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Machine learning for apartment
hunting

| e Now you've moved to
Pittsburgh!!

And you want to find the most
reasonably priced apartment
satisfying your needs:

square-ft., # of bedroom, distance to
campus ...

Living area (ft?) # bedroom Rent ($)

150 1 ?
270 1.5 ?

© Eric Xing @ CMU, 2014 2




The learning problem -

e Features:
= e Living area, distance to campus, #
@ L bedroom ...
R ' e Denote as x=[x/, x?, ... x!]

‘ e Target: II
' ' ‘ : e Rent i
Living area

e Denotedasy

~ }'
e Training set:
- - - Tramning
— X, == |x X .. X =
c - X1 —— xi xlz xlk et
5 S I O I
| .
= X, ——] [x xX .. x| Leaming
- - . algorithm
M - Y1 - b
— X2 y=|"? or DY .
Location : S X predicted y
P (living area of (predicted price)
LV ] - Y, — house.) of houze)
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Linear Regression -

e Assume that Y (target) is a linear function of X (features):

e eg. .
y=0,+0x" +0,x°

e let's assume a vacuous "feature" X°=1 (this is the intercept term, why?), and
define the feature vector to be:

e then we have the following general representation of the linear function:

e Qur goal is to pick the optimal 6 . How!
e We seek @ that minimize the following cost function:

J(@) :%Zn:(j;i(ii)_yi)z
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The Least-Mean-Square (LMS)
method

e The Cost Function:
1 n
J(9)=§Z(Xf9—yi)2
i=1

e Consider a gradient descent algorithm:

9't+1 _ (9.t e a
J 69

J

J(0)

J {
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The Least-Mean-Square (LMS) coce
method .

e Now we have the following descent rule:

0" =0"+ay (y,-X,0)x/
i=1

e For a single training point, we have:

e This is known as the LMS update rule, or the Widrow-Hoff learning rule

e This is actually a "stochastic", "coordinate” descent algorithm
e This can be used as a on-line algorithm
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Geometry and Convergence of LMS

6" =0"+a(y,—x,' 0%,

Claim: when the step size & satisfies certain condition, and when certain
other technical conditions are satisfied, LMS will converge to an “optimal

= 1]
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Steepest Descent and LMS 4

o Steepest descent
e Note that:

T
0 0 " ,
Vo J=|—dcc,—J | ==>(y, - X, O)X
o {ael 00, } Z-Zl(y” " O,

0" =0"+ad (y,—X, 0")x,
i=1

e This is as a batch gradient descent algorithm
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0000
o000
. o5
The normal equations o
e Write the cost function in matrix form: S
JO) =73 (07 x| %
= (x5 (x0-) T
2 M
:%(QTXTXH—HTXTy—)?TXﬁerTy) =2
Y

e To minimize J(9), take derivative and set to zero:

V,J = %Vetr(QTXTXé’—HTXT)? ~5' X0+5"7)
=S| X'X0=X"y

1 T T ~T T —~
= —(V,tro" X" X0 -2V tr5" X0 +V t
2( otr? o ot XO+V 1Ty y) The normal equations
:%(XTX¢9+XTX¢9—2XT)7) U
\ -1
- X7X0-X"5=0 0 =(x"x) X"y
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Some matrix derivatives

e For f:R"™ > R |, define:

0 0
OA; / 04, /
V. f(4)= : :
0 £ 0 f
a‘/41 m 814 mn
e J[race: ) )
trd=>) A, tra=a , trABC =trCAB = trBCA
i=1

e Some fact of matrix derivatives (without proof)

V trdB=B",

V trABA'C = CAB+C"AB" ,

© Eric Xing @ CMU, 2014
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Comments on the normal 1
equation '+

e |n most situations of practical interest, the number of data
points N is larger than the dimensionality £ of the input space
and the matrix X is of full column rank. If this condition holds,
then it is easy to verify that X’.X is necessarily invertible.

e The assumption that X’X is invertible implies that it is positive
definite, thus at the critical point we have found is a minimum.

