CS334: Digital Imaging and Multimedia Edges and Contours

Ahmed Elgammal
Dept. of Computer Science
Rutgers University

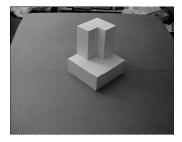
Outlines

- What makes an edge?
- Gradient-based edge detection
- Edge Operators
- From Edges to Contours
- Edge Sharpening
- Sources:
 - Burger and Burge "Digital Image Processing" Chapter 7
 - Forsyth and Ponce "Computer Vision a Modern approach"

What are edges

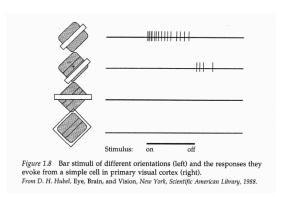
- What is an edge? A sharp change in brightness
- What generates an edge (Where edges occur)?
 - Boundaries between objects
 - Reflectance changes (within object)
 - Change in surface orientation (within object)
 - Illumination changes: e.g., cast shadow boundary (within object)

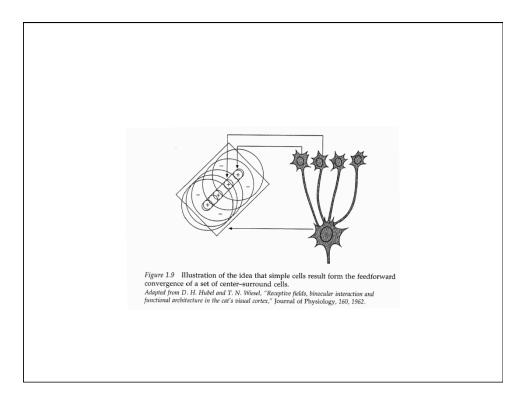
- Edge: A sharp change in brightness
- But which changes we would like to mark as an edge?
 Meaningful changes. Hard to defined.
- How to tell a semantically meaningful edge from a nuisance edge?
- Both low level and high level information

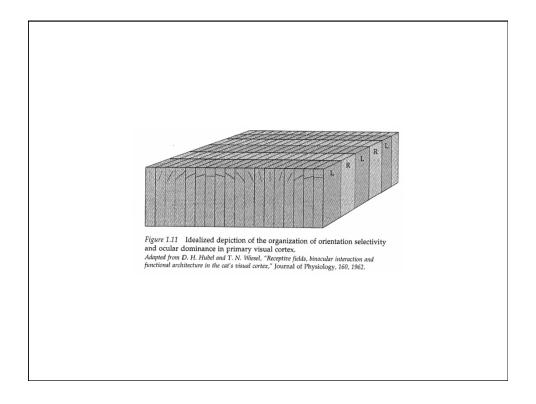


Edges in Biological Vision

• We have seen evidence before of edge/bar detectors at different stages of our visual system.

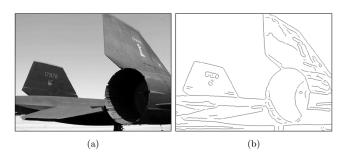






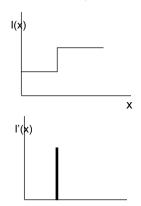
Edge Detection

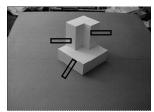
 An image processing task that aims to find edges and contours in images



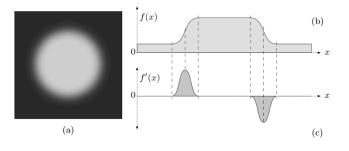
Characteristic of an edge

- Edge: A sharp change in brightness
- Ideal edge is a step function in certain direction.

