

Machine learning for apartment hunting

• Now you've moved to Pittsburgh!!

> And you want to find the **most reasonably priced** apartment satisfying your **needs**:

square-ft., # of bedroom, distance to campus ...

Living area (ft ²)	# bedroom	Rent (\$)
230	1	600
506	2	1000
433	2	1100
109	1	500
150	1	?
270	1.5	?

The learning problem

Living area

Y

Features:

> Living area, distance to campus, # bedroom ...

> > $\begin{bmatrix} - & \mathbf{y}_1 & - \\ - & \mathbf{y}_2 & - \\ \vdots & \vdots & \vdots \end{bmatrix}$

- Denote as $\mathbf{x} = [x^1, x^2, \dots, x^k]$
- Target:
 - Rent

 \mathbf{X}_{n}

or

© Eric Xing @ CMU, 2014

 y_1

- Denoted as y
- Training set:

Linear Regression

- Assume that Y (target) is a linear function of X (features):
 - e.g.:

$$\hat{y} = \theta_0 + \theta_1 x^1 + \theta_2 x^2$$

- let's assume a vacuous "feature" X⁰=1 (this is the intercept term, why?), and define the feature vector to be:
- then we have the following general representation of the linear function:

- Our goal is to pick the optimal θ . How!
 - We seek θ that minimize the following cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\hat{y}_{i}(\bar{x}_{i}) - y_{i})^{2}$$

The Least-Mean-Square (LMS) method

• The Cost Function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

• Consider a gradient descent algorithm:

$$\theta_j^{t+1} = \theta_j^t - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \bigg|_t$$

.

The Least-Mean-Square (LMS) method

• Now we have the following descent rule:

$$\theta_j^{t+1} = \theta_j^t + \alpha \sum_{i=1}^n (y_i - \overline{\mathbf{x}}_i^T \theta^t) x_i^j$$

• For a single training point, we have:

- This is known as the LMS update rule, or the Widrow-Hoff learning rule
- This is actually a "stochastic", "coordinate" descent algorithm
- This can be used as a **on-line** algorithm

Geometry and Convergence of LMS

$$\theta^{t+1} = \theta^t + \alpha (y_i - \bar{\mathbf{x}}_i^T \theta^t) \bar{\mathbf{x}}_i$$

Claim: when the step size α satisfies certain condition, and when certain other technical conditions are satisfied, LMS will converge to an "optimal region".

Steepest Descent and LMS

- Steepest descent
 - Note that:

$$\nabla_{\theta} J = \left[\frac{\partial}{\partial \theta_1} J, \dots, \frac{\partial}{\partial \theta_k} J\right]^T = -\sum_{i=1}^n (y_n - \mathbf{x}_n^T \theta) \mathbf{x}_n$$

$$\theta^{t+1} = \theta^t + \alpha \sum_{i=1}^n (y_i - \mathbf{x}_i^T \theta^t) \mathbf{x}_i$$

• This is as a **batch** gradient descent algorithm

The normal equations

• Write the cost function in matrix form:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$
$$= \frac{1}{2} (X \theta - \bar{y})^{T} (X \theta - \bar{y})$$
$$= \frac{1}{2} (\theta^{T} X^{T} X \theta - \theta^{T} X^{T} \bar{y} - \bar{y}^{T} X \theta + \bar{y}^{T} \bar{y})$$

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_1 & -- \\ -- & \mathbf{x}_2 & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_n & -- \end{bmatrix}$$
$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

• To minimize $J(\theta)$, take derivative and set to zero:

$$\nabla_{\theta} J = \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(\theta^{T} X^{T} X \theta - \theta^{T} X^{T} \overline{y} - \overline{y}^{T} X \theta + \overline{y}^{T} \overline{y} \right)$$
$$= \frac{1}{2} \left(\nabla_{\theta} \operatorname{tr} \theta^{T} X^{T} X \theta - 2 \nabla_{\theta} \operatorname{tr} \overline{y}^{T} X \theta + \nabla_{\theta} \operatorname{tr} \overline{y}^{T} \overline{y} \right)$$
$$= \frac{1}{2} \left(X^{T} X \theta + X^{T} X \theta - 2 X^{T} \overline{y} \right)$$
$$= X^{T} X \theta - X^{T} \overline{y} = \mathbf{0}$$

$$\Rightarrow X^{T} X \theta = X^{T} \overline{y}$$

The normal equations
$$\bigcup_{\theta^{*} = (X^{T} X)^{-1} X^{T} \overline{y}}$$

