
ARTIFICIAL INTELLIGENCE 99

Consistency in Networks of Relations

Alan K. Mackworth
Department of Computer Science, University of British Columbia,
Vancouver, B.C., Canada

Recommended by Saul Amarel

ABSTRACT

Artificial intelligence tasks which can be formulated as constraint 8aiisfaction problems, with which
thia paper is for the most part concerned, are usually solved by backtracking. By examining the
thrashing behavior that nearly always accompcmies backtracking, identifyinfl three o f its cause~ and
proposing remedies for them w, "e led to a cl~zvs o f algorithms which can profitably be us,.d to
eliminate local (node, arc and path) inconsistencies before any attempt is made to construct a com.9lete
solution. A more general paradigm for agtacking these tasks is the alternation of constraint manipula-
tion and case analysis producing an OR problem graph which may be searched in any o f the usual
ways.

Many authors, partlculari ' Montanari and Waltz, have contributed to the development of ~.~ese
ideas; a secondary aim o f tt, fs paper is to trace that history. The primary aim is to provide an
accessible, unified framework, within which to present the algorithms including a new path consistency
algorithm, to discuss their relationships and the many applications, both realized and potentia" of
network consistency algorithms.

1. Introduction

A concern for the efficiency of our programs is not a major component of the
current artificial intelligence zeitgeist, and yet, as the foL.as shifts from small, toy
problems to large ones, that concern should become more central. Even if, as -ome
claim by way of excuse, the technology is advanced at an exponential rate, if our
programs consume a quantity of resources that is exponential in the size of the
task, O(k~), then each doub!ing of available resources on|y means an additional
(In 2/In k) words, regions or clauses can be handled. This paper is concerned with
the effectiveness of algorithms designed to solve a certain class of problems.

2. The Task

Many tasks can be seen as constraint satisfaction pcoblems. In such a case the task
specification can be formulated to consist of a set of variables, each of which must
be instantiated in a particular domain and a ~et of predicates that the values of the

Artificial Intelligence 8 (1977), 99-118

Copyright ~) 1957 by North.I-~olland Publishing Cowpany

100 A. K. MACKWORTH

variables must simultaneously satisfy. Restricting the discussion for the moment
to unary and binary predicates the task consists, then, of providing a constructive
proof for the wff:

(3x X3x2)... ^ P 2 (x 2) ^ . . . ^ t ' , (x ,) ^

P,2(x,, ^ Pl3(x , ^ . . . ^ x ,) ,

where P~j is only included in the wiT if i < j for we require Pjl(vj, vl) - P~j(v~, v j).
Imposing a further restriction that the variable domains each consist c f a finite
number o f discrete values then there are several candidate solution schemes.
Among these are generate-and-test, formal theorem-provirg methods and back-
tracking.

3. Baeka'ackh~ asd Three of its Msdladies

Backtracking consists, in general, of the sequential instantiation of the variables
flora ordered representations of their domains. As soon as all of the variables of
any predicate are instantiated its truth value is tested. If it is true the process of
instantiation and testing continues but if it is false the process fails back to the
last variable instantiated that has untried values in its domain and reinstantiates it
to its next value. The intrinsic merit of backtracking is that substantial subspaces
of the generate-and-test search space, the Cartesian product of all the variable
domains, are eliminated from further consideration by a single f*.ilure.

On the other hand, backtracking can still be grotesquely inefficient. See Sussman
and McDermott [19] and Gaschnig [10] for particular samples of pathological
behavior. Bobrow and Raphael [2] have labeled this class of eehavior "thrashing".
In particular, the time taken to find a solution tends to be exponential in the
number of variables both in the worst-ca~ and on the average. It is important to
identify :he causes of this poor behavior and to suggest remedies.

(A) The most obvious source of inefficiency and the easiest to prevent concerns
the unary predicates. If the domain for variable v, D~, includes a value that does
not satisfy P~(x) then it will be the cause of repeated instantiation and failure
which could be eliminated by simply discarding once and for all those domain
elements that do not satisfy the corresponding unary predicate.

(13) A second source of inefficiency oc:urs in the following situation. Suppose
the variables are instantiated in the order vt, vz,. •., v, and for vt - a, P,j(a, vj)
(wherej > i) does not hold for any value of vj. Backtracking will try all values of
vj, fail and try all values of vj_t (and for each of these try all values ofvj) and so on
until it tries all combinations of values for vi+l, vj+2,.. . , vj before finally dis-
covering that a is not a possible value for v~. What's worse this identical failure
process may be repeated for all other sets of values for yr, v2, . . • v~_g with v, -- a.

(C) A third phenomenon that causes gross inefficiency and replication of effort
occurs when v , = a, vj ~- b, and P~(a), Pj(b) and Pij(a, b) do hold but there is no
value x for a third variable vt such that Pa(a, x), P,(x) and Pta(x, b) are simul-
taneously satisfied as they must be in any solution. As in t~e previous case, this is
Art~ci~d Intelligence 8 (1977), 99-118

CONSISTENCY IN NETWORKS OF RELATIONS l 0l

not only expensive to discover but may also be rediscovered many times by a
backtracking solution process.

It is the purpose of this paper to provide a unified treatment of these phenomena
and algorithms designed m prevent their occurrence thereby leading to solution
strategies that do not require exponential time for particular task domains.

It is convenient to view the task specification as a network which consists of a
labeled, directed graph in which the variables are represented by the nodes each
with an associated set representing the variable's domain, the unary predicates are
represented by loops on the nodes, and the binary predicates by labeled, directed
arcs. For each arc from node i to n o d e j corresponding to Pij(i < j) there is an arc
from node j to node i corresponding to Pji(v~, vt) = P~.i(vi, v j). Suitable terms to
name each of the state of affairs that lead to the three phenomena described above
are. resnectively, node inconsistency, arc inconsistency, and path inconsistency.