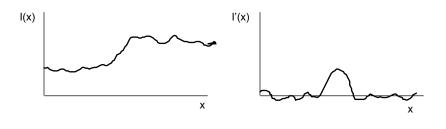




- 1-D edges
- Realistically, edges is a smooth (blurred) step function
- Edges can be characterized by high value first derivative $f'(x) = \frac{df}{dx}(x)$

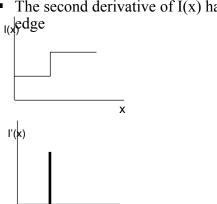


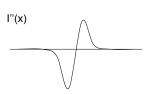
- More realistically, image edges are blurred and the regions that meet at those edges have noise or variations in intensity.
 - blur high first derivatives near edges
 - noise high first derivatives within regions that meet at edges



Characteristics of an edge

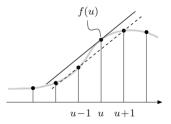
- Ideal edge is a step function in certain direction.
- The first derivative of I(x) has a **peak** at the edge
- The second derivative of I(x) has a zero crossing at the

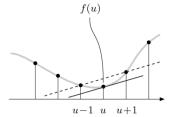




• How can we compute the derivative of a discrete function?

$$\frac{df}{du}(u) \; \approx \; \frac{f(u\!+\!1) - f(u\!-\!1)}{2} \; = \; 0.5 \cdot \left(f(u\!+\!1) - f(u\!-\!1)\right)$$





Function Gradient

- Let f(x,y) be a 2D function. It has derivatives in all directions
 - The gradient is a vector whose direction is in the direction of the maximum rate of change of f and whose magnitude is the maximum rate of change of f (direction of maximum first derivative)
- If f is continuous and differentiable, then its gradient can be determined from the directional derivatives in any two orthogonal directions - standard to use x and y

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]^T$$

- magnitude = $\left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2}$
- direction = $tan^{-1} \left(\frac{\partial f}{\partial y} \right)$

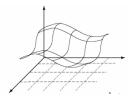


Image Gradient

- Image is a 2D discrete function
- Image derivatives in the horizontal and vertical directions

$$\frac{\partial I}{\partial u}(u,v) \qquad \text{and} \qquad \frac{\partial I}{\partial v}(u,v)$$

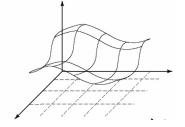
■ Image gradient and any given location (u,v)

$$\nabla I(u,v) = \begin{bmatrix} \frac{\partial I}{\partial u}(u,v) \\ \frac{\partial I}{\partial v}(u,v) \end{bmatrix}$$

Gradient Magnitude

$$|\nabla I|(u,v) = \sqrt{\left(\frac{\partial I}{\partial u}(u,v)\right)^2 + \left(\frac{\partial I}{\partial v}(u,v)\right)^2}$$

Gradient direction



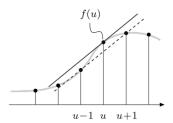
Derivative Filters

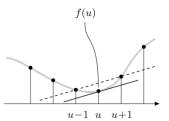
• Recall: How can we compute the derivative of a discrete function

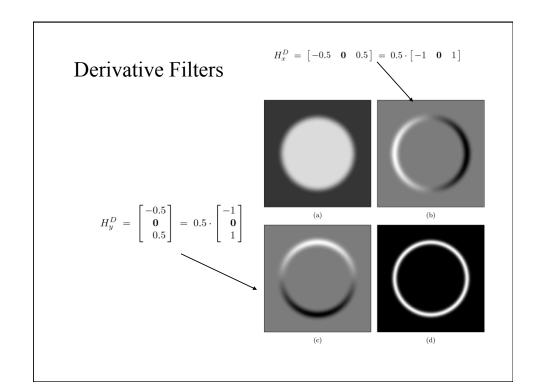
$$\frac{df}{du}(u) \; \approx \; \frac{f(u\!+\!1) - f(u\!-\!1)}{2} \; = \; 0.5 \cdot \left(f(u\!+\!1) - f(u\!-\!1)\right)$$

- This is called finite differences
- Can we make a linear filter that computes this derivative?

$$H_x^D = \begin{bmatrix} -0.5 & \mathbf{0} & 0.5 \end{bmatrix} = 0.5 \cdot \begin{bmatrix} -1 & \mathbf{0} & 1 \end{bmatrix}$$







