
Telecommunications Circuits Laboratory

EPFL, Lausanne

Tapparel Joachim

Complete Reverse Engineering of
LoRa PHY

Supervisor: Prof. Burg Andreas, EPFL-STI-IEL-TCL
Advisor: A�siadis Orion, EPFL-STI-IEL-TCL, Alexios Balatsoukas-Stimming TUe Eindhoven

Contents

1 Introduction 1

2 LoRa Physical layer 2
2.1 LoRa modulation . 2
2.2 Preamble . 3
2.3 LoRa encoding scheme . 3

2.3.1 Gray coding . 3
2.3.2 Interleaving . 4
2.3.3 Whitening . 5
2.3.4 Hamming Coding . 6

2.4 Header . 8
2.5 Payload CRC . 12

i

Chapter 1

Introduction

�is report describes the reverse engineering of the entire LoRa PHY transceiver chains. �ese reverse
engineering details are used in our fully fanctional GNU Radio LoRa prototype. In the reverse engineering
process we used a commercial LoRa transceiver (Adafruit Feather 32u4 RFM95W) along with an NI USRP-
2920. �is project is the continuation of work previously done in the laboratory [1] [2] [3].

1

Chapter 2

LoRa Physical layer

2.1 LoRa modulation
As the main focus of this project is the decoding of LoRa symbols, we will only brie�y introduce the lora
modulation concepts that are required to understand the reverse engineering steps that will be described
later. A more in-depth presentation of the modulation and demodulation processes is available in [1].

�e LoRamodulation is based on chirp spread spectrum (CSS) which is amethod consisting of sweeping
a sinusoidal signal frequency in a de�ned bandwidth. In our case this shi� is performed linearly and can
be done increasingly or decreasingly which is what we call either an upchirp or a downchirp. �is method
provides many advantages such as bandwidth scalability, low-power consumption with constant envelope,
high robustness toward fast frequency hopping spread spectrum systems, resistant tomultipath, fading and
Doppler e�ect and long range capability [4]. A chirp is de�ned by the bandwidth (BW) it covers, and the
spreading factor (SF) it uses. With those two parameters we get a symbol period of Ts = 2SF

BW secs. �e
method used to encode a symbol S in a chirp is to add a starting o�set to the frequency sweep which is
given by the following relation:

fo�set =
BW

2SF
∗ S with S ∈[0,2SF − 1] (2.1)

Since the transmission is restricted by a bandwidth going from−BW
2 to BW

2 , by choosing an o�set greater
than zero we will a�ain the higher frequency of the bandwidth before the end of the symbol period. By
se�ing the sampling frequency to BW, we will fold the frequencies higher than BW

2 back to −BW
2 because

of the disrespect of the Nyquist–Shannon sampling theorem. �erefore we can express a modulated LoRa
symbol in two parts, one before that the folding occurs at a time tfold = 2SF−S

BW and one a�er, by the following
expression [5]:

xs(t) =

{
ej2π(

BW
2Ts

t2+(fo�set− BW
2)t) for 0 ≤ t ≤ tfold

ej2π(
BW
2Ts

t2+(fo�set− 3BW
2)t) for tfold ≤ t ≤ Ts

(2.2)

�e �gure 2.1 shows an example of modulated LoRa symbols visualized on a spectrogram.

2

Figure 2.1: LoRa symbols observed with a spectrogram

�e method used to recover the integer value encoded in each chirp is to multiply each received chirp
by the complex conjugate of the chirp encoding the value 0, which corresponds to a downchirp. We can
then apply a DFT on this dechirped version of our symbol to �nd the main frequency present which should
be no other than fo�set.

2.2 Preamble
Each LoRa packet is initiated with a preamble used for transmission detection, frame synchronization and
frequency synchronization. From the LoRa patent [6], we know that this preamble is composed of a series
of unmodulated chirps, some symbols having a predeterminedmodulation value for frame synchronization
and �nally some symbols being the complex conjugate of the unmodulated symbol for frequency synchro-
nization.

�e �gure 2.2 present a more exhaustive description of the preamble structure, as outlined by Pieter
Robyns [7]. �e structure being a repetition of unmodulated upchirps which number can be de�ne by the
user, 2 modulated upchirps and 2.25 unmodulated downchirps.

Figure 2.2: Preamble structure

2.3 LoRa encoding scheme
�e encoding and decoding process of the data bits are performed through four steps, which are presented
in �gure 2.3. We will describe the operations performed by each of them as well as the method used to
highlight their functioning principle. In order to be�er understand how their functioning was deduced, we
will not present them in their sequential order but in the order allowing their revere engineering.