Some matrix derivatives

• For $f: \mathbb{R}^{m \times n} \mapsto \mathbb{R}$, define:

$$\nabla_{A}f(A) = \begin{bmatrix} \frac{\partial}{\partial A_{11}}f & \cdots & \frac{\partial}{\partial A_{1n}}f\\ \vdots & \ddots & \vdots\\ \frac{\partial}{\partial A_{1m}}f & \cdots & \frac{\partial}{\partial A_{mn}}f \end{bmatrix}$$

• Trace:

$$\operatorname{tr} A = \sum_{i=1}^{n} A_{ii}$$
, $\operatorname{tr} a = a$, $\operatorname{tr} ABC = \operatorname{tr} CAB = \operatorname{tr} BCA$

• Some fact of matrix derivatives (without proof)

 $\nabla_A \operatorname{tr} AB = B^T$, $\nabla_A \operatorname{tr} ABA^T C = CAB + C^T AB^T$, $\nabla_A |A| = |A| (A^{-1})^T$

Comments on the normal equation

- In most situations of practical interest, the number of data points N is larger than the dimensionality k of the input space and the matrix X is of full column rank. If this condition holds, then it is easy to verify that X^TX is necessarily invertible.
- The assumption that *X*^{*T*}*X* is invertible implies that it is positive definite, thus at the critical point we have found is a minimum.
- What if X has less than full column rank? → regularization (later).

Direct and Iterative methods

- Direct methods: we can achieve the solution in a single step by solving the normal equation
 - Using Gaussian elimination or QR decomposition, we converge in a finite number of steps
 - It can be infeasible when data are streaming in in real time, or of very large amount
- Iterative methods: stochastic or steepest gradient
 - Converging in a limiting sense
 - But more attractive in large practical problems
 - Caution is needed for deciding the learning rate α

Convergence rate

• **Theorem**: the steepest descent equation algorithm converge to the minimum of the cost characterized by normal equation:

$$\theta^{(\infty)} = (X^T X)^{-1} X^T y$$

lf

$$0 < \alpha < 2/\lambda_{\max}[X^T X]$$

• A formal analysis of LMS need more math-mussels; in practice, one can use a small α , or gradually decrease α .

A Summary:

• LMS update rule

$$\theta_j^{t+1} = \theta_j^t + \alpha (y_n - \mathbf{x}_n^T \theta^t) x_{n,i}$$

- Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local optimum
- Cons: convergence to optimum not always guaranteed
- Steepest descent

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t + \boldsymbol{\alpha} \sum_{i=1}^n (\boldsymbol{y}_n - \mathbf{x}_n^T \boldsymbol{\theta}^t) \mathbf{x}_n$$

- Pros: easy to implement, conceptually clean, guaranteed convergence
- Cons: batch, often slow converging
- Normal equations

$$\boldsymbol{\theta}^* = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{\bar{y}}$$

- Pros: a single-shot algorithm! Easiest to implement.
- Cons: need to compute pseudo-inverse (X^TX)⁻¹, expensive, numerical issues (e.g., matrix is singular ..), although there are ways to get around this ...

Geometric Interpretation of LMS

$$\hat{\vec{y}} = X\theta^* = X(X^T X)^{-1} X^T \vec{y}$$
ote that
$$\hat{\vec{y}} = \begin{bmatrix} x \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_1 & -- \\ -- & \mathbf{x}_2 & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_n & -- \end{bmatrix}$$

and

Note that

$$X^{T}\left(\hat{\vec{y}} - \vec{y}\right) = X^{T}\left(X\left(X^{T}X\right)^{-1}X^{T} - I\right)\vec{y}$$
$$= \left(X^{T}X\left(X^{T}X\right)^{-1}X^{T} - X^{T}\right)\vec{y}$$
$$= \mathbf{0} \qquad \mathbf{\Pi}$$

 $\hat{\vec{y}}$ is the orthogonal projection of $\hat{\vec{y}}$ into the space spanned by the column of X

Probabilistic Interpretation of LMS

• Let us assume that the target variable and the inputs are related by the equation:

$$y_i = \boldsymbol{\theta}^T \mathbf{x}_i + \boldsymbol{\varepsilon}_i$$

where $\pmb{\epsilon}$ is an error term of unmodeled effects or random noise

• Now assume that ε follows a Gaussian $N(0,\sigma)$, then we have:

$$p(y_i | x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

• By independence assumption:

$$L(\theta) = \prod_{i=1}^{n} p(y_i \mid x_i; \theta) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

Probabilistic Interpretation of LMS, cont.