Partial Image derivatives

- With a digital image, the partial derivatives
 - are replaced by finite differences:

•
$$\Delta_x f = f(x,y) - f(x-1,y)$$

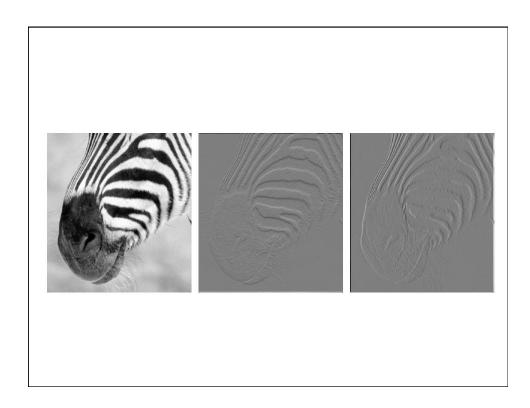
$$\Delta_y f = f(x,y) - f(x, y-1)$$

- Alternatives are:
 - $\Delta_{2x} f = f(x+1,y) f(x-1,y)$
 - $\Delta_{2y} f = f(x,y+1) f(x,y-1)$
- Robert's gradient
 - $\Delta_+ f = f(x+1,y+1) f(x,y)$
 - $\Delta_{\underline{f}} = f(x,y+1) f(x+1, y)$

Prewitt

-1	0	1	-1	-2	-1
-2	0	2	0	0	0
-1	0	1	1	2	1

Sobel



Finite differences and noise

- Finite difference filters respond strongly to noise
 - obvious reason: image noise results in pixels that look very different from their neighbors

- What is to be done?
 - intuitively, most pixels in images look quite a lot like their neighbors
 - this is true even at an edge; along the edge they're similar, across the edge they're not
 - suggests that smoothing the image should help, by forcing pixels different to their neighbors (=noise pixels?) to look more like neighbors

Gaussian Derivative Filters

- So smoothing should help before taking the derivatives.
- Recall: smoothing and differentiation are linear filters
- Recall also: linear filter are associative

$$K_{\partial/\partial x} * (g * I) = (K_{\partial/\partial x} * g) * I = \frac{\partial g}{\partial x} * I$$

- Smoothing then differentiation = convolution with the derivative of the smoothing kernel.
- If Gaussian is used for smoothing: We need to convolve the image with derivative of the Gaussian

Edge Operators

Prewitt and Sobel Operators

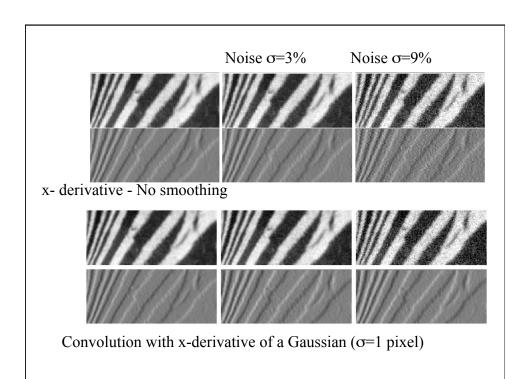
• Prewitt Operator:

$$H_x^P = \begin{bmatrix} -1 & 0 & 1 \\ -1 & \mathbf{0} & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad H_y^P = \begin{bmatrix} -1 & -1 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

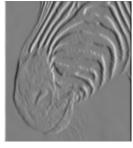
$$H_x^P = \begin{bmatrix} 1 \\ \mathbf{1} \\ 1 \end{bmatrix} * \begin{bmatrix} -1 & \mathbf{0} & 1 \end{bmatrix} \quad \text{and} \quad H_y^P = \begin{bmatrix} 1 & \mathbf{1} & 1 \end{bmatrix} * \begin{bmatrix} -1 \\ \mathbf{0} \\ 1 \end{bmatrix}$$

Sobel Operator

$$H_x^S = \begin{bmatrix} -1 & 0 & 1 \\ -2 & \mathbf{0} & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 and $H_y^S = \begin{bmatrix} -1 & -2 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 2 & 1 \end{bmatrix}$



• The scale (σ) of the Gaussian has significant effects on the results - tradeoff...