3

Figure 2.3: Encoding/Decoding scheme

2.3.1 Gray coding
A gray coding is a mapping between a symbol in any numeric representation to a binary sequence. �e
particularity of the obtained binary sequence is that adjacent symbols in the original representation only
di�er by one bit in the gray representation. �is property of a gray codes make them very useful in many
wireless communication modulations where it is more likely to misinterpret a symbol by an adjacent one
than another random one. It is noteworthy that in the case of CSS modulation it is not the white noise that
causes this misinterpretation between adjacent symbols but the carrier and sampling frequency o�set, as
explained in [5]. In the case of LoRa, the symbols can be seen as integers between 0 and 2SF − 1 and by
making usage of gray coding to map them to binary strings, we increase the performance of the forward
error correction mechanisms capable of correcting one erroneous bit in a codeword.

Unfortunately, it is possible to create di�erent binary string sequences respecting the conditions to be
considered as a gray code. Furthermore it is just a mapping between decimal numbers and binary string,
meaning that once we have found a sequence of 2SF binary string di�ering by only one bit, we can still
de�ne any of them to by mapped to 0. Finally the direction of mapping of the following symbol can also be
chosen freely. �is leads to 2 ∗ 2SF possibilities for every possible gray sequence. �e method used in [2]
was a brute force approach, which found out that the method of the �gure 2.4 is used. �e standard gray
code being used is given by Cn = Bn XOR (Bn >> 1) where Bn is the le� MSB binary representation of
n. On top of the mapping using this gray code, a shi� of -1 is used.

Figure 2.4: LoRa ”reverse” Gray coding algorithm

We can note that the gray coding doesn’t occur in the conventional order but in reverse which still
holds the property that one adjacent symbol mistake leads only to one bit being wrong.

�e �gure 2.5 present the binary values obtained a�er gray encoding of the received LoRa symbols line
by line. �e white and black square are respectively ones and zeros.

4

Figure 2.5: Gray coded LoRa symbols line by line
with ones as white square and zeros in black

2.3.2 Interleaving
During the transmission a symbol can be corrupted by noise or fading, leading to a multiple bits errors
a�er demodulation. Because all errors are caused by one symbol, they are highly correlated. �e issue
with such errors is that they are not well handled by error correction codes, designed to correct random
errors in codeword. �e objective is to break this correlation between the erroneous bit by distributing
the errors over multiple codewords. It is possible by spreading the bits constituting a codeword between
multiple LoRa symbols. �is operation increases the e�ectiveness of the error correction code at the cost
of an increased latency caused by the necessity of receiving multiple symbols before being able to recover
one full codeword.

Reverse engineering

Since we want to only observe the e�ect of the interleaver on our data, we have to make abstraction of the
others blocks. �anks to the LoRa patent [6] we know that some variant of Hamming coding is used and
one particularity of Hamming code is that all zero data gets all zero parity bits, as well as all ones data gets
all ones parity bits.

Only the whitening still occurs and require a method in order to make abstraction of his e�ect. Since
the whitening consist of a XOR between the data and a pseudo random sequence, we can use the following
property:

C1 ⊕ C2 = M1 ⊕W ⊕M2 ⊕W = M1 ⊕M2 (2.3)

were C is a whitened message, M the original message and W the whitening sequence. �e result of
M1 ⊕M2 will be refereed as a di�erence message.

�e �gure 2.6 shows the 16 �rst symbols of the di�erence messages resulting of payloads entirely
composed of zeros and others of all ones. �e parameters used are a constant coding rate of 4/8 and a
spreading factor of seven, eight and nine. �e objective of those messages is to indicate the position of the
payload bits inside a packet. Indeed in the di�erence message, we expect to have a one when changing the
payload e�ectively a�ected this particular bit. �e �rst observation is that there exist 80 bits in the �rst 16
symbols of the packet that do not depends on the payload content. It is unexpected since we send these
messages in implicit header mode, which in theory shouldn’t include any header and the packet content
should only depend on our payload. From now on we will refer to this part as the implicit header, and its
content will be discussed further in the section 2.4.