3

2

4

P'J/ p

5

Flo. 1. A network exhibiting inconsistency.

As an example of arc and path inconsistencies consider the network of Fig. I.
The domains associated with the nodes are DI = D2 = {a, b, c} and D3 = D,L =
Ds - {a, b}. The binary predicate P denotes strict lexicographic ordering of its
arguments so that P (a , b) - P(a, c) = . . . - T and P(a, a) = P(b, a) - . . . = F.
The arcs for P r (x , y) - P(y , x) are omitted. A backtrack search demonstrating
that no solution exists is shown in Fig. 2. The network nodes are treated in the
order 1, 2, 3, 4, 5. Each node in t i e search tree is labeled with the partial solution
developed to that node. As usual, as soon as a partial solution fails to satisfy one
of the network relations backtracking occurs.

Arc inconsistency appears at, for example, arc 2-3. The value a ~ D 2 has no
cc~Tespon0,ing x ¢ D 3 such that P(x , a). In the search tree this is reflected as one of

Artificial l:ztelligence 8 (1977), 99-118

]02 A. IL MACKWORTH

the reasons for the failure of the subtree rooted ~ aa, (aa(aaaXaab)), and re-
discovered in the failure of the subtree (ba(baa)(bab)) aud again in the subtree
(ca(caaXcab)).

g
aa

gila
aab

ab
aba
abb

gc

acb
b

ba
bag
bah

bb
bba

bba~t
bbab

bbaba
bbabb

bbb
bc

bca
bcaa
bcab

bcaba
bcabb

bcb
c

car
cab

cb
cba

cbaa
cbab

cbaba
cbubb

ebb
¢c

CCga
ccab

ccoba
ccahb

ccb
ccba
ccbb

F ' o . 2. A b a c k t r a c k i n g search o f the solution space o f the network in Fig . 1.

Path inconsistency appear~ on the path 3-5-4. The values a ¢ D3 and b ¢ /)4
satisfy the wcuous unary predicates and the non-vacuous binary predicate P(a, b);
however, there is no value ,- E D5 such that P(a, x) ^ P(x, b). This is discovered in
t~e search tree in the failure of the subtree (bbab(bbaba)(bbabb)) and rediscovered
three more times in the failure ofthe subtrees rooted at nodes bcab, cbab, and ccab.

This example was chosen to be as small as possible and yet still demonstrate these
effects. Clearly with larger domains and larger networks these problems multiply.
In particular, in this example there are no nodes intervening between the nodes
,~aus: :,,, the failure. If there are such intervening nodes that are irrelevant to the
,4rtO~cual Intelligence 8 (1977), 99--118

~:~ONSIgI'ENCY IN NETWORKS OF RELATIONS 103

failure then the failed subtrees can be very much larger besides reoccurring often.
It should also be clear that although here the ordering of the nodes wa.; somewhat
malicious in intent (although it could have been worse: consider 1, 2, 4, 5, 3) these
inefficiencies of backtracking cannot be removed by such minor palliatives as
reordering the nodes.

4. Consistency: A State of Affairs that Forestalls Thrashing

The state of affairs that ensures that those phenomena do not occur can be defined
as follows:

(A) Node consistency

Node i is node consistent iff for any value x ~ DI, Pl(x) holds.

03) Arc consistency

Arc (i,j) is arc consistent iff for any value x ~ Dt such that P~(x), there is a value
y ¢ D: such that P~v) and Plj(x, y).

(C) Path consistency

A path of length m through the nodes (io, i l , . •. , ira) is p~.th consistent iff for
any values x ¢ Dk, and y e Dim such that P~(x) and Pi. (y) ant P~im(x, y), there is a
sequence of values zl ~ D~,, . . ., Zm-~ ~- D~,-! such that

(i) Pt,(zl) a n d . . , anci P~..-l(Zm-l),

(ii) Ptol,(x, z l) and Pt,12(zl, z2) a n d . . , and P~.,.,,.(z,_l, y).

TI~ definition and example of path inconsistency given in Section 3 was only for
path length m --- 2. This definition of path consistency does not require that the
node3 0o, i l , . . . , ira) all be distinct. That is, path consistency applies to both simple
and non-simple paths. Moreover, a non-simple path may be consistent even though
different occurrences of the same node on the path correspond to different occur-
fences of the as.,~ciated variable.

A network is said to be node, arc or path consistent iff every node, arc or path
of its graph is .".onsistent.

5. How to Achieve Node Consistency

Since node consistency is concerned only with the unary predicates, in achieving
it there is no interaction between the nodes; thus, it is achieved by a simple one-pass
algorithm NC-1 that applies the node consistency procedure NC to each node i.

procedure NC(i):
Dtc {x I P x)}

for i .-- 1 until n do NC(i)
end

NC-'.: the node consist~cy algorithm
Artificial Intelligence 8 (1977), 99-118

104 A.K. MACKWOaTH

6. H~w to Achieve Arc Cmslstescy

The algorithms in this section are all based on the following observation (fLrst
made by Fikes [6]): given discrete domains, Dj and Dj, for two variables v~ and vj
which are node consistent, if x ¢ D~ and there is no y ¢ D~ such that Po(x, y) then
x can be deleted from Di. When that has been done for each x ~ Dt then arc (i,j)
(but not necessarily (j, i)) is consistent. As this is the basic action of the arc
consistency algorithms we embody it in a Boolean procedure:

Im rmre REVlSE((/,j)):
begUl

DELETE ~ false

for each x ~ DI do

if there is no y ~ Dj sa¢il that P1j(x, y) then
begin

delete x from D~;