1 pixel

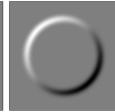
3 pixels

7 pixels

Other operators

- Many other edge operators with different properties
- Roberts operator

$$H_1^R = \left[\begin{array}{cc} 0 & \mathbf{1} \\ -1 & 0 \end{array} \right] \quad \text{and} \quad H_2^R = \left[\begin{array}{cc} -1 & 0 \\ 0 & \mathbf{1} \end{array} \right]$$



 $D_1 = I * H_1^R$

 $D_2 = I * H_2^R$

Gradient-based edge detection:

Compute image derivatives (with smoothing) by convolution

$$D_x(u, v) = H_x * I$$
 and $D_y(u, v) = H_y * I$

• Compute edge strength - gradient magnitude

$$E(u,v) = \sqrt{\left(D_x(u,v)\right)^2 + \left(D_y(u,v)\right)^2}$$

• Compute edge orientation - gradient direction

$$\Phi(u,v) = \tan^{-1}\left(\frac{D_y(u,v)}{D_x(u,v)}\right) = \operatorname{ArcTan}\left(D_x(u,v), D_y(u,v)\right)$$

$$H_x$$

$$D_x(u,v)$$

$$D_x(u,v)$$

$$D_y(u,v)$$

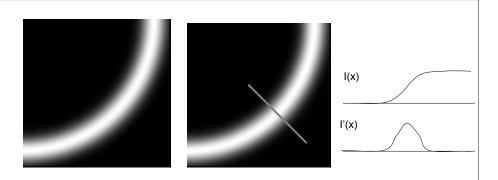
$$D_y(u,v)$$

$$D_y(u,v)$$

$$D_y(u,v)$$

- What's after computing the gradient magnitude and orientation?
- now mark points where gradient magnitude is particularly large wrt neighbors

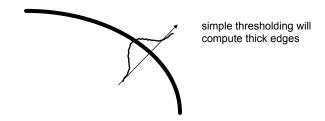
Problem: The gradient magnitude is large along thick trail; how do we identify the significant points?

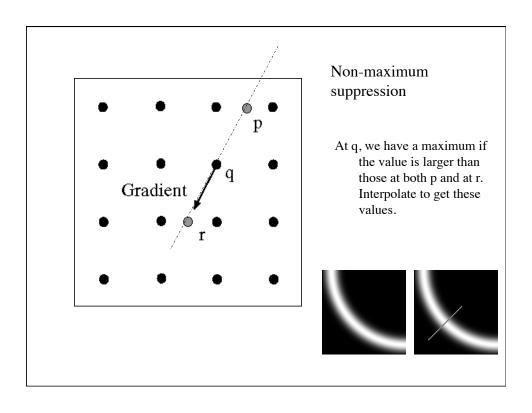


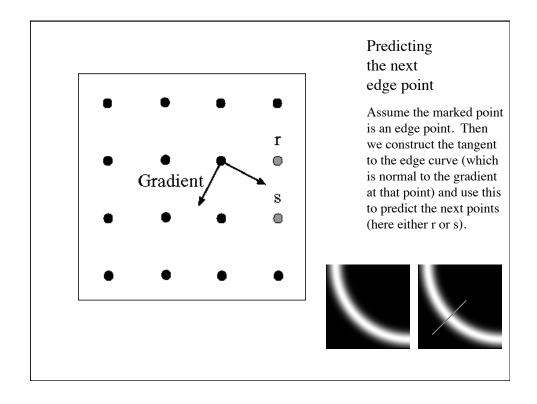
- We wish to mark points along the curve where the magnitude is biggest.
- We can do this by looking for a maximum along a slice normal to the curve (non-maximum suppression).
- These points should form a curve.
- There are then two algorithmic issues: at which point is the maximum, and where is the next one?