e What if X has less than full column rank? - regularization
(later).
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Direct and lterative methods °

e Direct methods: we can achieve the solution in a single step
by solving the normal equation

e Using Gaussian elimination or QR decomposition, we converge in a finite number
of steps

e It can be infeasible when data are streaming in in real time, or of very large
amount

e |terative methods: stochastic or steepest gradient
e Converging in a limiting sense
e But more attractive in large practical problems
e Caution is needed for deciding the learning rate o
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Convergence rate o6

e Theorem: the steepest descent equation algorithm
converge to the minimum of the cost characterized by
normal equation:

9> = (XTX)~1XxTy

If

0 < a <2/ Amax| X' X]

e A formal analysis of LMS need more math-mussels; in
practice, one can use a small a, or gradually decrease a.
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A Summary:

e LMS update rule

t+1 t T Nt
6)]' :(9]' -I_a(yn_xn 0 )xn,i
e Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local
optimum
e Cons: convergence to optimum not always guaranteed

o Steepest descent )
t+1 t I Nt
0" =0"+a) (y,—X, 6)x,
e Pros: easy to implement, conceptﬁ:e%lly clean, guaranteed convergence
e Cons: batch, often slow converging

e Normal equations :
* T B T —

0 =(x"x) X5

e Pros: a single-shot algorithm! Easiest to implement.

e Cons: need to compute pseudo-inverse (XTX)1, expensive, numerical issues
(e.g., matrix is singular ..), although there are ways to get around this ...
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T
Geometric Interpretation of LMS e
e The predictions on the training data are:
=x0 =x(X"X)'X"5 ] o
e Note that 5 y Y| Xz --
):/—yz(X(X x) XT—I))? ) o, -
and
X7 (G-5)= bl -
- (XTX(XTX)_IXT —XT)y
=0 1
):/ is the orthogonal projection of ) /_J,/gg
Into the space spanned by the column ’
of X -3
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Probabilistic Interpretation of 434
LMS e

e Let us assume that the target variable and the mputs are
related by the equation:

=0'X. +¢,

where € is an error term of unmodeled effects or random noise

N TG

e Now assume that ¢ follows a Gaussian N(0,0), then we have:

Pu J%a EXp( . 202)() j

e By independence assumption:

n o'
L(H):Hp(yi|xi;‘9) (\/igj ( le(};gz X)]
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Probabilistic Interpretation of 434
LMS, cont. oo

e Hence the log-likelinood is:

[(#) =nlog

1 1 1«
J2ro o EZH o7 _QTXi)Z

e Do you recognize the last term?
Yes it is: J(0) = %Z (XI.TH —y.)?
i=1

e Thus under independence assumption, LMS is equivalent to
MLE of 6!
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Case study: eecs
predicting gene expression oo

The genetic picture

causal SNPs

CG ACTGTACAATT

a univariate phenotype:

i.e., the expression intensity of
a gene

© Eric Xing @ CMU, 2014 18
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Association Mapping as Regression o
Phenotype (BMI) Genotype

Individual 2.5

1

Individual 4.8

2

Individual 4.7

N

LB B I |
L G

Benign SNPs Causal SNP
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Association Mapping as Regression

Phenotype (BMI) Genotype
Individual 2.5 R | 1..0....... 0..
1
Individual 48 | .1 ..... 1..1....... 1.
2
Individual 4.7 2. 2..1....... 0..
N

Yi

© Eric Xing @ CMU, 2014
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Experimental setup -

e Asthama dataset
e 543 individuals, genotyped at 34 SNPs
e Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
e X=543x34 matrix
e Y=Phenotype variable (continuous)

e A single phenotype was used for regression

e Implementation details
e lterative methods: Batch update and online update implemented.

e For both methods, step size a is chosen to be a small fixed value (10-6). This
choice is based on the data used for experiments.

e Both methods are only run to a maximum of 2000 epochs or until the change in
training MSE is less than 104

© Eric Xing @ CMU, 2014
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0000
0000
b
Convergence Curves :
Log-log plot of training MSE versus epochs
10°; . :
T ——=BaciEupdeae e For the batch
- —0|.1I|.ne update - method, the training
- __Minimum MSE by | MSE is initially large
10°} normal equation || due to uninformed
: ] initialization

e In the online update,
N updates for every
epoch reduces MSE
to a much smaller
value.