• Hence the log-likelihood is:

$$l(\theta) = n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T \mathbf{x}_i)^2$$

• Do you recognize the last term?

Yes it is:
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

 Thus under independence assumption, LMS is equivalent to MLE of *θ* !

Case study: predicting gene expression

Association Mapping as Regression

	Phenotype (BMI)	Genoty	/ре
Individual 1	2.5	CT CA	C
Individual 2 :	4.8	GA CT	G A C
Individual N	4.7	GT GT	C
		Benign SNPs	Causal SNP

Association Mapping as Regression

	Phenotype (BMI)	Genotype
Individual 1	2.5	0100
Individual 2 :	4.8	1
Individual N	4.7	2
	Ļ	J
	y _i =	$= \sum_{j=1}^{J} x_{ij} \beta_j \qquad \begin{array}{l} \text{SNPs with large} \\ \beta_j \text{ are relevant} \end{array}$

Experimental setup

• Asthama dataset

- 543 individuals, genotyped at 34 SNPs
- Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
- X=543x34 matrix
- Y=Phenotype variable (continuous)
- A single phenotype was used for regression

• Implementation details

- Iterative methods: Batch update and online update implemented.
- For both methods, step size α is chosen to be a small fixed value (10⁻⁶). This choice is based on the data used for experiments.
- Both methods are only run to a maximum of 2000 epochs or until the change in training MSE is less than 10⁻⁴

Convergence Curves

- For the batch method, the training MSE is initially large due to uninformed initialization
- In the online update, N updates for every epoch reduces MSE to a much smaller value.

The Learned Coefficients

Multivariate Regression for Trait Association Analysis

2.1 = χ X ? y = χ X β	Trait		Genotype	A	Association Strength	
$y = X \times \beta$	2.1	=	GAACCATGAAGT	X	?	
	У	=	X	x	β	

Multivariate Regression for Trait Association Analysis

Sparsity

- One common assumption to make **sparsity**.
- Makes biological sense: each phenotype is likely to be associated with a small number of SNPs, rather than all the SNPs.
- Makes statistical sense: Learning is now feasible in high dimensions with small sample size

Sparsity: In a mathematical sense

- Consider least squares linear regression problem:
- Sparsity means most of the beta's are zero.

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

subject to:

$$\sum_{j=1}^p \mathbb{I}[|\beta_j| > 0] \le C$$

• But this is not convex!!! Many local optima, computationally intractable.

L1 Regularization (LASSO)

(Tibshirani, 1996)

• A convex relaxation.

Theoretical Guarantees

• Assumptions

- Dependency Condition: Relevant Covariates are not overly dependent
- Incoherence Condition: Large number of irrelevant covariates cannot be too correlated with relevant covariates
- Strong concentration bounds: Sample quantities converge to expected values quickly

If these are assumptions are met, LASSO will asymptotically recover correct subset of covariates that relevant.

Consistent Structure Recovery [Zhao and Yu 2006]

$$P(\hat{\beta}^n(\lambda_n) =_s \beta^n) \ge 1 - o(e^{-n^{c_3}}) \to 1 \text{ as } n \to \infty.$$

Ridge Regression vs Lasso

Lasso (I1 penalty) results in sparse solutions – vector with more zero coordinates Good for high-dimensional problems – don't have to store all coordinates!

Bayesian Interpretation

- Treat the distribution parameters θ also as a random variable
- The *a posteriori* distribution of θ after seem the data is:

 $p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{p(D)} = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta)p(\theta)d\theta}$

This is Bayes Rule

 $posterior = \frac{likelihood \times prior}{marginal likelihood}$

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

The prior p(.) encodes our prior knowledge about the domain

Regularized Least Squares and MAP

What if $(X^T X)$ is not invertible ?

Prior belief that β is Gaussian with zero-mean biases solution to "small" β

Regularized Least Squares and MAP

What if $(X^T X)$ is not invertible ?