Non-maxima suppression

- Non-maxima suppression Retain a point as an edge point if:
 - its gradient magnitude is higher than a threshold
 - its gradient magnitude is a local maxima in the gradient direction

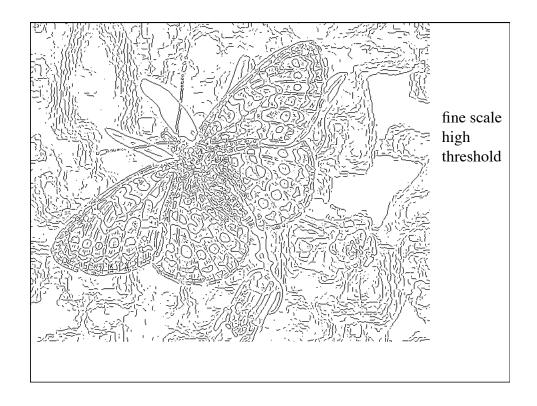


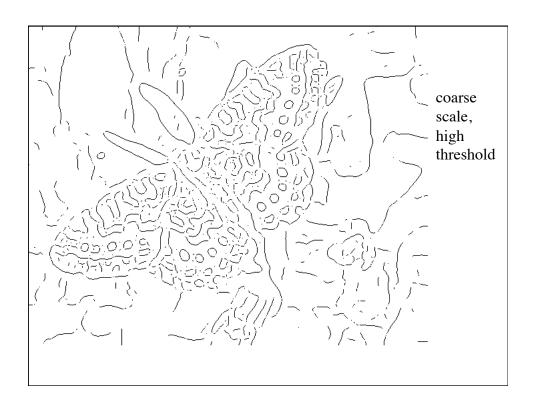


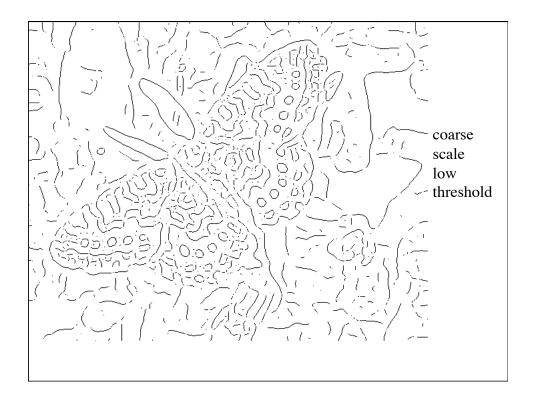


Problem of scale and threshold

- Usually, any single choice of scale σ does not produce a good edge map
 - a large σ will produce edges form only the largest objects, and they will not accurately delineate the object because the smoothing reduces shape detail
 - a small σ will produce many edges and very jagged boundaries of many objects.
- Threshold:
 - Low threshold: low contrast edges. a variety of new edge points of dubious significance are introduced.
 - High threshold: loose low contrast edges ⇒ broken edges.





