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Machine learning for apartment 
hunting 

 Now you've moved to 
Pittsburgh!! 
And you want to find the most 
reasonably priced apartment 
satisfying your needs:

square-ft., # of bedroom, distance to 
campus …

Living area (ft2) # bedroom Rent ($)

230 1 600
506 2 1000
433 2 1100
109 1 500
…
150 1 ?
270 1.5 ?
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The learning problem

 Features: 
 Living area, distance to campus, # 

bedroom …
 Denote as x=[x1, x2, … xk]

 Target: 
 Rent
 Denoted as y

 Training set:
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Linear Regression
 Assume that Y (target) is a linear function of X (features):

 e.g.:

 let's assume a vacuous "feature" X0=1 (this is the intercept term, why?), and 
define the feature vector to be:

 then we have the following general representation of the linear function:

 Our goal is to pick the optimal       . How!
 We seek      that minimize the following cost function:
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The Least-Mean-Square (LMS) 
method
 The Cost Function:

 Consider a gradient descent algorithm:
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The Least-Mean-Square (LMS) 
method
 Now we have the following descent rule: 

 For a single training point, we have: 

 This is known as the LMS update rule, or the Widrow-Hoff learning rule
 This is actually a "stochastic", "coordinate" descent algorithm
 This can be used as a on-line algorithm




 
n

i

j
i

tT
ii

t
j

t
j xy

1

1 )(  x

© Eric Xing @ CMU, 2014 6



Geometry and Convergence of LMS

N=1 N=2 N=3

Claim: when the step size  satisfies certain condition, and when certain 
other technical conditions are satisfied, LMS will converge to an “optimal 
region”.   
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Steepest Descent and LMS
 Steepest descent

 Note that:

 This is as a batch gradient descent algorithm
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The normal equations
 Write the cost function in matrix form:

 To minimize J(θ), take derivative and set to zero:
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Some matrix derivatives
 For                       , define:

 Trace:

 Some fact of matrix derivatives (without proof)
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Comments on the normal 
equation
 In most situations of practical interest, the number of data 

points N is larger than the dimensionality k of the input space 
and the matrix X is of full column rank. If this condition holds, 
then it is easy to verify that XTX is necessarily invertible.

 The assumption that XTX is invertible implies that it is positive 
definite, thus at the critical point we have found is a minimum. 

 What if X has less than full column rank?  regularization 
(later). 
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Direct and Iterative methods
 Direct methods: we can achieve the solution in a single step 

by solving the normal equation
 Using Gaussian elimination or QR decomposition, we converge in a finite number 

of steps
 It can be infeasible when data are streaming in in real time, or of very large 

amount

 Iterative methods: stochastic or steepest gradient
 Converging in a limiting sense
 But more attractive in large practical problems 
 Caution is needed for deciding the learning rate 
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Convergence rate
 Theorem: the steepest descent equation algorithm 

converge to the minimum of the cost characterized by 
normal equation:

If 

 A formal analysis of LMS need more math-mussels; in 
practice, one can use a small , or gradually decrease .
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A Summary:
 LMS update rule

 Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local 
optimum

 Cons: convergence to optimum not always guaranteed

 Steepest descent

 Pros: easy to implement, conceptually clean, guaranteed convergence
 Cons: batch, often slow converging

 Normal equations

 Pros: a single-shot algorithm! Easiest to implement.
 Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues 

(e.g., matrix is singular ..), although there are ways to get around this …
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Geometric Interpretation of LMS
 The predictions on the training data are:

 Note that

and 

is the orthogonal projection of
into the space spanned by the columns 
of X
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Probabilistic Interpretation of 
LMS
 Let us assume that the target variable and the inputs are 

related by the equation:

where ε is an error term of unmodeled effects or random noise

 Now assume that ε follows a Gaussian N(0,σ), then we have:

 By independence assumption:
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Probabilistic Interpretation of 
LMS, cont.
 Hence the log-likelihood is:

 Do you recognize the last term?

Yes it is: 

 Thus under independence assumption, LMS is equivalent to 
MLE of θ !
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Case study: 
predicting gene expression

The genetic picture

CGTTTCACTGTACAATTT
causal SNPs

a univariate phenotype:

i.e., the expression intensity of 
a gene
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Individual 
1

Individual 
2

Individual 
N

Phenotype (BMI)

2.5

4.8

4.7

Genotype

. . C . . . . .  T . . C . . . . . . . T . . .

. . C . . . . .  A . . C . . . . . . . T . . .

. . G  . . . . . A . . G . . . . . . . A . . .

. . C . . . . .  T . . C . . . . . . . T . . .

