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CS334: Digital Imaging and Multimedia 
Edges and Contours 

Ahmed Elgammal 
Dept. of Computer Science 

Rutgers University 

Outlines 

  What makes an edge? 
  Gradient-based edge detection 
  Edge Operators 
  From Edges to Contours 
  Edge Sharpening 

  Sources: 
  Burger and Burge “Digital Image Processing” Chapter 7 
  Forsyth and Ponce “Computer Vision a Modern approach” 
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What are edges 

  What is an edge?  A sharp change in brightness 
  What generates an edge (Where edges occur) ? 

  Boundaries between objects 
  Reflectance changes (within object) 
  Change in surface orientation (within object) 
  Illumination changes: e.g., cast shadow boundary 

(within object) 

  Edge:  A sharp change in brightness 
  But which changes we would like to mark as an edge? 

Meaningful changes. Hard to defined. 
  How to tell a semantically meaningful edge from a 

nuisance edge ? 
  Both low level and high level information 
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Edges in Biological Vision 

  We have seen evidence before of edge/bar 
detectors at different stages of our visual system. 
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Edge Detection 

  An image processing task that aims to find edges and 
contours in images 

Characteristic of an edge 

  Edge:  A sharp change in brightness 
  Ideal edge is a step function in certain direction. 
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  1-D edges 
  Realistically, edges is a smooth (blurred) step function 
  Edges can be characterized by high value first derivative  

  More realistically, image edges are blurred and the 
regions that meet at those edges have noise or 
variations in intensity. 
  blur - high first derivatives near edges 
  noise - high first derivatives within regions that meet at 

edges 
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Characteristics of an edge 
  Ideal edge is a step function in certain direction. 
  The first derivative of I(x) has a peak at the edge 
  The second derivative of I(x) has a zero crossing at the 

edge 

x 

I(x) 

I’(x) 

I(x) 

I’(x) 

I’’(x) 

  How can we compute the derivative of a discrete function? 
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Function Gradient 

  Let f(x,y) be a 2D function.  It has derivatives in all directions 
  The gradient is a vector whose direction is in the direction of the 

maximum rate of change of f and whose magnitude is the maximum rate 
of change of f  (direction of maximum first derivative) 

  If f is continuous and differentiable, then its gradient can be determined from 
the directional derivatives in any two orthogonal directions - standard to use x 
and y 

  magnitude = 

  direction = 

Image Gradient 
  Image is a 2D discrete function 
  Image derivatives in the horizontal and vertical directions 

  Image gradient and any given location (u,v) 

  Gradient Magnitude 

  Gradient direction 
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Derivative Filters 
  Recall: How can we compute the derivative of a discrete function 

  This is called finite differences 
  Can we make a linear filter that computes this derivative? 

Derivative Filters 
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Partial Image derivatives 

  With a digital image, the partial derivatives 
are replaced by finite differences: 
  Δxf = f(x,y) - f(x-1, y) 
  Δyf = f(x,y) - f(x, y-1) 

  Alternatives are: 
  Δ2xf = f(x+1,y) - f(x-1,y) 
  Δ2yf = f(x,y+1) - f(x,y-1) 

  Robert’s gradient 
  Δ+f = f(x+1,y+1) - f(x,y) 
  Δ-f = f(x,y+1) - f(x+1, y) 
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Finite differences and noise 
  Finite difference filters respond strongly to noise 

  obvious reason: image noise results in pixels that look very 
different from their neighbors 

  What is to be done? 
  intuitively, most pixels in images look quite a lot like their 

neighbors 
  this is true even at an edge; along the edge they’re similar, across 

the edge they’re not 
  suggests that smoothing the image should help, by forcing pixels 

different to their neighbors (=noise pixels?) to look more like 
neighbors 

Gaussian Derivative Filters 

  So smoothing should help before taking the derivatives. 
  Recall: smoothing and differentiation are linear filters 
  Recall also: linear filter are associative 

  Smoothing then differentiation ≡ convolution with the 
derivative of the smoothing kernel. 

  If Gaussian is used for smoothing: We need to convolve 
the image with derivative of the Gaussian 
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Edge Operators 

Prewitt and Sobel Operators 
  Prewitt Operator: 

  Sobel Operator 

Noise σ=3% Noise σ=9% 

x- derivative - No smoothing 

Convolution with x-derivative of a Gaussian (σ=1 pixel) 
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  The scale (σ) of the Gaussian has significant effects on the 
results - tradeoff… 

1 pixel	

 3 pixels	

 7 pixels	



Other operators 

  Many other edge operators with different 
properties 

  Roberts operator  
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Gradient-based edge detection: 
  Compute image derivatives (with smoothing) by 

convolution 

  Compute edge strength - gradient magnitude 

  Compute edge orientation - gradient direction 

  What’s after computing the gradient magnitude and orientation? 
  now mark points where gradient magnitude is particularly large wrt 

neighbors  

  Problem: The gradient magnitude is large along thick trail; how do we 
identify the significant points? 

σ=1 σ=2 
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•  We wish to mark points along the curve where the 
magnitude is biggest.	



•  We can do this by looking for a maximum along a slice 
normal to the curve (non-maximum suppression).  	



•  These points should form a curve.  	


•  There are then two algorithmic issues: at which point is the 

maximum, and where is the next one?	



