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Outlines

» What makes an edge?

» Gradient-based edge detection
» Edge Operators

* From Edges to Contours

» Edge Sharpening

* Sources:
= Burger and Burge “Digital Image Processing” Chapter 7
= Forsyth and Ponce “Computer Vision a Modern approach”
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What are edges

* What is an edge? A sharp change in brightness

= What generates an edge (Where edges occur) ?
» Boundaries between objects

= Reflectance changes (within object)
» Change in surface orientation (within object)
» [llumination changes: e.g., cast shadow boundary

(within object)
y -

= Edge: A sharp change in brightness

* But which changes we would like to mark as an edge?
Meaningful changes. Hard to defined.

= How to tell a semantically meaningful edge from a
nuisance edge ?

* Both low level and high level information
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Edges in Biological Vision

* We have seen evidence before of edge/bar
detectors at different stages of our visual system.
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Stimulus: on off

Figure 1.8 Bar stimuli of different orientations (left) and the responses they
evoke from a simple cell in primary visual cortex (right).
From D. H. Hubel, Eye, Brain, and Vision, New York, Scientific American Library, 1988.
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Figure 1.9 Illustration of the idea that simple cells result form the feedforward
convergence of a set of cent d cells.

Adapted from D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex,” Journal of Physiology, 160, 1962.

Figure 1.11  Idealized depiction of the organi of orientati lectivi

and ocular dominance in primary visual cortex.
Adapted from D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and
functional architecture in the cat's visual cortex,” Journal of Physiology, 160, 1962.
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Edge Detection

* An image processing task that aims to find edges and
contours in images

Characteristic of an edge

= Edge: A sharp change in brightness
= Jdeal edge is a step function in certain direction.
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= [-D edges

= Realistically, edges is a smooth (blurred) step function

= Edges can be characterized by high value first derivative
F@) =T (@)

f(=) /—\ (b)
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= More realistically, image edges are blurred and the
regions that meet at those edges have noise or
variations in intensity.
= blur - high first derivatives near edges

* noise - high first derivatives within regions that meet at
edges

I(x) I'(x)
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Characteristics of an edge

= [deal edge is a step function in certain direction.
» The first derivative of I(x) has a peak at the edge

» The second derivative of I(x) has a zero crossing at the
gdge 1)

= How can we compute the derivative of a discrete function?

daf flut1) = fu=1)

oo (W) ~ 5 = 05 (f(u+1) — f(u—1))
fw)
! | Lt

u—1 u u+l
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Function Gradient

Let f(x,y) be a 2D function. It has derivatives in all directions

» The gradient is a vector whose direction is in the direction of the
maximum rate of change of fand whose magnitude is the maximum rate
of change of / (direction of maximum first derivative)

If f is continuous and differentiable, then its gradient can be determined from
the directional derivatives in any two orthogonal directions - standard to use x
and y

~ ',-', 1-1/.
Vf ==, =
ax dyv
* magnitude = [«'_'/ )%(‘;" y2que
ax v
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Image Gradient

= Image is a 2D discrete function
= Image derivatives in the horizontal and vertical directions

oI 19}
%(u7 v) and E» (u,v)
= Image gradient and any given location (u,v)
Vi(u,v) = %(u v)
’ 9L (u,v)

=  Gradient Magnitude

2
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|VI|(u,v) = \/(%(uv))_ + (%(u 1)))2 % -

= QGradient direction
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Derivative Filters

= Recall: How can we compute the derivative of a discrete function

%(u) ~ f(U+1);f(“—1) = 05- (f(ut1) = f(u—1))

= This is called finite differences

= Can we make a linear filter that computes this derivative?

HP = [-05 0 05] =05-[-1 0 1]

f(u)

u—1 u u+l

HP = [-05 0 05] =05-[-1 0 1]

Derivative Filters
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Partial Image derivatives

= With a digital image, the partial derivatives

are replaced by finite differences: v l rmwn
" Af=flxy) - fx-L.y) HIEEEIEEE:
" Ayf: f(X9Y) - f(X, Y'l) Prewitt
= Alternatives are: 1 o1 !
10 1] [-12-1
o I I E £
" A2yf= f(Xay+1) - f(Xay_l)
. —— |01 Sobel
= Robert’s gradient -1 0
= Af=1(x+1y+]) - f(x,y)r~ |1 0
" Af=fxyt) - fixtl,y)
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Finite differences and noise

= Finite difference filters respond strongly to noise

= obvious reason: image noise results in pixels that look very
different from their neighbors

VAT
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* What is to be done?