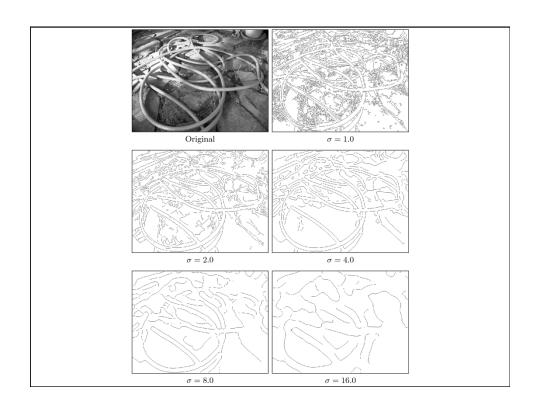


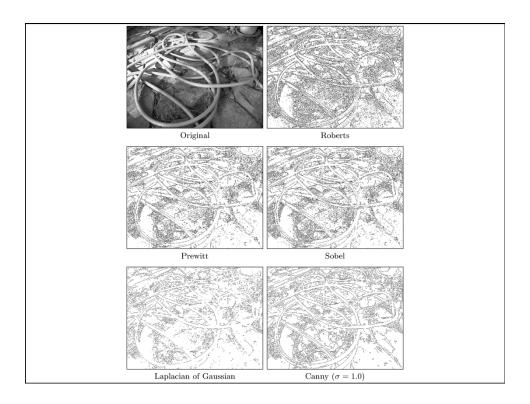
Hysteresis

- Which Scale:
 - Fine scale: fine details.
 - Coarser scale: fine details disappear.
- Solution: Scale-space approaches
 - detect edges at a range of scales $[\sigma_1, \sigma_2]$
 - combine the resulting edge maps
 - trace edges detected using large σ down through scale space to obtain more accurate spatial localization.
- What Threshold:
 - Low threshold: low contrast edges. a variety of new edge points of dubious significance are introduced.
 - High threshold: loose low contrast edges ⇒ broken edges.
- Solution: use two thresholds
 - Larger threshold: more certain edge, use to start an edge chain
 - Smaller threshold: use to follow the edge chain

Canny Edge detector

- A popular example of a method that operates at different scales and combine the results
 - Minimize the number of false edge points
 - Achieve good localization of edges
 - Deliver only a single mark on each edge
 - Used hystersis to follow edges
 - Typically a single scale implementation is used
 - Available code in ImageJ, matlab and most image processing utilities.

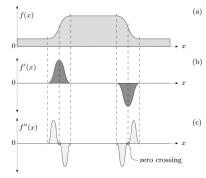




Detecting edges based on second derivatives

- Recall: an edge corresponds to a zero crossing at the second derivative
- Laplacian:

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

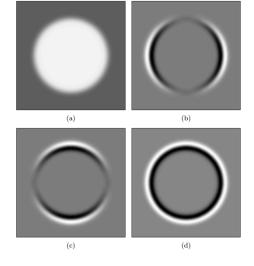


Laplace Operator

- Laplacian: $\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
- Its digital approximation is:

$$\nabla^2 f(x,y) = [f(x+1,y) - f(x,y)] - [f(x,y) - f(x-1,y)] + [f(x,y+1) - f(x,y)] - [f(x,y) - f(x,y-1)]$$

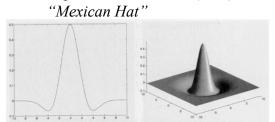
Laplace Operator



Laplacian of Gaussian

- Laplacian is a linear filter
- Bad idea to apply a Laplacian without smoothing
- If we smooth by a Gaussian before applying a Laplacian:

 $K_{\nabla^2} * (G_{\sigma} * I) = (K_{\nabla^2} * G_{\sigma}) * I = (\nabla^2 G_{\sigma}) * I$ Laplacian of Gaussian (LoG)



0 0 -1 0 0 0 -1 -2 -1 0 -1 -2 16 -2 -1 0 -1 -2 -1 0 0 0 -1 0 0

Laplacian of Gaussian

- Can be approximated as difference of two Gaussians
- This is called Difference of Gaussians filter DoG

$$\nabla^2 g(x) \approx c_1 e^{-\frac{x^2}{2\sigma_1^2}} - c_2 e^{-\frac{x^2}{2\sigma_2^2}}$$

0 0 -1 0 0 0 -1 -2 -1 0 -1 -2 16 -2 -1 0 -1 -2 -1 0 0 0 -1 0 0

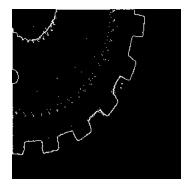
 $\sigma_1 < \sigma_2$

Algorithm (Marr and Hildreth 1980):