I’(x) 

I(x) 

Non-maxima suppression 

  Non-maxima suppression - Retain a point as an edge point 
if: 
  its gradient magnitude is higher than a threshold 
  its gradient magnitude is a local maxima in the gradient direction 

simple thresholding will 
compute thick edges 
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Non-maximum	


suppression	



At q, we have a maximum if 
the value is larger than 
those at both p and at r. 
Interpolate to get these 
values.	



Predicting	


the next	


edge point	


Assume the marked point 
is an edge point.  Then 
we construct the tangent 
to the edge curve (which 
is normal to the gradient 
at that point) and use this 
to predict the next points 
(here either r or s). 	





Rutgers CS334 

17 

Problem of scale and threshold 
  Usually, any single choice of scale σ does not 

produce a good edge map 
  a large σ will produce edges form only the largest 

objects, and they will not accurately delineate the object 
because the smoothing reduces shape detail 

  a small σ will produce many edges and very jagged 
boundaries of many objects. 

  Threshold: 
  Low threshold : low contrast edges. a variety of new edge 

points of dubious significance are introduced. 
  High threshold: loose low contrast edges ⇒ broken 

edges. 
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fine scale	


high 	


threshold	



coarse 	


scale,	


high 	


threshold	
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coarse	


scale	


low	


threshold	



Hysteresis 
  Which Scale: 

  Fine scale: fine details. 
  Coarser scale: fine details disappear. 

  Solution: Scale-space approaches 
  detect edges at a range of scales [σ1, σ2] 
  combine the resulting edge maps 

  trace edges detected using large σ down through scale space to obtain 
more accurate spatial localization. 

  What Threshold: 
  Low threshold : low contrast edges. a variety of new edge points of 

dubious significance are introduced. 
  High threshold: loose low contrast edges ⇒ broken edges. 

  Solution: use two thresholds 
  Larger threshold: more certain edge, use to start an edge chain 
  Smaller threshold: use to follow the edge chain 
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Canny Edge detector 

  A popular example of a method that operates at 
different scales and combine the results 
  Minimize the number of false edge points 
  Achieve good localization of edges 
  Deliver only a single mark on each edge 
  Used hystersis to follow edges 
  Typically a single scale implementation is used 
  Available code in ImageJ, matlab and most image 

processing utilities. 
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Detecting edges based on second derivatives 

  Recall: an edge corresponds to a zero crossing at 
the second derivative 

  Laplacian: 
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Laplace Operator 

  Laplacian: 
  Its digital approximation is: 
∇2f(x,y) = [f(x+1,y) - f(x,y)] - [f(x,y) - f(x-1,y)] +  

 [f(x,y+1)-f(x,y)] - [f(x,y) - f(x,y-1)] 
   

= [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4 f(x,y) 

0   1   0 
1   -4  1 
0   1   0 

1   1   1 
1   -8  1 
1  1    1 

Laplace Operator 
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Laplacian of Gaussian 

  Laplacian is a linear filter 
  Bad idea to apply a Laplacian without smoothing 
  If we smooth by a Gaussian before applying a 

Laplacian:  

Laplacian of Gaussian (LoG) 
“Mexican Hat” 

 0   0   -1   0   0 
 0  -1   -2  -1   0 
-1  -2  16  -2  -1 
 0  -1   -2  -1   0 
 0   0   -1   0   0 

Laplacian of Gaussian 

  Can be approximated as difference of two 
Gaussians 

  This is called Difference of Gaussians filter DoG 

 0   0   -1   0   0 
 0  -1   -2  -1   0 
-1  -2  16  -2  -1 
 0  -1   -2  -1   0 
 0   0   -1   0   0 
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Algorithm (Marr and Hildreth 1980): 
  Convolve the image with a LoG 
  Mark the point with zero crossings: 

  these are pixels whose LoG is positive and which have neighbor’s 
whose LoG is negative or zero 

  Check these points to ensure the gradient magnitude is 
large (to avoid low contrast edges) ⇒ Threshold 

  Note : Two parameters: Gaussian scale, contrast threshold  

Laplacian of Gaussian 

5x5 Mexican Hat - Laplacian of 
Gaussian 

Zero crossings 
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Laplacian of Gaussian 

13 x 13 Mexican hat zero crossings 
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Things to notice: 
  As the scale increases, details are suppressed 
  As the threshold increases, small regions of edge 

drop out 
  No scale or threshold gives the outline of the head 
  Edges are mainly the stripes 
  Narrow stripes are not detected as the scale 

increases. 

sigma=2	

 sigma=4	



t=2	



t=4	



LoG zero crossings	
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Problems with the Laplacian approach 
  Poor behavior at corners 
  Computationally: we need to compute both the 

LoG and the gradient. 

We  have unfortunate behavior at corners: 	


•  Zero crossing bulges out at corners	


•  More than two edges meet: strange behaviors	
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Image Sharpening 

  Making images look sharper is common to make 
up for bluring happened after scanning or scaling 

  Amplify high frequency components. What that 
means? 

  High frequencies happen at edges.  
  We need to sharpen the edges.  

  Edge Sharpening 
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Unsharp Masking (USM) 

  Unsharp masking is a technique for edge sharpening! 
  Sharpening an image is achieved by combining the image 

with a smoothed version of it. 
  Subtract a smooth version (Gaussian smoothing) from the 

image itself to obtain an enhanced edge mask: 

  Add the mask to the image with a weight. 

  Together: 
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