Prior belief that β is Laplace with zero-mean biases solution to "small" β

Take home message

- Gradient descent
 - On-line
 - Batch
- Normal equations
- Geometric interpretation of LMS
- Probabilistic interpretation of LMS, and equivalence of LMS and MLE under certain assumption (what?)
- Sparsity:
 - Approach: ridge vs. lasso regression
 - Interpretation: regularized regression versus Bayesian regression
 - Algorithm: convex optimization (we did not discuss this)
- LR does not mean fitting linear relations, but linear combination or basis functions (that can be non-linear)
- Weighting points by importance versus by fitness

Advanced Material: Beyond basic LR

• LR with non-linear basis functions

• Locally weighted linear regression

• Regression trees and Multilinear Interpolation

We will discuss this in next class after we set the state right! (if we've got time ⁽ⁱ⁾)

LR with non-linear basis functions

- LR does not mean we can only deal with linear relationships
- We are free to design (non-linear) features under LR

$$y = \theta_0 + \sum_{j=1}^m \theta_j \phi(x) = \theta^T \phi(x)$$

where the $\phi_i(x)$ are fixed basis functions (and we define $\phi_0(x) = 1$).

• Example: polynomial regression:

 $\phi(x) \coloneqq \left[\mathbf{1}, x, x^2, x^3\right]$

• We will be concerned with estimating (distributions over) the weights θ and choosing the model order *M*.

Basis functions

- There are many basis functions, e.g.:
 - Polynomial $\phi_j(x) = x^{j-1}$

• Radial basis functions
$$\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{2s^2}\right)$$

• Sigmoidal
$$\phi_j(x) = \sigma\left(\frac{x-\mu_j}{s}\right)$$

• Splines, Fourier, Wavelets, etc

1D and 2D RBFs

• 1D RBF

 $y^{est} = \beta_1 \phi_1(x) + \beta_2 \phi_2(x) + \beta_3 \phi_3(x)$

• After fit:

 $y^{est} = 2\phi_1(x) + 0.05\phi_2(x) + 0.5\phi_3(x)$

• Two bad 2D RBFs

Overfitting and underfitting

Bias and variance

- We define the bias of a model to be the expected generalization error even if we were to fit it to a very (say, infinitely) large training set.
- By fitting "spurious" patterns in the training set, we might again obtain a model with large generalization error. In this case, we say the model has large variance.

Locally weighted linear regression

• The algorithm:

Instead of minimizing

Where do w_i 's come from? $w_i = \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x})^2}{2\tau^2}\right)$

- where x is the query point for which we'd like to know its corresponding y
- \rightarrow Essentially we put higher weights on (errors on) training examples that are close to the query point (than those that are further away from the query)

Parametric vs. non-parametric

- Locally weighted linear regression is the second example we are running into of a **non-parametric** algorithm. (what is the first?)
- The (unweighted) linear regression algorithm that we saw earlier is known as a **parametric** learning algorithm
 - because it has a fixed, finite number of parameters (the θ), which are fit to the data;
 - Once we've fit the θ and stored them away, we no longer need to keep the training data around to make future predictions.
 - In contrast, to make predictions using locally weighted linear regression, we need to keep the entire training set around.
- The term "non-parametric" (roughly) refers to the fact that the amount of stuff we need to keep in order to represent the hypothesis grows linearly with the size of the training set.

Robust Regression

- The best fit from a quadratic regression
- But this is probably better ...

How can we do this?

LOESS-based Robust Regression

- Remember what we do in "locally weighted linear regression"?
 → we "score" each point for its impotence
- Now we score each point according to its "fitness"

Robust regression

- For k = 1 to R...
 - Let (x_k, y_k) be the kth datapoint
 - Let y_{k}^{est} be predicted value of y_{k}
 - Let w_k be a weight for data point k that is large if the data point fits well and small if it fits badly:

$$w_k = \phi \left((y_k - y_k^{\text{est}})^2 \right)$$

- Then redo the regression using weighted data points.
- Repeat whole thing until converged!