Mean Square Error on training data

10° 10
Epochg©EricXing @ CMU, 2014
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|| | . .
The Learned Coefficients :
Stem plot of regression coefficents p's
2 T T T T I I
— From normal equation
— Using online update
— Using batch update
1.5
-
- 1 -
9
o
%
8 o5 H .
=
o
w
§ 0 ]n ]H ada |H It H it m m ]H m m ‘H m stt
3 I ‘“ i L m
o
3 0.5 <1
g .
-1 =l
% 5 10 15 20 2 30 35
Regression coefficients index j
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X X
Multivariate Regression for Trait 3
Association Analysis oo
Trait Genotype Association Strength
<
|_
2.1 — 2 X
3 ?
— u
<
@)
o
<
<
Q)
|_

=

|
>
X
=
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Multivariate Regression for Trait
Association Analysis

Trait Genotype Association Strength

2.1 =

<
I_
Q)
<
<
)
I_
<
@
@
<
<
Q)
|_

f" = argmin(y — XB) " (y — Xp)

Many non-zero associations:
Which SNPs are truly significa

© Eric Xing (@ CHium26
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Sparsity o

e One common assumption to make sparsity.

e Makes biological sense: each phenotype is likely to be
associated with a small number of SNPs, rather than all the
SNPs.

e Makes statistical sense: Learning is now feasible in high
dimensions with small sample size

© Eric Xing @ CMU, 2014 26



Sparsity: In a mathematical sense | :¢

e Consider least squares linear regression problem:

e Sparsity means most of the beta’s are zero.
B = argming||Y — X3||?

subject to:

p
> 1Bl >0 < C y

j=1

e But this is not convex!!! Many local optima, computationally
Intractable.

© Eric Xing @ CMU, 2014 27
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" " o000
L1 Regularization (LASSO) ces
(Tibshirani, 1996) o
e A convex relaxation.
Constrained Form Lagrangian Form
B = argming[|Y — X3 B = argming||Y — X8> + A[|B]:
subject to:
p
> I1Bjl<cC
j=1

e JSltill enforces sparsity!

© Eric Xing @ CMU, 2014 28



Theoretical Guarantees ot

e Assumptions

e Dependency Condition: Relevant Covariates are not overly dependent

e Incoherence Condition: Large number of irrelevant covariates cannot be too
correlated with relevant covariates

e Strong concentration bounds: Sample quantities converge to expected values
quickly

If these are assumptions are met, LASSO will asymptotically recover
correct subset of covariates that relevant.

© Eric Xing @ CMU, 2014 29



Consistent Structure Recovery 13
[Zhao and Yu 2006] O

Theorem 4 (Gaussian Noise). Assume €/ are 1.1.d. Gaussian random variables. Under conditions
(5), (6), (7) and (8), if there exists 0 < ¢3 < ¢3 — ¢ for which p, = O(¢"*) then strong Irrepresentable
Condition implies that Lasso has strong sign consistency. In particular, for A, < 72 with ez < ¢q <
c2—C1,

A

P(B"(Ay) =sB") > 1—0(e™) — 1asn — oo.

© Eric Xing @ CMU, 2014 30
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Lasso for Reducing False Positives o
Trait Genotype Association Strength
<
|_
2.1 - 2 X B
o -
|_
<
&)
2 Lasso
?9: - Penalty
|_

for sparsity

g = argmin(y - X8)"(y - X5) + @m

Many zero associations (sparse results),
but what if there are multiple related traits

© Eric Xing @ CMU™28 31



Ridge Regression vs Lasso

mﬁin(X.B ~Y)'(XB-Y) 4 Apen(B) = mﬁin J(B) + Apen(B)

Ridge Regression: Lasso:

pen(B) = ||8||3 pen(B) = [1Bll1

Bs with constant J(S)
(level sets of J(B))

Bs with B2 Bs with

constant constant

12 norm 11 norm
\\/ N

D~

Lasso (11 penalty) resultsin sparse solutions — vector with more zero coordinates

Good for high-dimensional problems — don’t have to store all coordinates!
© Eric Xing @ CMU, 2014 32




Bayesian Interpretation

e T[reat the distribution parameters @ also as a random variable
e The a posteriori distribution of 8 after seem the data is:

p(D)  [p(D]6)p(6)do

2(0]D) = p(D]0)p(0) _ p(D]0)p(9)

This is Bayes Rule

likelthood x prior
marginal likelihood

posterior =

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

The prior p(.) encodes our prior knowledge about the domain

© Eric Xing @ CMU, 2014 33




Regularized Least Squares and
MAP

What if (X™X) is not invertible ?