= intuitively, most pixels in images look quite a lot like their
neighbors

= this is true even at an edge; along the edge they’re similar, across
the edge they’re not

= suggests that smoothing the image should help, by forcing pixels
different to their neighbors (=noise pixels?) to look more like
neighbors

Gaussian Derivative Filters

= So smoothing should help before taking the derivatives.
= Recall: smoothing and differentiation are linear filters
= Recall also: linear filter are associative

K_‘."'*(g’IJ-(K.' "*g"*l- (VTS*I

ax

* Smoothing then differentiation = convolution with the
derivative of the smoothing kernel.

* ]f Gaussian is used for smoothing: We need to convolve
the image with derivative of the Gaussian

wer el T i

1
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Edge Operators

Prewitt and Sobel Operators
= Prewitt Operator:

-10 1 -
Hl=|-101 and  H} =
-10 1

1 -1
Hf=l1]*[—101] and H§=[111]*[0]
1

= Sobel Operator

-1 0 1 -1-2-1
H;=]1-2 0 2| and Hj=| 0 0 0
-1 0 1 12 1

Wty a7 4l/YY
WA/ 4

Convolution with x-derivative of a Gaussian (0=1 pixel)

l‘- v
' ’
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= The scale (0) of the Gaussian has significant effects on the
results - tradeoff. ..

1 pixel 3 pixels 7 pixels

Other operators

= Many other edge operators with different
properties
= Roberts operator

Hf:[_? (1)] and Hf:{_l 0}

Dy =1xHJ Do =1xHJ

13
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Gradient-based edge detection:

= Compute image derivatives (with smoothing) by
convolution
Dy(u,v) =Hy+I and Dy(u,v)=H,*I

= Compute edge strength - gradient magnitude
2 2
E(u,v) = \/(Dw(u, )" + (Dy(u,v))
» Compute edge orientation - gradient direction
Dy(u,v)

D, (u,v)
H,

I »lk — Dy (u,v) D2 + Dﬁ—‘ E(u,v)

1 »T< ——{ Dy(u,v) tan ! @— D(u,v)

H!/

D(u,v) = tan™! ( ) = ArcTan(Dg(u,v), Dy(u, L))

I(u,v)

=  What’s after computing the gradient magnitude and orientation?

= now mark points where gradient magnitude is particularly large wrt
neighbors

= Problem: The gradient magnitude is large along thick trail; how do we
identify the significant points?

14
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* We wish to mark points along the curve where the
magnitude is biggest.

* We can do this by looking for a maximum along a slice
normal to the curve (non-maximum suppression).

* These points should form a curve.

* There are then two algorithmic issues: at which point is the
maximum, and where is the next one?

Non-maxima suppression

* Non-maxima suppression - Retain a point as an edge point
if:
= its gradient magnitude is higher than a threshold
= its gradient magnitude is a local maxima in the gradient direction

simple thresholding will
compute thick edges

15
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Non-maximum
suppression

At q, we have a maximum if

® the value is larger than
those at both p and at r.
Interpolate to get these
values.
®
® ® ®
Predicting
the next
edge point
® e e .
Assume the marked point
is an edge point. Then
r we construct the tangent
® @] to the edge curve (which
Gradient is normal to the gradient
S at that point) and use this
to predict the next points
¢ ot o (here either r or s).
o ® ®

16
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Problem of scale and threshold

» Usually, any single choice of scale o does not
produce a good edge map

= a large o will produce edges form only the largest
objects, and they will not accurately delineate the object
because the smoothing reduces shape detail

= a small o will produce many edges and very jagged
boundaries of many objects.

= Threshold:

= Low threshold : low contrast edges. a variety of new edge
points of dubious significance are introduced.

= High threshold: loose low contrast edges = broken
edges.

17
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coarse
scale

/~—— high

threshold

18
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coarse
scale

low
.7~ threshold

—

Hysteresis

= Which Scale:

* Fine scale: fine details.
= Coarser scale: fine details disappear.

