of decoding scheme, we can now filter a hypothesis particle
(x̂1, x̂2, . . . , x̂t) by the Volterra kernels to generate a prediction of the response of the
neuron to test the validity of the hypothesis.(y1, y2, . . . , yt) remains the observed neural
activity of a V1 neuron up to timet, andŷi

t is the predicted neural activity at timet based on
hypothesis particlei. This gives us a set of predicted responses at timet, {ŷ1

t , ŷ2
t , . . . , ŷN

t },
where the subscript is the particle index, and N is the number of particles.

5.2 Particle Resampling

The actual observed response of the neuron at timet is compared to each particle’s predic-
tion as a means to evaluate the likelihood or fitness of the particle. If we assumeyt is the
average of spike trains from a single neuron in independent trials or the average firing rate
of a population of independent neurons with identical tuning properties, then the resulting
error distribution can be assumed to be a Gaussian distribution, withσ representing the
uncertainty of the predicted response given the correct values of the stimulus variable. The



Figure 4: Flow chart of the PF decoding scheme. The effect of one resampling step is
shown in the two graphs. Each graph shows the particles’ (n=100) values during a trial
over 200 ms. The thicknesses of the lines are proportional to the number of particles with
the corresponding values. Notice the change in the distribution of particles after sampling.
After the resampling there are many more particles concentrated around 1 instead of -1.

relative likelihood of an observation given each particle is then given by

p(yt|x̂i
1, . . . , x̂

i
t) =

e−(ŷi
t−yt)

2/2σ2∑
j e−(ŷj

t−yt)2/2σ2
.

All the particles together provide a representation of the particle-conditional distribution,

p(yt|x̂t, x̂t−1, . . . , x̂1).

This is used to resample the posterior distribution of the hypotheses based on all the obser-
vations up to timet − 1,

p(x̂t|y1, y2, . . . yt) ∝ p(yt|x̂t)p(x̂t|y1, y2, . . . yt−1),

to produce a current posterior distribution of the hypotheses.

5.3 Particle Propagation

The next step in the decoding scheme is to generate new valuex̂t+1 and append it to the
hypothesis particle

p(x̂t+1|y1, y2, . . . yt) =
∫

p(x̂t+1|x̂t)p(x̂t|y1, y2, . . . yt)dxt,

wherep(x̂t+1|x̂t) is the state propagation model that provides the prior on how the stimulus
changes over time. For the state propagation model used in this study, all initial positions
for the stimulus are equally likely. The range of the stimulus (-1 to 1) is divided into 60
equally spaced intervals. A 60x60 probability table is constructed empirically from the
training data stimuli, corresponding to a discrete version approximating the conditional
prior above. Solving these priors analytically is difficult or even impossible. Besides, the



hypothesis space is enormous as there are 60 possible values at each time point, and infor-
mation from a 200 ms window (20 time points at 10 ms intervals) is being integrated to
predictyt. The particle filtering algorithm is basically a way to approximate the distribu-
tions efficiently.

The algorithm consists of cycling through

Figure 5: A scatter plot showing the least
squares regression line for the data.

the above steps, i.e. particle prediction,
particle resampling, and particle propaga-
tion. In summary,

1. Prediction step: Filter all particles by
the Volterra kernels to generate the predic-
tion of neural responses.
2. Resampling step: Compare actual neu-
ral response with the predicted response of
each particle to assign a likelihood value
to each particle. Resample (with replace-
ment) the posterior distribution of the par-
ticles based on their likelihood.
3. Propagation step: Sample from the state
model to randomly postulate a new stimu-
lus valuex̂t for each particle and add this
value to the end of the particle’s sequence
to obtain(x̂1, x̂2, . . . , x̂t).

In the propagation step, the state model will move the stimulus in ways that it has typically
been seen to move. In the prediction step, particles that predict a neural response close
to the actual observed response will be highly valued and will likely be duplicated in the
resampled set. Conversely, particles that predict a response which is not close to the actual
response will not be highly valued and thus will likely be removed from the resultant set.

6 Results and Discussion

Let xt, xt−1, . . . , x1 be the inferred scene variable

Figure 6: Reconstruction error when
input PSTH is constructed from
fewer trials. With 10 spike trains,
the PF has almost achieved the min-
imum error possible for this cell.

(cos(phase)).sk(t) is the binary spike response of a
neuron during trialk. The instantaneous firing rate
of the neuron is given by

y(t) =
1
m

m∑
k

= 1sk(t)

wherem is the number of trials. In general, for
cells that respond well to a stimulus, this first order
and the second order kernel can predict the response
well. Over all cells tested (n=33), the average er-
ror ratio ey in the energy of the actual response is
18.4%. Each of the cells was decoded using the
particle filtering algorithm with 1000 particles. The
average reconstruction errorex is 27.14%, and the
best cell has 10% error. A correlation exists be-
tween the encoding and decoding errors across tri-
als as shown in Figure 5.

ey =
∑

t(ŷt − yt)2∑
t y2

t

, ex =
∑

t(x̂t − xt)2∑
t(xt + 1)2

,



Figure 7: Particle filtering (PF) and optimal linear decoder (O.L.D.) reconstructions. The
top left is the best PF reconstruction, and the bottom right is the worst out of all the cells
tested.

σ affects the rate at which the particle hypothesis space collapses around the correct solu-
tion. If σ is too large, all particles will become equally likely, while ifσ is too small, only
a few particles will survive each time step. Ideally, the particles will converge on a value
for a number of time steps equal to the kernel’s length. The optimal value forσ was found
empirically and was used in all reconstructions.

Figure 7 shows sample reconstructions of some

Figure 8: A scatter plot comparing
the two decoding methods.

good and bad cells. Decoding accuracy is limited
by the performance of the Volterra kernel. When
the kernel is unable to predict the neuronal re-
sponse, particularly for cells that have low firing
rates, any decoding scheme will suffer because of
insufficient information. Thus the amount of error
is correlated to the inability of the kernel in pre-
dicting neuronal responses. This idea is consistent
with the error correlation between the particle filter
and kernel in Figure 5. These cells do not provide
enough relevant information about the visual stim-
ulus in their spiking activities.

Figure 6 shows that reconstruction based on the
PSTH constructed from as few as 5-10 spike trains
can reach an accuracy not far from reconstruction
based on the PSTH of 80 trials. This suggests that as few as 10 independent but similar
cells recorded simultaneously might be sufficient for decoding this scene variable.

We find that the optimal linear decoder does not decode these cells well. The decoded
output tends to follow the signal somewhat, but at a low amplitude as shown in Figure 7.
The problem for the optimal linear decoder is that at any single moment in time it can only
propose a single hypothesis, but there exist multiple signals that can produce the response.



The optimal linear decoder tends to average in these cases. The particle filter keeps alive
many independent hypotheses and can thus choose the most likely candidate by integrating
information.

The success of the particle filter relies mainly on three factors. First, in the particle pre-
diction step, the Volterra kernels allow the particles to make reasonably accurate proposals
based on the observed neural activities. This gives a good measure for evaluating the fitness
of each particle. Second, in the resampling step, the weight of each particle embodies all
the earlier observations, and because our particle filter keeps track of all proposals within
the last 200 ms, earlier hypotheses can continue to be reevaluated and refined. Finally, in
the propagation step, the particle filter utilizes prior knowledge about the manner in which
the stimulus moves. This helps further in pruning down the hypothesis space.
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