. . G  . . . . . T . . C . . . . . . . T . . .

. . G  . . . . . T . . G . . . . . . . T . . .

Causal SNPBenign SNPs

…
Association Mapping as Regression
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Individual 
1

Individual 
2

Individual 
N

Phenotype (BMI)

2.5

4.8

4.7

Genotype

. . 0 . . . . .  1 . . 0 . . . . . . . 0 . . .

. . 1  . . . . . 1 . . 1 . . . . . . . 1 . . .

. . 2  . . . . . 2 . . 1 . . . . . . . 0 . . .

…
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 SNPs with large 

|βj| are relevant

Association Mapping as Regression
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Experimental setup
 Asthama dataset

 543 individuals, genotyped at 34 SNPs
 Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
 X=543x34 matrix
 Y=Phenotype variable (continuous)

 A single phenotype was used for regression

 Implementation details
 Iterative methods: Batch update and online update implemented.
 For both methods, step size α is chosen to be a small fixed value (10-6). This 

choice is based on the data used for experiments.
 Both methods are only run to a maximum of 2000 epochs or until the change in 

training MSE is less than 10-4
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Convergence Curves

 For the batch 
method, the training 
MSE is initially large 
due to uninformed 
initialization

 In the online update, 
N updates for every 
epoch reduces MSE 
to a much smaller 
value.

© Eric Xing @ CMU, 2014
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The Learned Coefficients

© Eric Xing @ CMU, 2014 23
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GenotypeTrait

Multivariate Regression for Trait 
Association Analysis

Xy

2.1 x=

x= β

Association Strength

?
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GenotypeTrait

Multivariate Regression for Trait 
Association Analysis

Many non-zero associations: 
Which SNPs are truly significant?

2.1 x=

Association Strength
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Sparsity
 One common assumption to make sparsity.

 Makes biological sense: each phenotype is likely to be 
associated with a small number of SNPs, rather than all the 
SNPs.

 Makes statistical sense: Learning is now feasible in high 
dimensions with small sample size
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Sparsity: In a mathematical sense
 Consider least squares linear regression problem:
 Sparsity means most of the beta’s are zero.

 But this is not convex!!! Many local optima, computationally 
intractable.
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L1 Regularization (LASSO)
(Tibshirani, 1996) 

 A convex relaxation.

 Still enforces sparsity!

Constrained Form Lagrangian Form

© Eric Xing @ CMU, 2014 28



Theoretical Guarantees
 Assumptions

 Dependency Condition: Relevant Covariates are not overly dependent
 Incoherence Condition: Large number of irrelevant covariates cannot be too 

correlated with relevant covariates
 Strong concentration bounds: Sample quantities converge to expected values 

quickly 

If these are assumptions are met, LASSO will asymptotically recover 
correct subset of covariates that relevant.
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Consistent Structure Recovery
[Zhao and Yu 2006]
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Genotype

x=2.1 

Trait

Lasso for Reducing False Positives

Many zero associations (sparse results), 
but what if there are multiple related traits?
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Ridge Regression vs Lasso

Ridge Regression:  Lasso: HOT
!

Lasso (l1 penalty) results in sparse solutions – vector with more zero coordinates
Good for high‐dimensional problems – don’t have to store all coordinates!

βs with 
constant 
l1 norm

βs with constant J(β)
(level sets of J(β))

βs with 
constant 
l2 norm

β2

β1

X X
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Bayesian Interpretation
 Treat the distribution parameters  also as a random variable
 The a posteriori distribution of  after seem the data is:

This is Bayes Rule

likelihood marginal
priorlikelihoodposterior 
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
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The prior p(.) encodes our prior knowledge about the domain
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What if (XTX) is not invertible ? 

log likelihood log prior

Prior belief that β is Gaussian with zero‐mean biases solution to “small” β

I) Gaussian Prior

0

Ridge Regression

Closed form: HW

Regularized Least Squares and 
MAP
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Regularized Least Squares and 
MAP

log likelihood log prior

Prior belief that β is Laplace with zero‐mean biases solution to “small” β

Lasso

Closed form: HW

II) Laplace Prior

What if (XTX) is not invertible ? 