Bmap = arg maxog p({(X;, ;) }1 |8, 02)+log p(B)
| ]\ )
Y
log likelihood log prior

1) Gaussian Prior

B ~ N (0, 7°1) p(B) o e~ 0/27
. T
Buap = arg m{;n S = XiB) + SIS Ridge Regression
1=1
Closed form: HW constant(o?, 72)

Prior belief that B is Gaussian with zero-mean biases solution to “small”

© Eric Xing @ CMU, 2014
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Regularized Least Squares and
MAP

What if (X™X) is not invertible ?

Bmap = arg maxog p({(X;, Y)Y 1|8, 0%)+log p(B)
| ]\ )
Y
log likelihood log prior

Il) Laplace Prior

B; iud Laplace(0,t) p(B;) e~ 1Bil/t
Bmap = arg mﬁiﬂ > (Y- X8+ MBI Lasso
1=1
Closed form: HW constant(c?,t)

Prior belief that B is Laplace with zero-mean biases solution to “small” 8

© Eric Xing @ CMU, 2014
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Take home message 2
e Gradient descent

e On-line

e Batch

e Normal equations
e Geometric interpretation of LMS

e Probabilistic interpretation of LMS, and equivalence of LMS and
MLE under certain assumption (what?)

e Sparsity:
e Approach: ridge vs. lasso regression
e Interpretation: regularized regression versus Bayesian regression
e Algorithm: convex optimization (we did not discuss this)

e LR does not mean fitting linear relations, but linear combination or
basis functions (that can be non-linear)

e Weighting points by importance versus by fitness

© Eric Xing @ CMU, 2014
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After class material ... ot

© Eric Xing @ CMU, 2014 37



Advanced Material: 444

Beyond basic LR .

e LR with non-linear basis functions

e Locally weighted linear regression

e Regression trees and Multilinear Interpolation

We will discuss this in next class after we set the state right!
(if we’ve got time ©)

© Eric Xing @ CMU, 2014
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LR with non-linear basis T
functions o

e LR does not mean we can only deal with linear relationships

e \We are free to design (non-linear) features under LR
y=0,+)." 0,4(x)=0"9(x)

where the ¢(x) are fixed basis functions (and we define ¢y(x) = 1).

e Example: polynomial regression:

P(x) = [1, X, xz,x3]

e We will be concerned with estimating (distributions over) the
weights 8 and choosing the model order M.

© Eric Xing @ CMU, 2014
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Basis functions

e There are many basis functions, e.g.:

e Polynomial ¢j (x) = x/ !

@—YJ

) . : - J
e Radial basis functions ¢j (x) = exp[— > 2

Sigmoidal 9, (x) = O.[x —H j

S

e Splines, Fourier, Wavelets, etc

| A T L7777
N A /\/>7>>\ W\
2 U S
SN

05 o0 05 1 ©EficXing @ 6MUz2014 ;" 0 05 1




'YX X
1t
1D and 2D RBFs s
e 1D RBF
« ¢ ¢
yest = B ¢y (x) + * f303(x)
o After fit:
yest = 2¢.(x) + + 0.5p4X)

© Eric Xing @ CMU, 2014 41
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Overfitting and underfitting

y=0,+0,x y:6’0+«91x+62x2

© Eric Xing @ CMU, 2014
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j=0"1J

9 .x’

43



Bias and variance

e \We define the bias of a model to be the expected
generalization error even if we were to fit it to a very (say,
infinitely) large training set.

e By fitting "spurious"” patterns in the training set, we might
again obtain a model with large generalization error. In this
case, we say the model has large variance.