5

Figure 2.6: Di�erence messages for a coding rate of 4/8 and di�erent spreading factors

By changing the coding rate to 4/6 we obtain the pa�ern of the �gure 2.7. From this message, we can
observe that the coding rate impact the number of symbols that are interleaved together. Moreover, as
highlighted by the red boxes, there is a �rst bunch of 8 symbols that are interleaved using a coding rate
of 4/8 independently of the chosen coding rate. Only a�er this �rst bunch the desired coding rate is used.
�is reduce rate for the beginning of the packet is mostly destined to the explicit header mode for which
it is very important to receive a correct header since the decoding of the rest of the message depends on
it. With a coding rate of 4/6, we get another number of implicit header bits but by taking into account that
the �rst 8 symbols are coded using a coding rate of 4/8 and only the following ones are using 4/6, we get
4
8 · 64 +

4
6 · 12 = 40 which is equal to the previous 4

8 · 80 data bits.

Figure 2.7: Di�erence message for a Coding rate of 4/6 and a spreading factor of 8

�e next step will be to extract the interleaving method that is used to distribute the bits of each code-
word in di�erent symbols. By generating di�erence messages coming from payload varying only by one
nibble, we should be able to observe the position of each codeword in the packet a�er the interleaving.

�e �gure 2.8 presents the di�erences messages obtained by inverting the �rst eight nibbles one at a
time, using a coding rate of 4/8 and a spreading factor of 8. We can e�ectively observe that every bits of a
codeword get distributed to a di�erent LoRa symbol. Furthermore it appears that when the original bytes
are split into two nibbles, the nibble containing the LSBs is sent �rst. �is reordering becomes evident by
looking at the �gure 2.9 which present the same pa�erns as in the previous �gure swapped two by two.
In that order the pa�ern appears to be shi�ed by one to the le� each time the next nibble of the payload is
�ipped.

6

Figure 2.8: Interleaving pa�ern for SF=8 and CR=4/5

Figure 2.9: Interleaving pa�ern swapped 2 by 2 for SF=8 and CR=4/5

�e �gure 2.10 present the codeword before and a�er interleaving that can be extracted from the pa�ern
obtained previously. �e pa�erns for SF=7, CR=4/8 and SF=9, CR=4/5 have been obtain following the same
procedure. We can note that during the interleaving we get from a matrix of dimension SF× 4

CR to 4
CR×SF,

the la�er being able to be used line by line to modulate a LoRa symbol of spreading factor = SF. From these
pa�erns, we can �nally extract the following general interleaving formula:

Ii,j = Dj,(i−(j+1)%SF) (2.4)

where I is the interleaved matrix and D the deinterleaved one.

7

Figure 2.10: Interleaving pa�ern for SF=8, CR=4/8; SF=7, CR=4/6 and SF=9, CR=4/5

Now that we are able to deinterleave the codewords, we can start to tackle the whitening block since
based on Pieter Robyns paper [7] it should be the block coming just before interleaving.

2.3.3 Whitening
Whitening is a method consisting of XORing bits with a pseudo random sequence with the objective of
removing DC-bias in the transmi�ed data. Unlike Manchester coding, it provides the advantage of keeping
the same data rate at the cost of not having the guarantee of removing any DC-bias but only a very high
probability of doing it.

Reverse engineering

Recovering the whitening sequence is fairly straight forward since a⊕ 0 = a, meaning that by sending an
all zeros message, the received bits will correspond to the whitening sequence. Except for the portion of
the whitening sequence that corresponds to the implicit header since that portion can’t be set to all-zeros
like the rest of the payload. By recovering the whitening matrices of di�erent coding rates and spreading
factors, we get the same sequence for every spreading factor. �is invariance toward the spreading factor
proves that the interleaving e�ectively occurs a�er the whitening since if the opposite order was correct,
no invariance toward spreading factor or coding rate could have been observed a�er the deinterleaving.

�e �gure (�g.2.11) shows the whitening sequence obtained for the coding rates from 4/8 to 4/5. Since
we recover the packet content in a bi-dimensional way, the whitening can’t be considered as a sequence
but as a matrix. It can be observed that the matrix of CR=4/8 appears to be the most complete one and that
only the required �rst columns are kept by other coding rates. �is observation however doesn’t work
for the 4/5 coding rate, indeed the last column is di�erent from the ��h columns of the other whitening
matrices. �e exact reason of the di�erent bits in the last columns of the 4/5 coding rate will be presented
in the the following section and are caused by a special coding used only for that coding rate.

8

Figure 2.11: Whitening matrices for di�erent coding rates

Even if we can use the observations described above to correctly dewhiten the data, the exact causes
are let unexplained at this point as they require a deeper understanding of the Hamming coding used.
However we have to be able to dewhiten the data to acquire that understanding and therefore we will use
the whitening matrices obtained without questioning there correctness.