© Eric Xing @ CMU, 2014 35



Take home message
 Gradient descent

 On-line
 Batch

 Normal equations
 Geometric interpretation of LMS
 Probabilistic interpretation of LMS, and equivalence of LMS and 

MLE under certain assumption (what?) 
 Sparsity: 

 Approach: ridge vs. lasso regression
 Interpretation: regularized regression versus Bayesian regression
 Algorithm: convex optimization (we did not discuss  this)

 LR does not mean fitting linear relations, but linear combination or 
basis functions (that can be non-linear)

 Weighting points by importance versus by fitness

© Eric Xing @ CMU, 2014 36



After class material …
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Advanced Material: 
Beyond basic LR
 LR with non-linear basis functions

 Locally weighted linear regression

 Regression trees and Multilinear Interpolation

We will discuss this in next class after we set the state right!
(if we’ve got time )
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LR with non-linear basis 
functions
 LR does not mean we can only deal with linear relationships

 We are free to design (non-linear) features under LR

where the j(x) are fixed basis functions (and we define 0(x) = 1).

 Example: polynomial regression:

 We will be concerned with estimating (distributions over) the 
weights θ and choosing the model order M.

)()( xxy Tm
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Basis functions
 There are many basis functions, e.g.:

 Polynomial

 Radial basis functions

 Sigmoidal

 Splines, Fourier, Wavelets, etc
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1D and 2D RBFs
 1D RBF

 After fit:
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Good and Bad RBFs
 A good 2D RBF

 Two bad 2D RBFs

© Eric Xing @ CMU, 2014 42



Overfitting and underfitting

xy 10   2
210 xxy    
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0j
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j xy 
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Bias and variance
 We define the bias of a model to be the expected 

generalization error even if we were to fit it to a very (say, 
infinitely) large training set.

 By fitting "spurious" patterns in the training set, we might 
again obtain a model with large generalization error. In this 
case, we say the model has large variance.
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Locally weighted linear 
regression

 The algorithm:
Instead of minimizing

now we fit θ to minimize

Where do wi's come from?                                              

 where x is the query point for which we'd like to know its corresponding y

 Essentially we put higher weights on (errors on) training 
examples that are close to the query point (than those that are 
further away from the query)
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Parametric vs. non-parametric
 Locally weighted linear regression is the second example we 

are running into of a non-parametric algorithm. (what is the 
first?)

 The (unweighted) linear regression algorithm that we saw 
earlier is known as a parametric learning algorithm 
 because it has a fixed, finite number of parameters (the θ), which are fit to the 

data;
 Once we've fit the θ and stored them away, we no longer need to keep the 

training data around to make future predictions.
 In contrast, to make predictions using locally weighted linear regression, we need 

to keep the entire training set around. 

 The term "non-parametric" (roughly) refers to the fact that the 
amount of stuff we need to keep in order to represent the 
hypothesis grows linearly with the size of the training set.
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Robust Regression

 The best fit from a quadratic 
regression

 But this is probably better …

How can we do this?
© Eric Xing @ CMU, 2014 47



LOESS-based Robust Regression
 Remember what we do in "locally weighted linear regression"?
 we "score" each point for its impotence

 Now we score each point according to its "fitness"

(Courtesy to Andrew Moor) © Eric Xing @ CMU, 2014 48



Robust regression
 For k = 1 to R…

 Let (xk ,yk) be the kth datapoint
 Let yest

k be predicted value of yk

 Let wk be a weight for data point k that is large if 
the data point fits well and small if it fits badly:

 Then redo the regression using weighted data points.

 Repeat whole thing until converged!

 2)( est
kkk yyw  
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Robust regression—probabilistic 
interpretation
 What regular regression does:

Assume yk was originally generated using the following recipe:

Computational task is to find the Maximum Likelihood 
estimation of θ

),( 20  N k
T

ky x
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Robust regression—probabilistic 
interpretation
 What LOESS robust regression does:

Assume yk was originally generated using the following recipe:

with probability p:

but otherwise

Computational task is to find the Maximum Likelihood 
estimates of θ, p, µ and σhuge. 

 The algorithm you saw with iterative reweighting/refitting
does this computation for us. Later you will find that it is an 
instance of the famous E.M. algorithm

),( 20  N k
T

ky x

),(~ huge
2Nky
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Regression Tree
 Decision tree for regression

Gender Rich? Num. 
Children

# travel 
per yr.

Age

F No 2 5 38

M No 0 2 25

M Yes 1 0 72

: : : : :

Gender?