Robust regression—probabilistic interpretation

• What regular regression does:

Assume y_k was originally generated using the following recipe:

$$y_k = \theta^T \mathbf{x}_k + \mathcal{N}(\mathbf{0}, \sigma^2)$$

Computational task is to find the Maximum Likelihood estimation of $\boldsymbol{\theta}$

Robust regression—probabilistic interpretation

Assume y_k was originally generated using the following recipe:

with probability *p*:
$$y_k = \theta^T \mathbf{x}_k + \mathcal{N}(\mathbf{0}, \sigma^2)$$

but otherwise

$$y_k \sim \mathcal{N}(\mu, \sigma_{\text{huge}}^2)$$

Computational task is to find the Maximum Likelihood estimates of θ , p, μ and σ_{huge} .

• The algorithm you saw with iterative **reweighting/refitting** does this computation for us. Later you will find that it is an instance of the famous **E.M.** algorithm

Regression Tree

• Decision tree for regression

Gender	Rich?	Num. Children	# travel per yr.	Age
F	No	2	5	38
М	No	0	2	25
М	Yes	1	0	72
:	:	:	:	:

A conceptual picture

• Assuming regular regression trees, can you sketch a graph of the fitted function y*(x) over this diagram?

How about this one?

• Multilinear Interpolation

• We wanted to create a continuous and piecewise linear fit to the data

Take home message

- Gradient descent
 - On-line
 - Batch
- Normal equations
- Geometric interpretation of LMS
- Probabilistic interpretation of LMS, and equivalence of LMS and MLE under certain assumption (what?)
- Sparsity:
 - Approach: ridge vs. lasso regression
 - Interpretation: regularized regression versus Bayesian regression
 - Algorithm: convex optimization (we did not discuss this)
- LR does not mean fitting linear relations, but linear combination or basis functions (that can be non-linear)
- Weighting points by importance versus by fitness

Parameter Learning from *iid* Data

Goal: estimate distribution parameters θ from a dataset of N independent, identically distributed (*iid*), fully observed, training cases

 $D = \{x_1, \ldots, x_N\}$

- Maximum likelihood estimation (MLE)
 - 1. One of the most common estimators
 - 2. With iid and full-observability assumption, write $L(\theta)$ as the likelihood of the data:

$$L(\theta) = P(x_1, x_2, \dots, x_N; \theta)$$

= $P(x; \theta) P(x_2; \theta), \dots, P(x_N; \theta)$
= $\prod_{i=1}^{N} P(x_i; \theta)$

3. pick the setting of parameters most likely to have generated the data we saw:

$$\theta^* = \arg \max_{\substack{\theta \in \mathsf{Frfc} \, \mathsf{Xing} \, @ \, \mathsf{CMU}, \, 2014}} L(\theta) = \arg \max_{\substack{\theta \\ \theta \in \mathsf{Frfc} \, \mathsf{Xing} \, @ \, \mathsf{CMU}, \, 2014}} \log L(\theta)$$

Example: Bernoulli model

- Data:
 - We observed *N iid* coin tossing: *D*={1, 0, 1, ..., 0}
- Representation:

Binary r.v:

• Model:

$$P(x) = \begin{cases} 1 - \theta & \text{for } x = 0 \\ \theta & \text{for } x = 1 \end{cases} \implies P(x) = \theta^{x} (1 - \theta)^{1 - x}$$

• How to write the likelihood of a single observation x_i ?

 $x_n = \{0,1\}$

 $P(x_i) = \theta^{x_i} (\mathbf{1} - \theta)^{1 - x_i}$

• The likelihood of dataset $D=\{x_1, ..., x_N\}$:

$$P(x_{1}, x_{2}, ..., x_{N} \mid \theta) = \prod_{i=1}^{N} P(x_{i} \mid \theta) = \prod_{i=1}^{N} \left(\theta^{x_{i}} (1-\theta)^{1-x_{i}} \right) = \theta^{\sum_{i=1}^{N} x_{i}} (1-\theta)^{\sum_{i=1}^{N} 1-x_{i}} = \theta^{\text{#head}} (1-\theta)^{\text{#tails}}$$

© Eric Xing @ CMU, 2014

Maximum Likelihood Estimation

• Objective function:

 $\boldsymbol{\ell}(\boldsymbol{\theta}; D) = \log P(D \mid \boldsymbol{\theta}) = \log \boldsymbol{\theta}^{n_h} (\mathbf{1} - \boldsymbol{\theta})^{n_t} = n_h \log \boldsymbol{\theta} + (N - n_h) \log(\mathbf{1} - \boldsymbol{\theta})$