DELETE ~- true

end;

return DELETE
end

Note that immediately after applying REVISE to arc (i,j) it must be consistent;
however, it may not remain consistent because values in D i may subsequently be
removed by applications of REVISE to some arc (j, k). A single pass through all
the arcs applying REVISE to each is not sufficient. The simplest algorithm to
achieve arc consistency, AC-I, iterates such a pass until there is no change on an
entire pass at which point the network must be arc consistent.

begin
for i ,-- 1 until n do NC(i);

Q *- {(i , j) l(i , j)¢arcs(G),i ~ j~
rep~at

beg
CHANGE *-- false

for each (i,j)~ Q do CHANGE *-- (REVISE ((i,j)) or CHANGE)

end

until -'2 CHANGE

end

AC-I : the first arc consistency algorithm

The obvious inefficiency in AC-I is that a single, successful revision of an arc on
a particular iteration causes all the arcs to be revised on the next iteration whereas
in fact only a small fraction of them could possibly be affected.
Artificial Intefli~,nce 8 (1977), 99-118

CONSISTENCY IN NETWORKS OF RELATIONS i 05

In noting this fact Waitz [24] implemented an elegant algorithm that he described
as follows: (to convert to our framework, for "junction" read "node", for "label"
read "value" and for "branch" read "arc").

"[The result] is obtained by going t~ough the junctions in numerical order and:

(1) Attaching to a junction all labels which do not conflict with junctions
previously assigned, i.e., if it is known that a branch must be labeled from the set S,
do not attach any juact/on labels which would require that the branch be labeled
with an element not in S.

(2) Looking at the neighbors of this junction which have already been labeled;
if any label does not have a corresponding assignment for the same branch, then
eliminate it.

(3) Whenever any label is deleted from a junction, look at all its neighbors in
turn, and see if any of their labels can be eliminated. If they can, continue this
process iteratively until no more changes can be made. Then go on to the next
junction (numerically)."

The idea behind this algorithm is that arc consistency can be achieved in one pass
through the nodes by ensuring that following the introduction of node i all arcs
(k, m) where k, m ~ i and k # m are made consistent. When node i+ 1 is intro-
duced all arcs leading from it and all arcs leading to it (to and from nodes intro-
duced earlier) may be inconsistent and so must be revised. If a KEVISE((k, m)) is
successful (i.e., modifies Dk) then the only additional arcs that need to be recon-
sidered are all those that lead to k, {(p, k)}, with the important exception of (m, k).
(m, k) is excepted because it cannot have become inconsistent as a direct result of
the deletions made in Dk by REVISE((k, m)): any deletions were made precisely
because there was no corresponding value in Din.

These notions are captured in AC-2 which follows that Waltz' filtering algorithm
in spirit (see p. 106).

When node i is introduced on the ith iteration of lines 3-18, Q and Q'are initialized
on lines 5 and 6 to contain all arcs directed away from and toward node i respec-
tively. When Q is exhausted by the iteration of lines 10-14, Q is set to Q' and Q'
emptied ready to hold all arcs directed at nodes one arc removed from node i that
need to be revised. At the start of the sth (s > 2) iteration of lines 8-17, Q consists
of all arcs directed at nodes (s - 2) arcs removed from i that are to be revised wh~le
Q' is ready to hold all the arcs directed at nodes (s - 1) arcs removed from i that
need to be revised as a result of the revi~ing of the arcs on Q. This process initially
spreads out from node i but may return to it if there are a,b cycles in the gt'aph
of arc length greater than 2. The particular form of AC-2 aen :es, in pat~, from
considering just such a situation in which the spreading waw of arc revision will
cross itself.

Another approach to the arc consistency problem aba~adons the idea of making
the network arc consistent on a single pass through the nodes. Instead simply make
a queue of all the arcs in the network and apply REVISE to them sequentially. If

Artificial Intelligence 8 (1977), 99-118

106 A.K. MACKWOmTH

| h~m

2 f o r i ~ l n t i l n d o
3 ~ m
4 NC(/);
5 Q ~ {(i,j) [(i,j) e arcs(G), j < i :.

6 Q' ~ {(j , i) lU, i)earc:,(G),j < i}
7 while Q not empty do

8
9 while Q not empty do

10 hegel
11 pop (k,m) from Q
12 if REVISE((k,m)) then
13 Q' ~ Q" u {(p,k)[(p,k)earcs(G),p ~ l,p # m}
14 end
15 Q *-- Q'
16 Q' ,-- empty
17 end
18 end
19 end
AC-2: the second arc consistency aloorlthm

REVISE is successful on any arc (reduces a node domain) then one need only
(re)apply REVISE to those arcs that could possibly have the result of.applying
REVISE changed from false to true. (Contrast this with AC-I which would
subsequently reapply REVISE to all the arcs.) Some of these arcs may already be
waiting on the queue. If so, the)' should not be reentered on it. AC-3 embodies this
approach.

for i .-- 1 until n do NC(i) ;

Q ' - {(i,J) I (i,j) e arcs(o'), i ~ j}
.while Q not empty do

t~gtn
select and delete any arc (k, m) from Q;
if REVISE ((k, m)) then Q ~ Q u {(i, k) [(i, k) ~ arcs(G), i # k, i # m}

end
end

AC-3: the third arc. consistency aloorithm

Although AC-2 appears more complex than AC-3 it is just a special case of the
latter algorithm corresponding to the choice of a particular ordering of AC-Ys
Artificial Intellisence 8 (1977), 99-118

CONSiSTI~CY IN N~£WORKS OF ILF.LATIONS 107

priority Queue, with the exception of one mieor discrepancy. The discrepancy is
that in AC-2 it is possible if the graph has cycles of arc length greater than 2 for an
arc to be we~ting on both Q and Q' simultaneously.