Predicted age=39 Predicted age=36

Female Male
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A conceptual picture
 Assuming regular regression trees, can you sketch a graph of 

the fitted function y*(x) over this diagram?
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How about this one?
 Multilinear Interpolation

 We wanted to create a continuous and piecewise linear fit to 
the data
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Take home message
 Gradient descent

 On-line
 Batch

 Normal equations
 Geometric interpretation of LMS
 Probabilistic interpretation of LMS, and equivalence of LMS and 

MLE under certain assumption (what?) 
 Sparsity: 

 Approach: ridge vs. lasso regression
 Interpretation: regularized regression versus Bayesian regression
 Algorithm: convex optimization (we did not discuss  this)

 LR does not mean fitting linear relations, but linear combination or 
basis functions (that can be non-linear)

 Weighting points by importance versus by fitness
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Appendix
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Parameter Learning from iid Data
 Goal: estimate distribution parameters  from a dataset of N

independent, identically distributed (iid), fully observed, 
training cases

D = {x1, . . . , xN}

 Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumption, write L() as the likelihood of the data:

3. pick the setting of parameters most likely to have generated the data we saw:

);,,()( ,  NxxxPL 21

 



N

i i

N

xP

xPxPxP

1

2

);(

);(,),;();(



 

)(maxarg* 


L )(logmaxarg 


L
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Example: Bernoulli model
 Data: 

 We observed N iid coin tossing: D={1, 0, 1, …, 0}

 Representation:
Binary r.v:

 Model: 

 How to write the likelihood of a single observation xi ? 

 The likelihood of datasetD={x1, …,xN}:
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Maximum Likelihood Estimation
 Objective function: 

 We need to maximize this w.r.t. 

 Take derivatives wrt 

 Sufficient statistics
 The counts,                                          are sufficient statistics of data D

)log()(log)(log)|(log);(   11 hh
nn nNnDPD thl
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Overfitting
 Recall that for Bernoulli Distribution, we have

 What if we tossed too few times so that we saw zero head?
We have                   and we will predict that the probability of 
seeing a head next is zero!!! 

 The rescue: "smoothing"
 Where n' is know as the pseudo- (imaginary) count

 But can we make this more formal?
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Bayesian Parameter Estimation
 Treat the distribution parameters  also as a random variable
 The a posteriori distribution of  after seem the data is:

This is Bayes Rule

likelihood marginal
priorlikelihoodposterior 









dpDp
pDp

Dp
pDpDp

)()|(
)()|(

)(
)()|()|(

The prior p(.) encodes our prior knowledge about the domain
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Frequentist Parameter Estimation 
Two people with different priors p() will end up with 
different estimates p(|D).

 Frequentists dislike this “subjectivity”.
 Frequentists think of the parameter as a fixed, unknown 

constant, not a random variable.
 Hence they have to come up with different "objective" 

estimators (ways of computing from data), instead of using 
Bayes’ rule.
 These estimators have different properties, such as being “unbiased”, “minimum 

variance”, etc.
 The maximum likelihood estimator, is one such estimator.
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Discussion

 or p(), this is the problem!

Bayesians know it
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Bayesian estimation for Bernoulli 
 Beta distribution:  

 When x is discrete

 Posterior distribution of  : 

 Notice the isomorphism of the posterior to the prior, 
 such a prior is called a conjugate prior
  and  are hyperparameters (parameters of the prior) and correspond to the 

number of “virtual” heads/tails (pseudo counts)
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Bayesian estimation for 
Bernoulli, con'd 
 Posterior distribution of  :

 Maximum a posteriori (MAP) estimation: 

 Posterior mean estimation:

 Prior strength: A=+
 A can be interoperated as the size of an imaginary data set from which we obtain 

the pseudo-counts
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Effect of Prior Strength
 Suppose we have a uniform prior (==1/2), 

and we observe
 Weak prior A = 2. Posterior prediction:

 Strong prior A = 20. Posterior prediction:

 However, if we have enough data, it washes away the prior. 
e.g.,                                         .  Then the estimates under 
weak and strong prior are            and            ,  respectively, 
both of which are close to 0.2
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Example 2: Gaussian density
 Data: 

 We observed N iid real samples: 
D={-0.1, 10, 1, -5.2, …, 3}

 Model: 

 Log likelihood:

 MLE: take derivative and set to zero:
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MLE for a multivariate-Gaussian
 It can be shown that the MLE for µ and Σ is

where the scatter matrix is

 The sufficient statistics are nxn and nxnxn
T.

 Note that XTX=nxnxn
T may not be full rank (eg. if N <D), in which case ΣML is not 

invertible
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Bayesian estimation

 Normal Prior:  

 Joint probability: 

 Posterior:
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Bayesian estimation: unknown µ, known σ

 The posterior mean is a convex combination of the prior and the MLE, with 
weights proportional to the relative noise levels.

 The precision of the posterior 1/σ2
N is the precision of the prior 1/σ2

0 plus one 
contribution of data precision 1/σ2 for each observed data point.

 Sequentially updating the mean
 µ∗ = 0.8 (unknown),  (σ2)∗ = 0.1 (known)

 Effect of single data point

 Uninformative (vague/ flat) prior, σ2
0 →∞
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