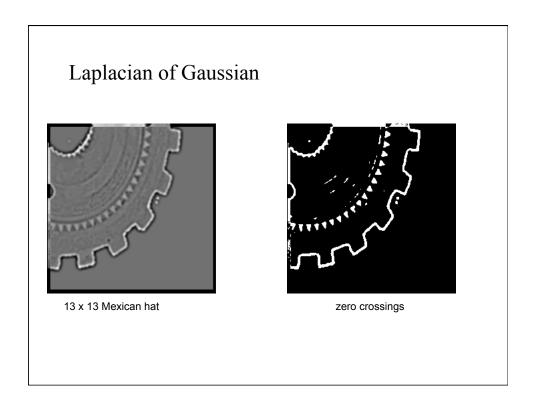
- Convolve the image with a LoG
- Mark the point with zero crossings:
 - these are pixels whose LoG is positive and which have neighbor's whose LoG is negative or zero
- Check these points to ensure the gradient magnitude is large (to avoid low contrast edges) ⇒ Threshold
- Note: Two parameters: Gaussian scale, contrast threshold

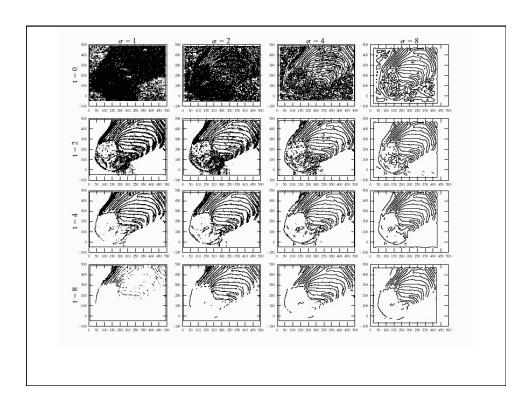
Laplacian of Gaussian

5x5 Mexican Hat - Laplacian of Gaussian



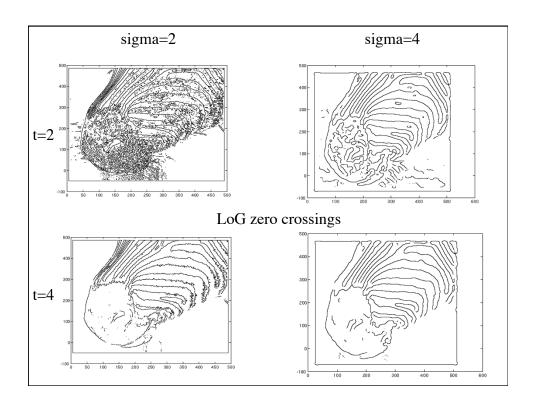
Zero crossings





Things to notice:

- As the scale increases, details are suppressed
- As the threshold increases, small regions of edge drop out
- No scale or threshold gives the outline of the head
- Edges are mainly the stripes
- Narrow stripes are not detected as the scale increases.



Problems with the Laplacian approach

- Poor behavior at corners
- Computationally: we need to compute both the LoG and the gradient.

We have unfortunate behavior at corners:

• Zero crossing bulges out at corners

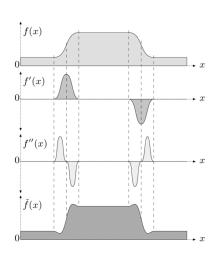
• More than two edges meet: strange behaviors

Image Sharpening

- Making images look sharper is common to make up for bluring happened after scanning or scaling
- Amplify high frequency components. What that means?
- High frequencies happen at edges.
- We need to sharpen the edges.

Edge Sharpening

$$\check{f}(x) = f(x) - w \cdot f''(x)$$





Unsharp Masking (USM)

- Unsharp masking is a technique for edge sharpening!
- Sharpening an image is achieved by combining the image with a smoothed version of it.
- Subtract a smooth version (Gaussian smoothing) from the image itself to obtain an enhanced edge mask:

$$M \; \leftarrow \; I - (I * \tilde{H}) \; = \; I - \tilde{I}$$

• Add the mask to the image with a weight.

$$\check{I} \leftarrow I + a \cdot M$$

■ Together:

$$\check{I} \leftarrow I + a \cdot (I - \tilde{I}) \ = \ (1 + a) \cdot I - a \cdot \tilde{I}$$