7. How to Achieve Path Consistency

Montanari [14] has provided an elegant, formal treatment of the concept of path
consistency. The purpose of this section is to introduce some of Montanari's
notation and theorems and his algorithm for ~,chieving path consistency and,
furth:rmore, to ~l¢ow how the same result can ~:, a,;hieved by doing considerably
less computation by refining the algoriv..m ;.:, a manner somewhat analogous to
the progression from AC-1 to AC-3.

7.1. Representing relations

The arc consistency algorithms opet'ate on an explicit data structure representation
r Y the unary predicates, (i.e., the sets of all values that satisfy them, D,) deleting
'~alues that cannot be part of a complete solution because of the restrictions im-
posed on adjacent nodes by the binary predicates. However, it is a matter of
indifference to those algorithms whether the binary predicates are represented by
a data structure or a procedure. The path consistency algorithms can be seen as
generalizations in that although the predicate P13(x, y) may allow a pair of values,
say, P13(a, b) that pair may actually be forbidden because there ms an indirect
constraint on v, and v3 imposed by the fact that tllere must be a value, c, for v2
that satisfies/'12(a, c), P2(c) and P23(c, b). If there is no such value then that fact
may be recorded by deleting the pair (a, b) from the set of va!ue pairs allowed
initially by Pt 3, in a fashion directly analogous to the deletion of individual values
from the variable domains in the arc consistency algorithms. In order to perform
that deletion it is necessary to have a data representation for the set of pairs
allowed by a binary predicate. If the variable domains are finite and discrete then
a relation matrix with binary entries is such a representation. Predicate Pii is
represented b 7, t relation mat_ix Rl~ whose m~ rows correspond to the m~ values of
vl and whose mj -olumns correspond to the m~ values of vj.

A useful examI~!e of the concepts involved is the set of n-queens problems. Used
by Floyd [7], F ikes [6] and Djikstra [4] to illustrate backtrack programming,
REF-ARF and structured programming respectively, this example is also of
historical and comparative interest. The task is to place n queens on an n x n
chessboard so that no queen is on the same row, column or diagonal as any other.
Since each queen must be in a different c31umn the task can be put in the constraint
satisfaction paradigm by creating n variables (v~, Vz, • • .~ vn), ofle for each column.
The value of each variable is the row number of the queen in that column. Consider
the 5-queens problem of Fig. 3(a). The queen shown in column 2, (Vz = 3), forbids
the values v I = 2, vl = 3 and vl = 4 hence column 3 of the initial value of R12
is as shown in Fig. 3(b). For uniformity the currently permitted values for each

Artificial Intelligence 8 (1977), 99-118

108 A.g. MACKWORTH

va;mble are not given by a set D, as for the arc consistency algorithms but I'y a
matrix R , whose off-diagonal entries are required to be zero.

t?o I ram•

2 3 4

3

t ~

0

X

X

X X

X

X

1112 -

FiG. 3. Illustrating the 5-queens probk'm.

7.2. Operatl.~m on relations

0 0 1 l 1

0 0 0 1 !

1 0 0 0 1

1 I 0 0 0

1 1 1 0 0

~b)

Two operations on relations are needed: interscction and composition.

7.2.1. Yntersection of relations

If two ~parate relatir, n3 are both required to hold between v~ and v j, R;~ and R~'~,
then their intersection is written R~j -- R;j & R~'j where the entry in the rth row
and stl'. column of Rq : Sb., , - RTj~, A R~,n.

7.2.2. Composition of relations

Suppose relation Rt2 holds between vl and vz and Rz3 between ~z and vs then the
induced relation transmitted by v: is the composite relation RIs - RIz 'Rz3 .
A pair (a, c) is allowed by ~13 only if there is a pair (a, b) allowed by Rt2 and a
pair (b, c) allowed by R23. That is,

Rt3 -- RI2 . R23
iff

m 2

RI3.,, - V (Rt2.,, ^ R23.,~).
t - - I

Artificial Intelligence 8 (1977). 99-118

CONSISTENCY IN NETWORKS OF RELATIONS 109

In the matrix representation, composition is simply binary matrix multiplication.
Composition of relation matrices takes preceO'.ace over intersection.

7.3. Direct and induced relations

If, in the example above, R°3 was the origival direct relation between vl and va
then it can be inteisected with the induced relation R12 • R23 to give a new and
possibly more restric:ive constraint R~3 --. R°3 and R12 • Rz3.

7.3. I. Two examples o f induced relatior, s

7.3.1.1.5-queens. In Fig. 4, R°5 permits the pair of queens shown but there is no
value of vx that satisfies both R2t and R15 so R~5 = R2°5 and R21 • Rt5 forbids the
pair of queens shown. In the matrix notation o R25.3 t ~- 1 but (R21 • RI~)31 = 0
hence R~s,3 t = 0.

ColLt~ns

1 2 3 /~ 5

Rows

I X

2 X

3 X

6 X

5 X

(3

(3

FIo. 4. Induced relations in the 5-queens problem.