= Solution: Scale-space approaches
= detect edges at a range of scales [0}, 0,]
= combine the resulting edge maps

= trace edges detected using large o down through scale space to obtain
more accurate spatial localization.

= What Threshold:

= Low threshold : low contrast edges. a variety of new edge points of
dubious significance are introduced.

= High threshold: loose low contrast edges = broken edges.

= Solution: use two thresholds
= Larger threshold: more certain edge, use to start an edge chain
= Smaller threshold: use to follow the edge chain

19
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Canny Edge detector

= A popular example of a method that operates at
different scales and combine the results

Minimize the number of false edge points
Achieve good localization of edges

Deliver only a single mark on each edge

Used hystersis to follow edges

Typically a single scale implementation is used

Available code in ImagelJ, matlab and most image
processing utilities.

Original o=1.0

o =280 o =16.0

20
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Original

Roberts

e

Prewitt

Laplacian of Gaussian

Detecting edges based on second derivatives

= Recall: an edge corresponds to a zero crossing at

the second derivative
= Laplacian:

V \[Lzero crossing

T

(b)

(o)

21
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Laplace Operator

. d a°
= Laplacian: ¥ J{xy)=" 5+

.. L ax oy
= Jts digital approximation is:

VAf(x,y) = [f(x+1,y) - f(x,y)] - [f(x.y) - f(x-1,y)] +
[y +D-fx,y)] - [f(x.y) - f(x,y-1)]

"~
L -\
(™) ‘\\

= [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4 f(x,y)

9f

%Emf:[l—z 1] and - = H}=

- A
o

A

o -0
R

O~ 0O

Laplace Operator

L
N
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Laplacian of Gaussian

= Laplacian is a linear filter

» Bad idea to apply a Laplacian without smoothing

= [f we smooth by a Gaussian before applying a
Laplacian:

K,.*(G,*I)=(K_.*G,)=I =((V'G, )]
Laplacian of Gaussian (LoG) —

“Mexican Hat”

coloo
oLAlbhio
-
AN ON =
O apN-O
colLloo

Laplacian of Gaussian

= Can be approximated as difference of two
Gaussians

= This is called Difference of Gaussians filter DoG

. . Ty ." -;.'.'
V’K(-T) e " =-c,e ' o, <0,

coloo
oLAlbhio
-
AN ON =
O apN-O
colLloo
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Algorithm (Marr and Hildreth 1980):
* Convolve the image with a LoG
» Mark the point with zero crossings:

= these are pixels whose LoG is positive and which have neighbor’s
whose LoG is negative or zero

» Check these points to ensure the gradient magnitude is
large (to avoid low contrast edges) = Threshold

* Note : Two parameters: Gaussian scale, contrast threshold

Laplacian of Gaussian

5x5 Mexican Hat - Laplacian of Zero crossings
Gaussian

24
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Laplacian of Gaussian

13 x 13 Mexican hat zero crossings

111

o { Bt 8 e e [}
0 W 10 1% 20 % 20 0 AW
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Things to notice:

= As the scale increases, details are suppressed

= As the threshold increases, small regions of edge
drop out

* No scale or threshold gives the outline of the head

= Edges are mainly the stripes

= Narrow stripes are not detected as the scale
increases.

S0 100 150 200 250 300 350 400 450 500

26
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Problems with the Laplacian approach
= Poor behavior at corners

= Computationally: we need to compute both the
LoG and the gradient.

We have unfortunate behavior at corners:
* Zero crossing bulges out at corners
* More than two edges meet: strange behaviors

300

200+

-
i D

1
250

27
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Image Sharpening

Making images look sharper is common to make
up for bluring happened after scanning or scaling

Amplify high frequency components. What that
means?

High frequencies happen at edges.
We need to sharpen the edges.

Edge Sharpening

28
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(b)
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Unsharp Masking (USM)

» Unsharp masking is a technique for edge sharpening!
= Sharpening an image is achieved by combining the image
with a smoothed version of it.
= Subtract a smooth version (Gaussian smoothing) from the
image itself to obtain an enhanced edge mask:
M — I—(IxH) =1-1
» Add the mask to the image with a weight.
[—T+a-M
» Together:

I—T+a-(I-1)=0+a)-I—a-I

29
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(a) Original

(h)
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