© Eric Xing @ CMU, 2014
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Locally weighted linear
regression .o

e The algorithm:
Instead of minimizing J(0) :%Zn:(xirg_yi)z

i=1

1 n
now we fit 8 to minimize J(0) = EZ w.(X, 8- y,)°
i=1

.
Where do w/s come from? :eXpL_ (Xiz_;() j e .-1;
T

where X is the query point for which we'd like to know its corresponding y

- Essentially we put higher weights on (errors on) training
examples that are close to the query point (than those that are
further away from the query)

© Eric Xing @ CMU, 2014 45



Parametric vs. non-parametric :

e Locally weighted linear regression is the second example we
are running into of a non-parametric algorithm. (what is the
first?)

e The (unweighted) linear regression algorithm that we saw
earlier is known as a parametric learning algorithm

e because it has a fixed, finite number of parameters (the 6), which are fit to the
data;

e Once we've fit the 6 and stored them away, we no longer need to keep the
training data around to make future predictions.

e In contrast, to make predictions using locally weighted linear regression, we need
to keep the entire training set around.

e The term "non-parametric" (roughly) refers to the fact that the
amount of stuff we need to keep in order to represent the
hypothesis grows linearly with the size of the training set.

© Eric Xing @ CMU, 2014 46



Robust Regression 4+

e The best fit from a quadratic e But this is probably better ...
regression

How can we do this?

© Eric Xing @ CMU, 2014 47



LOESS-based Robust Regression | :¢

e Remember what we do in "locally weighted linear regression"?
- we "score" each point for its impotence

e Now we score each point according to its "fitness"

But you are {
pathetic.

I
You are a very good L
datapoint.

|
You are not too
shabby.

W oMU, 2014 (Courtesy to Andrgw Moor)



Robust regression

e Fork=1toR...

e Let(x,,y,) be the kth datapoint

e Lety®st be predicted value of y,

e Letw, be a weight for data point & that is large if Y

the data point fits well and small if it fits badly:

w, = ¢, - y2)?)

e Then redo the regression using weighted data points.

e Repeat whole thing until converged!

© Eric Xing @ CMU, 2014
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Robust regression—probabilistic | 322:
interpretation oo

e What regular regression does:

Assume y, was originally generated using the following recipe:

y, =0'X, +WN(0,0°)

Computational task is to find the Maximum Likelihood
estimation of 6

© Eric Xing @ CMU, 2014 50



Robust regression—probabilistic | 322:
interpretation oo

e What LOESS robust regression does:

Assume y, was originally generated using the following recipe:

with probability p: ~  =6"x, + N(0,5?)

but otherwise v, ~ Ny, Gfuge)

Computational task is to find the Maximum Likelihood
estimates of 6, p, x and oy

e The algorithm you saw with iterative reweighting/refitting
does this computation for us. Later you will find that it is an
instance of the famous E.M. algorithm

© Eric Xing @ CMU, 2014 51



Regression Tree

e Decision tree for regression

Gender | Rich? | Num. # travel | Age
Children | per yr.

F No 2 5 38

M No 0 2 25

M Yes 1 0 72

Gender?

Female

Predicted age=39

Male

© Eric Xing @ CMU, 2014
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A conceptual picture .o

e Assuming regular regression trees, can you sketch a graph of
the fitted function y*(x) over this diagram?

© Eric Xing @ CMU, 2014 53



How about this one? ot

e Multilinear Interpolation

e \We wanted to create a continuous and piecewise linear fit to
the data

© Eric Xing @ CMU, 2014 54



Take home message 2
e Gradient descent

e On-line

e Batch

e Normal equations
e Geometric interpretation of LMS

e Probabilistic interpretation of LMS, and equivalence of LMS and
MLE under certain assumption (what?)

e Sparsity:
e Approach: ridge vs. lasso regression
e Interpretation: regularized regression versus Bayesian regression
e Algorithm: convex optimization (we did not discuss this)

e LR does not mean fitting linear relations, but linear combination or
basis functions (that can be non-linear)

e Weighting points by importance versus by fitness

© Eric Xing @ CMU, 2014
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Appendix