7.3.jl.2. Arc cor~istency. The basic arc consistency procedare of Section 6, REVISE
((i,~)), can be written in the current notation as:

R~ = R ° & R~j. Rjj. Rji (7.1)
To see that this is so, note that R jr = R~ and R.tj = Rj . . Rjj so (7.1) can be
written as

g~ = ~ & R~ l • Rj~. R~
R;, = & (R,j . R ,) . (R,j . R ,) T

Each row of Rlj, corresponding to each value of v~, has a 1 for each value of vj
allowed. Ro . Rj~ is the same except that all columns corresponding to non-

Artificial Inte:Rgence 8 (1977). 99-118

110 A.K. MACKWORTH

permitted values of v s will be zeroed. (Rls. R j s) ' (Rzs" Rss) T will h:ve a 1 at
position rr on the main diagonal iff RIs" Rss has at least one 1 in row • (that is,
tbere is at least one value for vj for the rth value of v~). ~ is zero off the diagonal
and 1 at position rr if the rth value of vi was previously allowed; this position is
zero in R~ iff there is no co.-responding value of ".l- Thus the effect of (7.1)
parallels exactly the side effect of REVISE((i,j)).

7.4. The minimal network
Having introduced the notion of induced relations ;t is natural to enquire if there
is an ::igorithm that makes explicit all the induced relations implicit in a network.
To specify the task properly we need two definitions:

(a) Two networks NI and N 2 each with n nodes are equicalent iff the set of
n-tuples satisfying NI is identical to the set of n-tuples satisfying N2

(b) A network M is minimal iff

(-~O.x,xs -- 1)--* (3v lX 3v 2) . . . (3v~)(vi = x ~ v s = xs)(VkXVp)(Rtp, vk,, ffi 1).

in English, in a n~nb.nal network the remainder of the net~vork does not add any
furthcr constraint to the direct constraint Rts between v~ and v s. If any pair of
values is permitted by its direct constraint then it is part of at least one solution.
The task that Montanari calls the central problem is to compute for a given network
N, a network M that is minimal and equivalent to N. The central p:oblem is
clearly solvable: generate the set of all solutions by backtracking and then for all t
a n d j set R,j.,t, = 1 iffthere is a solution (xl, x2, . •., x,) where xj = a and x s = b.
However, that is expensive.

In fact, the central problem is NP-complete, that is, putatively exponential.
(Montanari [15] credits t'lis observation to a private communication from R. M.
Burstall.) It is easy to see that this must be so. If it is solvable in polynomial time then
st, is the problem of deciding if a planar, undirected graph with at most four edges
incident at a node has a chromatic number of at most 3 which in turn is known to
imply that P = NP (which conjecture is thought unlikely to be tr.~e) [9, 1]. The
chromatic number of a graph is the minimum number of different colours needed
to paint the nodes so that each node is a different colour from every adjacent node.
To put the chromatic number problem into our framework, the relations R can
all be 3 × 3 Boolean matrices. R , is the 3 × 3 identity matrix while R~s (i # j) is 0
on the main diagonal and 1 off it if there is an arc if, j) otherwise the entries of
Rls (i # j) are all I. If the central problem for this he:work can be sol;,'ed in
polynomial time then one can simply inspect any R , : if thc~'e is a non-zero entry
then the 3-colorability decision problem is answered affirmatively otherwise
negatively. This sharp result, due to Garey, Johnson and Stockmeyer in [9], shows
that even quite restricted network consistency problems can be inherently expo-
nential; here, for example, we h~ve domains of size 3 and only four non-vacuous
relations out of each node.
Artificial lnteliigence 8 (i 977), 99-118

C~3NSlS1~NCY IN NETWORKS OF RELATIONS 1 1 1

7.5. Path consistency

Given that the central problem is not likely to admit of an efficient (polynomial
time) solution, it seems judicious to attack an easier problem: the task of computing
a path consistent network equivalent to a given network. To recall, a network is
path consistent iff any pair allowed by any direct relation Rtj is also allowed by
all paths from v~ to vj. A pair is allowed by a path frem v~ to v~ if at every inter-
mediate vertex values can be found that satisfy the unary and binary predicates
along the path. The following theorem due to Montanari [14] can be used to justify
the first path consistency algorithm.

THEOREM. I f every path of length 2 of a network with complete graph is path
consistent the network is path consistent.

Proof. By straightforward induction on the length o e the path.

Observe that in our notation a path of length 2 from node i through node k to
node j is consistent iff Rlj = R O & Rlk" Rkk" Rkl. The algorithm given by Monta-
nari to compute a path consistent network equivalent to R is then as follows:

1 begin

2 Y * ~ R

3 repent

4 begin
5 yO ,_ y,,

6 for k 4-- 1 until n do

7 for i 4-- 1 until n do

8 for j ,-- 1 until n do

10 end
1 ! until yn = yO;

12 Y ~ Y"

13 end
PC-I : the .first path consistency algorithm

Montanari [14] gives an inductive proof for the correctness of PC-I. Another
justification derives directly from the theorem above. To see that the algorithm
halts observe that the & operation of line 9 has a monotonic effect on Yo. On the
iteration of lines 4-10that the algorithm halts on, Y -- Y" = yo = ys, (! ~ k ~< n)
and so line 9 has had no effect at all: for all i,j, k, Yo = Ytt & Y~k" Yk~" Yk2. All
paths of length 2 (v~, o j, vk) are consistent so Y is path consistent.

Parenthetically, Algorithm PC-1 should be compared to Algorithm 5.5 of Aho,
Hopcroft and Ullman [1] which is a generalization of Warshall's [25] transitive
closure algorithm and Floyd's [8] shortest path algorithm. Algorithm 5.5 needs
only one iteration of the equivalent of lines 4-10 because they require that • be

Arterial Intelligence 8 (1977), 99-118

112 A. tr. MACKWOltTH

distributive over+ "& in our case) whereas here there is no guarantee that
composition is dist, 2.mtive over intersection of binary matrices.