- We need to maximize this w.r.t. θ
- Take derivatives wrt θ

- Sufficient statistics
 - The counts, n_h , where $n_k = \sum_i x_i$, are sufficient statistics of data D

Overfitting

• Recall that for Bernoulli Distribution, we have

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head}}{n^{head} + n^{tail}}$$

- What if we tossed too few times so that we saw zero head? We have $\hat{\theta}_{ML}^{head} = 0$, and we will predict that the probability of seeing a head next is zero!!!
- The rescue: "smoothing"
 - Where *n*' is know as the pseudo- (imaginary) count

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head} + n'}{n^{head} + n^{tail} + n'}$$

• But can we make this more formal? © Eric Xing @ CMU, 2014

Bayesian Parameter Estimation

- Treat the distribution parameters θ also as a random variable
- The *a posteriori* distribution of θ after seem the data is:

 $p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{p(D)} = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta)p(\theta)d\theta}$

This is Bayes Rule

 $posterior = \frac{likelihood \times prior}{marginal \ likelihood}$

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

The prior p(.) encodes our prior knowledge about the domain

© Eric Xing @ CMU, 2014

Frequentist Parameter Estimation

Two people with different priors $p(\theta)$ will end up with different estimates $p(\theta|D)$.

- Frequentists dislike this "subjectivity".
- Frequentists think of the parameter as a fixed, unknown constant, not a random variable.
- Hence they have to come up with different "objective" estimators (ways of computing from data), instead of using Bayes' rule.
 - These estimators have different properties, such as being "unbiased", "minimum variance", etc.
 - The maximum likelihood estimator, is one such estimator.

Discussion

θ or $p(\theta)$, this is the problem!

Bayesian estimation for Bernoulli

• Beta distribution:

$$P(\theta;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (\mathbf{1}-\theta)^{\beta-1} = B(\alpha,\beta)\theta^{\alpha-1} (\mathbf{1}-\theta)^{\beta-1}$$

• When x is discrete $\Gamma(x+1) = x\Gamma(x) = x!$

$$P(\theta \mid x_1,...,x_N) = \frac{p(x_1,...,x_N \mid \theta) p(\theta)}{p(x_1,...,x_N)} \propto \theta^{n_h} (1-\theta)^{n_t} \times \theta^{\alpha-1} (1-\theta)^{\beta-1} = \theta^{n_h+\alpha-1} (1-\theta)^{n_t+\beta-1}$$

- Notice the isomorphism of the posterior to the prior,
- such a prior is called a **conjugate prior**
- α and β are hyperparameters (parameters of the prior) and correspond to the number of "virtual" heads/tails (pseudo counts)

Bayesian estimation for Bernoulli, con'd

• Posterior distribution of θ :

 $P(\theta \mid x_1,...,x_N) = \frac{p(x_1,...,x_N \mid \theta) p(\theta)}{p(x_1,...,x_N)} \propto \theta^{n_h} (1-\theta)^{n_l} \times \theta^{\alpha-1} (1-\theta)^{\beta-1} = \theta^{n_h+\alpha-1} (1-\theta)^{n_l+\beta-1}$

• Maximum a posteriori (MAP) estimation:

$$\theta_{MAP} = \arg\max_{\theta} \log P(\theta \mid x_1, ..., x_N)$$

Bata parameters can be understood as pseudo-counts

$$\theta_{Bayes} = \int \theta p(\theta \mid D) d\theta = C \int \theta \times \theta^{n_h + \alpha - 1} (\mathbf{1} - \theta)^{n_t + \beta - 1} d\theta = \frac{n_h + \alpha}{N + \alpha + \beta}$$

• Prior strength: $A=\alpha+\beta$

Posterior mean estimation:

• A can be interoperated as the size of an imaginary data set from which we obtain the **pseudo-counts**

Effect of Prior Strength

- Suppose we have a uniform prior ($\alpha = \beta = 1/2$), and we observe $\overline{n} = (n_h = 2, n_t = 8)$
- Weak prior A = 2. Posterior prediction:

$$p(x = h | n_h = 2, n_t = 8, \vec{\alpha} = \vec{\alpha} \times 2) = \frac{1+2}{2+10} = 0.25$$

• Strong prior A = 20. Posterior prediction:

$$p(x = h | n_h = 2, n_t = 8, \vec{\alpha} = \vec{\alpha} \times 20) = \frac{10 + 2}{20 + 10} = 0.40$$