© Eric Xing @ CMU, 2014
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Parameter Learning from jid Data | :°

e Goal: estimate distribution parameters  from a dataset of N
independent, identically distributed (iid), fully observed,
training cases

e Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumption, write L(6) as the likelihood of the data:

L(0) = P(xy x5,...,xy,;0)
= P(x;0)P(x,;0),...,P(x,,;0)

=1 P(x;6)

3. pick the setting of parameters most likely to have generated the data we saw:

=argmax L(#) =arg max log L(O)

o Eld Xing @ CMU, 2014 57



Example: Bernoulli model .

e Data:
e We observed N iid coin tossing: D={1, 0, 1, ..., 0}

e Representation:

Binary r.v: X :{0’1}

e Model: 1-0 forx=0
P(x)={

0 for x =1 = P(x) :Qx(l_g)l—x
e How to write the likelihood of a single observation x;?

P(x)=60"(1-6)""

e The likelihood of datasetD={x;, ..., x;\}:

N N 1 ZN:x[ il_xf .
P(x;,%5,.,X, | 0) = H P(x,|6) :H (gxi (1-0) —x,-) 0T (1—g)F = greed(1_ )t
i=1 i=1

© Eric Xing @ CMU, 2014 58



Maximum Likelihood Estimation ot

e Objective function:

/(0;D)=logP(D|68)=logd" (1-6)" =n,logfd+ (N —n,)log(l-6)
e \We need to maximize this w.r.t.

e [ake derivatives wrt @

)

o/ n, N-n,
=—— =0 —
o0 0 1-6

D

n ~ 1
MLE — ﬁh or 0,,,= _in

;, N =
Frequency as
sample mean

e Sufficient statistics
e Thecounts, n,, Wheren, = Z,xi, are sufficient statistics of data D

© Eric Xing @ CMU, 2014 59



Overfitting o

e Recall that for Bernoulli Distribution, we have

head
nhead n

ML nhead _I_ntai/

e \What if we tossed too few times so that we saw zero head?
We have ¢/ =0, and we will predict that the probability of
seeing a head next is zero!!!

e The rescue: "smoothing”

e Where n'is know as the pseudo- (imaginary) count

head 1
nhead __ n +n

ML i .
nhead _I_ntall +n

e But can we make this more formal?
© Eric Xing @ CMU, 2014 60



Bayesian Parameter Estimation

e T[reat the distribution parameters @ also as a random variable
e The a posteriori distribution of 8 after seem the data is:

p(D)  [p(D]6)p(6)ao

20| D)= PL1ALO) _ p(D10)p(0)

This is Bayes Rule

likelithood x prior
marginal likelihood

posterior =

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

The prior p(.) encodes our prior knowledge about the domain

© Eric Xing @ CMU, 2014 61




Frequentist Parameter Estimation | :¢

Two people with different priors p(6) will end up with
different estimates p(4D).

e Frequentists dislike this “subjectivity”.

e Frequentists think of the parameter as a fixed, unknown
constant, not a random variable.

e Hence they have to come up with different "objective”
estimators (ways of computing from data), instead of using
Bayes’ rule.

e These estimators have different properties, such as being “unbiased”, “minimum
variance”, etc.

e The maximum likelihood estimator, is one such estimator.

© Eric Xing @ CMU, 2014
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Discussion

6 or p(6), this is the problem!

© Eric Xing @ CMU, 2014
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Bayesian estimation for Bernoulli | ¢

26

e Beta distribution: : E_
C@+B) ity s P N
PO, B) = 01— 0)" = B(ar, B)O“ (1 - 0)*
[(a)I'(B) "
* Whenxisdiscrete  T'(x+1) = xI'(x) = x! B I I T

e Posterior distribution of 4:

P(Q | xl""’xN) — p(xlv--,xN |‘9)p(9) o« th (1_(9)11, Xea—l(l_e)ﬂ—l _ 9n,1+a—1(1_0)nt+/3_1
p(xppey Xy)

e Notice the isomorphism of the posterior to the prior,
e such a prior is called a conjugate prior

e o and fare hyperparameters (parameters of the prior) and correspond to the
number of “virtual” heads/tails (pseudo counts)
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Bayesian estimation for T
Bernoulli, con'd oo

e Posterior distribution of 4:

P(@ | xl’“.,xN) — p(xli---;xj\/ |9)p(9) o 911;, (l_g)n[ % 00{71 (l_g)ﬂfl _ 911h+0{71(1_0)n[+ﬂ71

P(Xpyes X))

e Maximum a posteriori (MAP) estimation:

0, =arg max log P(€ | x{,..., X )

Bata parameters
can be understood
as pseudo-counts

e Posterior mean estimation:

n,+a
N+a+p

0

Bayes

= jep(e | D)d6 = cjex g (1- )P ag =

e Prior strength: A=a+/f

e A can be interoperated as the size of an imaginary data set from which we obtain
the pseudo-counts
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Effect of Prior Strength -

e Suppose we have a uniform prior (a=£=1/2),
and we observe h = (n, =2,n, =8)

e Weak prior A = 2. Posterior prediction:

o 1+2
p(x=h|n,=2,n,=8,a=a'x2)= 5210 =0.25
e Strong prior A = 20. Posterior prediction:
I 10+2
p(x=h|n,=2,n,=8,a=ax20)= 5010 =0.40

e However, if we have enough data, it washes away the prior.
e.g., n =(n, =200,n, =800). Then the estimates under
weak and strong prior are +55% and 550, respectively,

both of which are close to 0.2
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Example 2: Gaussian density

e Data:
e We observed N iid real samples:
D={-0.1,10,1,-5.2, ..., 3}

o Model:  p(y)= (270" exp- (x- )2 1257}

e Log likelihood:

N 2 - (x _,U)Z
£(9;D)=logP(D|0) =—-—log(2rc?®) - =) ~~"—;
2 2 n=1 O
e MLE: take derivative and set to zero:
O _ 11 2 B _1
o =(1/o )Zn('xn ,Ll) Hyre = Nzn(xn)
l4 N 1 1
062 :_20_2+20_4 Zn(xn_ﬂ)z G;LE:ﬁzn(xn_
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MLE for a multivariate-Gaussian ot

e It can be shown that the MLE for y and % is 1

/uMLE - ﬁzn (xn) xf

1 1 r
ZMLE:ﬁZn(xn_luML)(xn_luML)T :ﬁS . :::ZT:::
where the scatter matrix is ———x:fv S

S - Zn (xn o luML )('xn o IUML )T — (Zn x”x”T” )_ NluMLluAT/[L

e The sufficient statistics are £ x, and £ x x, .

wonw-n

e Note that X’X=% x x,” may not be full rank (eg. if N <D), in which case %,, is not
invertible
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Bayesian estimation

e Normal Prior:

P(u) = (270%)

1/2

exXpl- (1~ 1) 1202 |

e Joint probability:

P(x, 1) = (27[02)_N/2 exp{— Ziz ZN;(xn _,U)z}

1/2

X (27;05 )_ exp{— (1= 115)° /203}

e Posterior:

P(ulx)=@2752)" expl- (u-j1)? 1252

Nlo®  _ 1/o0f
X+ 2 Ho

Nlo® +1]0¢ '\%/:2+1/00
o Bg@phe, Bosan

where =

and &° :[

N
0_2
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Bayesian estimation: unknown py, knowno | ¢

Hy 7 Ho o =zt

= X+
Nlo®+1lc;  Nlo®+1lo} o of

NIc®  _ 1ol ~2_£N 1}1

e The posterior mean is a convex combination of the prior and the MLE, with
weights proportional to the relative noise levels.

e The precision of the posterior 1/0?, is the precision of the prior 1/52, plus one
contribution of data precision 1/02 for each observed data point.

e Sequentially updating the mean 5
e u#=0.8 (unknown), (0?)*= 0.1 (known)

e Effect of single data point
62 02
Hy :ﬂo"‘(x—ﬂo)ag +OGS :x—(x_ﬂo)agfoag

e Uninformative (vague/ flat) prior, 2, —«

Hy = Ho 0
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