PC-1 is correct ! ,it it consumes more time and space than it need. In pursuing
this thought it is profitablc to see that PC-I is a generalization of AC-I. PC-I
essentially becomes AC-I if we substitute

8 Yu t ~ y~=t & yltt--t, y ~ - t . y~=t

for lines 8-9 of PC:I. (See Section 7.3.1.2 if this is not clear.)
Pursuing the comparison with AC-I, we ask if it is necessary to keep n + 2

copies of the network of relations: R, yO and y t (1 ~ k ~ n), each of which will
be very large even for moderate n. R is clearly unnecessary. To avoid keeping yo
u~ .-t flag which is set to flue when any Ytl is changed. Line 9 requires that one use
y~-,, y•- t and Ytt7 t even though one or more of the updated versions Y~, Y~t
and Y|l may already have been computed. Clearly the only possible effect of
using the updated versions of those relations is to speed convergence. The outcome
is then that only a single copy of Y which is continually updated need be used.

Secondly, some computations predictably have a null effect (e.g., ¥~t = Y~-l)
so need not be done. Third, since YjI = ¥~ almost half the computation can be
avoided.

But these improvements are matters of detail not substance. A substantial
improvement can however be effected by p'~rsuing further tb: analogy with AC-I.
There we noted that whenever an arc was made consistent by deleting values from the
node at its taii rather than require another complete iteration through the entire
set of arcs one could specify just which arcs might be affected and put them on a
queue either to be dealt with when the current set of arm was exhausted (AC-2) or
whenever was convenient (AC-3). Here we can see that we are considering the entire
set of paths of arc length 2. If a path is not consistent we make it so by changing
the necessary l 's to O's in the binary matrix relating the two terminal nodes of the
path. When we do so every path of length 2 that has as one of its component arcs
the arc between the terminal nodes of the path just made consistent must be
(re)checked for consistency. However, some of these paths may already be waiting
in the queue to be considered. As in the case of arc consistency we define a pro-
cedure REVISE which checks a path of length 2 from node i through node k to
node j for consistency. If it must be made consistent by modifying Y~j REVISE
returns true otherwise false.

procedure REVISE ((/, k,j))
begin

Z 4- Yaj& Y.~" Ytt" Y,I
i f Z ffi Y~] then return false

else Y~j ~ Z ; r e t r n tree
end

We also need a procedure RELATED PATHS((/. k.j)) that returns a set of
Artificial Intelligence II (1977), 99-118

CONSISTENCY IN NETWORKS OF RELATIONS l 13

length 2 paths that need to be REVISEd if REVISE((/, k,j)) returns true. Since
Yt l = Y~ we need only c~mpute Yt~ if i ~ j so RELATED PATHS has two
cases to consider: (a) i < j and (b) i = j.

(a) i < j . i a n d j are distinct nodes so we want the set of all paths of length 2 that
have arc (i,j) or arc (j, i) as one of their arcs. Also, we want to exclude paths
(i, A j) and (i, i,j) because on both REVISE will predictably return false.

In this case, the set of paths to be returned is

So= {(i, A m) l (i <~ m .<. n), (m # j)}
u {(m,/ , j) I (l <~m<<.j) , (m#i)}
u {(j , i ,m)IJ < m < n}
u { (m, j , i) [l ~< m < i}

S~ has 2 n - 2 members.
(b) i = j. In this case Y~i has chatlged so every path of length 2 that uses i as its

intermediate node must be. checked with the exception of paths (i, i, i) and (k, i, k).
The set of paths to be returned is St, = {(p, i, m) [(1 ~< p ~< m), (I ~ m ~ n),
-a(p = i = m), ~ (p = m = k)} Sb has n(n+ 1) /2 -2 members. The paths (i, i, i)
and (k, i, k) are excluded because they would result in REVISE returning false.

Note that the exclu.~ion of (k, i, k) from the set of paths related to (i, k, i)
corresponds exactly to the exclusion of arc (m, k) when REVISE((k, m)) was
predictably false there as REVISE((k, i, k)) is predictably false here.

Finally,
procedure RELATED PATHS((/, k , j)) :

i f i < j then return So else return Sb
Now we have the components for a more efficient path consistency algorithm,

PC-2.

l
2 Q ~ {(/, k, j)] (i ~ j) , -a(i = k = j)}
3 while Q is not empty do
4
5 select and delete a path (i, k ,j) from Q;
6 ff REVISE((/, k,j)) then Q ~ Q u RELATED PATHS((/, k,j))

end
8 end
PC-2: the second ~ath consistency algorithm

The order of path selection from Q does not affect the outcome of the algorithm
but it may affect its efficiency. In particular if Q is ordered on the value of k then
the initial set of ,'.aths is processed in essentially the same order as in PC-1. If the
reiations are such that composition does distribute over it~tersection then we are
guaranteed that the value of Y" after the first iteration of PC-1 lines 4-10 will be
its final value, Y: on the second iteration there will be no further change. (This is

Artificial Intelligence 8 (1977), 99--118

114 A.g. MACKWORTH

so because in that case the task is that of Aho, Hopcroft and Ullman's [1] Algorithm
5.5. See that reference for a precise specification of a set of conditions sufficient to
ensure that only one iteration of PC-I is necessary.) Thus, if Q is so ordered in
PC-2 then only on the original set of paths in Q (of which there are (nS+ n z - n)/2)
will REVISE return true and hence possibly increase the length of Q. Any other
ordering may not have that effect.