• However, if we have enough data, it washes away the prior. e.g., $\vec{n} = (n_h = 200, n_t = 800)$. Then the estimates under weak and strong prior are $\frac{1+200}{2+1000}$ and $\frac{10+200}{20+1000}$, respectively, both of which are close to 0.2

Example 2: Gaussian density

- Data:
 - We observed *N iid* real samples:
 D={-0.1, 10, 1, -5.2, ..., 3}
- Model: $P(x) = (2\pi\sigma^2)^{-1/2} \exp\{-(x-\mu)^2/2\sigma^2\}$
- Log likelihood:

$$\boldsymbol{\ell}(\boldsymbol{\theta}; D) = \log P(D \mid \boldsymbol{\theta}) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{\sigma^2}$$

• MLE: take derivative and set to zero:

$$\frac{\partial \ell}{\partial \mu} = (1/\sigma^2) \sum_n (x_n - \mu)$$

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_n (x_n - \mu)^2$$

$$\mu_{MLE} = \frac{1}{N} \sum_{n} (x_n)$$
$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{n} (x_n - \mu_{ML})^2$$

© Eric Xing @ CMU, 2014

MLE for a multivariate-Gaussian

• It can be shown that the MLE for μ and Σ is

$$\mu_{MLE} = \frac{1}{N} \sum_{n} (x_n)$$

$$\Sigma_{MLE} = \frac{1}{N} \sum_{n} (x_n - \mu_{ML}) (x_n - \mu_{ML})^T = \frac{1}{N} S$$

where the scatter matrix is

$$S = \sum_{n} (x_{n} - \mu_{ML}) (x_{n} - \mu_{ML})^{T} = (\sum_{n} x_{n} x_{n}^{T}) - N \mu_{ML} \mu_{ML}^{T}$$

- The sufficient statistics are $\Sigma_n x_n$ and $\Sigma_n x_n x_n^T$.
- Note that $X^T X = \Sigma_n x_n x_n^T$ may not be full rank (eg. if N < D), in which case Σ_{ML} is not invertible

 $x_n = \begin{pmatrix} x_n^1 \\ x_n^2 \\ \vdots \\ \kappa \end{pmatrix}$

 $X = \begin{pmatrix} - - - x_1^T - - - - \\ - - - x_2^T - - - - \\ \vdots \\ - - - x_{x_1}^T - - - \end{pmatrix}$

Bayesian estimation

• Normal Prior:

$$P(\mu) = \left(2\pi\sigma_0^2\right)^{-1/2} \exp\left\{-\left(\mu - \mu_0\right)^2 / 2\sigma_0^2\right\}$$

• Joint probability:

$$P(x,\mu) = (2\pi\sigma^2)^{-N/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=1}^N (x_n - \mu)^2\right\}$$
$$\times (2\pi\sigma_0^2)^{-1/2} \exp\left\{-(\mu - \mu_0)^2 / 2\sigma_0^2\right\}$$

• Posterior:

$$P(\mu \mid \mathbf{x}) = (2\pi\tilde{\sigma}^2)^{-1/2} \exp\left\{-(\mu - \tilde{\mu})^2 / 2\tilde{\sigma}^2\right\}$$

where $\tilde{\mu} = \frac{N/\sigma^2}{N/\sigma^2 + 1/\sigma_0^2} \bar{x} + \frac{1/\sigma_0^2}{N/\sigma^2 + 1/\sigma_0^2} \mu_0$, and $\tilde{\sigma}^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}\right)^{-1}$
Eric Sign ple, mean

Bayesian estimation: unknown μ, known σ

$$\mu_{N} = \frac{N/\sigma^{2}}{N/\sigma^{2} + 1/\sigma_{0}^{2}} \overline{x} + \frac{1/\sigma_{0}^{2}}{N/\sigma^{2} + 1/\sigma_{0}^{2}} \mu_{0}$$

- The posterior mean is a convex combination of the prior and the MLE, with weights proportional to the relative noise levels.
- The precision of the posterior $1/\sigma_N^2$ is the precision of the prior $1/\sigma_0^2$ plus one contribution of data precision $1/\sigma^2$ for each observed data point.

• Uninformative (vague/ flat) prior, $\sigma_0^2 - \mu_N \rightarrow \mu_0$

 $\tilde{\sigma}^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma^2}\right)^{-1}$