8. The Use of Comtstmc7 Methods ht Problem Sohiug

The consistency methods discussed were initially motivated here by reference to
three situations that caused pathological thrashing behavior in a backtracking
problem solver. How then are these consistency algorithms to be used? Clearly,
applying PC-2 before backtracking will ensure that none of the thrashing behaviors
discussed in Section 3 will occur; however, it is possible to do better. As Fikes
showed in REF-ARF alternating constraint manipulation and instantiation of a
variable is a good strategy for Boolean constraint problems. Burstall [3] in a pro-
gram for solving cryptarithmetic puzzles alterna:ed constraint manipulation and the
bisecLion of variable domains. A formulation that includes these two approaches as
special cases is the alternation of constraint manipulation and case analysis. By
case analysis is meant the creation ofp subproblems by adding to each ofp copies
of the network an additional case constraint where the p case constraints OR'ed
together constitute a tautology. (The additional tautological constraint may
involve more than one variable.) The resultant OR graph may be searched in any
of the usual ways [16]; a solved subproblem has a unique instantiation of the vari-
ables after PC-2 has been applied (i.e., each Yu has exactly one 1 on the diagonal)
whereas an unsob,able subproblem has some ¥~j with all entries 0 (in fact in that
case all Yij will have all entries zero after PC-2 has been applied.)

9. ApOleations
9.1. Finite, discrete state space problems
9.1.1. Puzzles

The most obvious applications of these techniques are to the traditional puzzle-
solving problems. Gaschnig [10], for example, has used an iteration of a modifica-
tion of AC-3 and instantiation to solve Instant Insanity and cryptarithmetic
puzzles and has shown how the se.zrch space is drastically reduced. That version
of AC-3 does not, however, distinguish between the arc (i, j) and the arc (j, i) so
that the equivalent of REVISE(If, j)) must check every value of Dt and find a
con'esponding value in D~ and also must similarly check every value of Dj for the
existence of a compatible value in Di, although as shown in Section 6 when REVISE
is called on a pair of adjacent nodes it is known which of the two arcs is possibly
inconsistent.

Other puzzles to which these methods apply are magic square problems and the
n-queens problem. The list could be longer.
Artificial Intelligence 8 (197"0, 99-118

CONSISTENCY IN NETWORKS OF RELATIONS 1 1 5

9.1.2. Other combinatorial problems

It remains to be. seen whether the approach suggested will lead to more effective
algorithms for such traditional combinatorial tasks as computing the chromatic
number of a graph and the graph isomorphism pr,~blem although it is ~:iear that
Unger's [23] approach to graph isomorphism contains some of the seeds of this
approach. In a similar vein Suzman and Barrow [21] have been applying an arc
consistency algoritlLm to clique detection.

9.2. Continuous variable domains

The requirement that the relations between variables be explicitly represented does
not lead of necessity to the Boolean matrix representation. As Montanari points out,
any :'epresentation of the relations that allow composition and intersection is
sufficient. For example, using as the domains subsets of R n allows one to treat
space planning [5] and n-dimensional space packing problems such as cloth cutting
[11] and the FINDSPACE problem [20].

9.3. Vision

In the Waltz filtering algorithm the variables are picture junctions whose values
are their possible interpretations as corners. The initial variable domains arise
from the shape of the junctions; the unary predicates arise from lighting inferences
while the binary predicates simply require each edge to have the same interpretation
at both of its ends. An interesting question to pursue is to ask how the processing
time depends on the comple;,ity of the picture. From the available results [24], the
dependence could well be linear. Waltz suggests that this is so bec3use when each
new junction is introduced the propagation of arc revision is restricted for the most
part to that set of lines forming the image of a single body of which that junction is
a part. The effect is so restricted because T junctions do not transmit constraining
action from the stem to the crossbar or vice versa. Unless this decoupling effect
obtains in other domains there is no reason to expect linear behavior from AC-2
or AC-3. Moreover, in this domain, the interpretation of pictures of more and
more complex individual polyhedra tamer than of more and more poiyhedra of
fixed complexity would not presumably display linear behavior. Worst case analysis
of AC-I suggests that the processing time is O(a 2) where a is the number of arcs in
in the graph. Turner [22] has generalized the Waltz' algorithm to apply to certain
curved objects.

The author has previously proposed [12] the use of arc consistency algorithms in
the task of interpreting pictures of polyhedral scenes. In that application, the
variables are the regions whose values are the positions and orientations of their
possible interpretations as surfaces. The unarj and binary predicates arise both
from

(a) Constraints on the surface positions and orientations taken individually and
pair-wise together, if they inter~.ect in an edge, imposed by the geometry of the

Artificial Intelligence 8 (1977), 99--118

116 A.K. MACiCWOlml

picture formation ¢rocess. (These are the constraints exploited by the author's
earlier program, POLY [13].)
And

(b) Constraints on surface size, shape and pairwise connectivity imposed by
a priori knowledge of the objects that can appear in the world.

Barrow and Tenenbaum [17] have an application of arc consistency in which the
variables are piCture regicns and the values are the names of their interpretations as
surfaces (such as, "door", "wall" and "picture"). Rather than just satisfy the
constraints they seek an assignment of values to variables that will maximize the
likelihood of the region interpretations being correct. In a related study, Rosenfeld,
Hummel and Zucker [18] investigate various probabilistic models using AC-I.

Finally, Montanari [14] suggested that the variables be distinctive, recognizable
subpictures of the picture one is interpreting. If the values are the pictorial location
of these subpictures then one could use the consistency algorithms and subpictures
already located to constrain the search area for an as yet unlocated subpicture.

9.4. xI programnaug hmguages
Consistency methods could well solve some of the problems of retrieval from a
data base that essentially takes the form of a semantic network. The criticisms that
Sussman and McDermott [19] leveled at the crucial position occupied by automatic
backtrack control in PLANNER were well founded and yet it is also clear that,
unless we are to abandon completely the goal of a high-level programming language
for AI, default search and data base retrieval mechanisms should be available to
the user. (And yet again, these should not be forced upon the user. If he wants to
program his own, the primitives should be available as they are i.n Conniver.)

The consistency methods advocated here are clearly more effective than auto-
matic backtracking and so deserve to be considered as a dethult database retrieval
mechanism.

As an example, "Find a large rectangle which is touching a triangle and inside
a circle" could appear in MICRO-PLANNER as

(THPROG (X YZ)

(THGOAL (OBJ $?X RECTANGLE))
(THGOAL (SIZE $?X BIG))
(THGOAL (TOUCHING $? Y $?X))
(THGOAL (OBJ ~ ? Y TRIANGLE))

(THGOAL (OBI $?Z CIRCLE))
(THGOAL (INSIDE $?X $?Z))

(THRETURN $?X))

or in network form as in Fig. 5. One need not enumerate again all the thrashing
problems that the execution of that MICRO-PLANNER code would encounter in
various configurations of the world. As a simple example, just consider a situation
Artificial Intelligence 8 (1977), 99-118

CONSISTENCY IN NETWORKS OF RELATIONS 117

in which there are a large number of rectangles only one of which is inside the
only circle. Backtracking could thrash for a very long time ~fore discovering the
fight rectangle whereas a "truly smart" procedure would take the circle, find out
what is inside it, I'h¢ :t%ct of that smart procedure would be achievcd by the
consistency algo~..;~hans described here.

RECTANGLE

B~

ICHING
INSIDE

TRIANGLE

Fro. 5. A network representation of a retrieval task.

CII~CLE

10. Cendmion

In this paper, we have been concerned with a class of algorithm, which could be
named network consistency algorithms, designed to aid in the discovery of a
situation that satisfies a set of simultaneous constraints that has been imposed on
any candidate solution.

By being presented and extended in a uniform framework these algorithms will
perhaps become more accessible to others as will the pursuit of their development
in the context of a variety of applications many of" which have been discussed here.

ACKNOWLEDGMENTS

I am indebted to F. O'Oorman for some initial conversations on this topic. The support of the
National Research Council of Canada, under Grant A9281, is gratefully acknowledged.

REFERENCES

1. Aho, A. V., Hopcroft, J. E. and Ullman, J. D., The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Read,.'ng, Mass., 1974.

Artificial Intelligence 8 (1977), 99-118

118 A.K. MACKWORTH

2. Bobrow, D. G. and Raphael, B., New programming langu~e$ for AI research, Comput. Su~.
6 (1974), 155-174.

3. Burstall, R. M., A program for solving word sam puzzles, Comp. J. IZ (1969) 48-21.
4. Dahl, O. J., Djikstra, E. W. and Hoare, C. A. R. Structured Programndsg, Academic Press,

1972.
5. Eastman, C. M. Automated space planning, Artificial Intelligence, 4 (1973), 41-64.
6. Fikes, R. E. REF-ARF: A system for so:vin8 problems stated as procedures, Artificial

Intelligence, I (1970), 27-120.
7. Floyd. R. W., Nondeterminhtic algorithms, J. Assoc. Comput. Math. 14 (1967), 636--644.
8. Floyd, R. W. Algorithm 97: shortest path, Comm. ACM $ (1962), 345.
9. Garey, M. R., Johnson, D. S. and Stockmeyer, L. Some ~nplitk, d NIP-complete problems.

Proc. 6th AMu. ACM Syrup. Theory Comput., Seattle, Wash. (1974), pp. 47-63.
10. Gaschnig" "J. A. Comtraint satisfaction method for infegence makhlg, Proc. 12th Annu.

AIlcrtor: Conf. Circuit System Theory, U. IlL, Urimna-Champaign (1974)
!1. Haims, M., On the optimum two-dimensional allocation problem, Ph.D. Thesis, Dept. of

Electrical Engineering" New York University, New York (1966).
12. Mackworth, A. K. Using models to see. Proc. Artificial Intelligence and the Simulation of

Bchaviour Summer Conf., Unive~it~, of Sussex (1974), pp. 127-137.
13. Mackworth, A. K. Interpreting piceures of polyhedral scenes, Artificial Intelligence, 4 (197D,

121-137.
14. Montanari, U. Networks of constraints: ftmdamental properties and applications to picture

processing" Inform. Set. 7 (1974), 95-132.
15. Montanari, U. Optimization methods in imase processing. Proc. IFIP Congress, North-

Holland, 1974, pp. 727-732.
16. Nilsson, N. J. Problem-solving Methods in Artificial Intelligence, McGraw-Hill, 1971.
17. Nilsson, N. (Ed.), Artificial intelligence---research and applications, progress report, Stanford

Research Institute (1975).
18. Rosenfeld, A., Hummel, A. and Zucker, S. W. Scene labelling by relaxation operations,

Computer Science TR-379, University of Maryland (1975).
19. Sussman, G. J. and McDermott. D. ~r., Why conniving is better than plautning" Artificial

Intelligence Memo. No. 255A, MIT (1!~72).
20. Sussman, G. J. The FINDSPACE problem, Artificial IntelliBenee Memo. No. 286. MIT

(1973).
21. Sunnan, P. and Barrow, H. G. Private communication, 1975.
22. Turner, K. J. Computer perception of curved objects using a television camera, Ph.D. Thesis,

Dept of Machine Intelligence, School of Artificial Intellil~nce, University of Edinburllh (1974).
23. Unger, S. H., Grr - -a heuristic program for te~ting pairs of direc~.ed line graphs for isomor-

phism, Comm. ACM, 7 (1964), 26-34.
24. Waltz, D. L., Generating semantic descrip:iocm from drawings of scenes with shadows, MAC

AI-TR-271, MIT (1972).
25. Warshall, S. A theorem on Boolean matrices, J. Assoc. Comput. Mach. 9 (1962), 11-12.

Received January 1976; revised version received June 1976

Artiftcial Intelligence $ (1977), 99-118