2.3.4 Hamming Coding
From the patent [6], we know that some kind of hamming coding is used. Hamming code is an error
correcting code meaning that he should be able to correct errors by adding redundancy in each codeword.
�is can be possible with a coding rate of 4/8 and 4/7 but can’t be done for the other ones, meaning that
the Hamming encoding mentioned in the patent can only be a variation of a traditional Hamming coding.

Reverse engineering

Until now the bit position inside each codewordwas unde�ned since the exact composition of the codeword
was not known. A�er sending known data and deinterleaving them, it appears that we receive them in the
order presented in �gure 2.12. �ere are two important things to be aware of: the �rst is that the names
given to the parity bits are arbitrary since any other naming will only require to de�ne di�erent generator
and parity check matrices. �e second is that d0 is the LSB of the nibble.

Figure 2.12: Bits in each deinterleaved codeword

�e parity bits 0 to 3 are calculated as follows:

p0 = d0 ⊕ d1 ⊕ d2 (2.5)
p1 = d1 ⊕ d2 ⊕ d3 (2.6)
p2 = d0 ⊕ d1 ⊕ d3 (2.7)
p3 = d0 ⊕ d2 ⊕ d3 (2.8)

9

However for a coding rate of 4/5, p4 seems to be a checksum of the whitened nibble. In order to verify
this speci�city of this coding rate, we sent random data and since there is only 16 possible con�gurations,
we extract them from the received codewords and plo�ed them on �gure 2.13. As expected, the last columns
correspond indeed to the parity bit of the whitened nibble, meaning that the last column is calculated a�er
that the whitening occurs.

Figure 2.13: Exhaustive list of whitened codewords

Generator matrix To generate the codewords for the coding rates 4/6 to 4/8 we can simply do the
following multiplication and keep only the �rsts 4

CR bits:

[
d3 d2 d1 d0

]
·


0 0 0 1 0 1 1 1
0 0 1 0 1 1 0 1
0 1 0 0 1 1 1 0
1 0 0 0 1 0 1 1

 mod 2 =
[
d0 d1 d2 d3 p0 p1 p2 p3

]

Parity check matrix For the error detection and correction, there are multiple cases to consider:

�e cases of a coding rate of 4/8 and 4/7 o�er both the possibility to correct one wrong bit. However
with the additional parity bit p3 present for the 4/8 coding rate, we can avoid to swap a correct bit in the
case of an even number of wrong bits. �is come from the fact that:

p3 = d0 ⊕ d2 ⊕ d3 = d0 ⊕ d1 ⊕ d2 ⊕ d3 ⊕ p0 ⊕ p1 ⊕ p2 (2.9)

Which can act like a parity checksum. Once we know if there is an odd number of mistakes, most probably
only 1, we can drop p3 and treat both coding rates exactly the same way. One property that can be achieved
with Hamming coding is that the syndrome that comes out of the multiplication of the codeword with the
parity check matrix can give the position of the bit to swap in the codeword. To achieve that we have
to reorder the bits inside the codeword to match the syndrome output. Here again we have to choose an
arbitrary ordering of the parity bit position in the syndrome calculation, in our case we choose to use the
following syndrome:

S =
[
p2 ⊕ d0 ⊕ d1 ⊕ d3 p1 ⊕ d1 ⊕ d2 ⊕ d3 p0 ⊕ d0 ⊕ d1 ⊕ d2

]
(2.10)

which will require to change the codeword bit order to the following:[
p0 p1 d2 p2 d0 d3 d1

]
(2.11)

10

And �nally the parity check matrix to use is:

H =



0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


(2.12)

In the case of a coding rate of 4/6, only the detection of up to two errors can be performed. �e error
detection can be realized by using the following syndrome:

S =
[
p1 ⊕ d1 ⊕ d2 ⊕ d3 p0 ⊕ d0 ⊕ d1 ⊕ d2

]
(2.13)

�e syndrome can be calculated by the following equation:

[
d0 d1 d2 d3 p0 p1

]
·


0 1
1 1
1 1
1 0
0 1
1 0

 (2.14)

which will return a non-null syndrome in the case of a detected error.

Whitening order Having understood how the Hamming coding block works, we can go back to the
whitening matrix previously found and understand why for bigger coding rates, only the �rst columns
where used and why in the case of a coding rate of 4/5 the last columns was di�erent. In fact the �rst four
columns of the whitening matrix are going through the Hamming encoder but this wasn’t an issue since:

hamming(Data) XOR hamming(Whitening) = hamming(Data XOR Whitening)

Which leads to the encoding order being: Whitening, Hamming encoding, Interleaving and Gray in-
dexing. �is order seems to be the correct one since there isn’t any particular con�guration requiring a
special treatment somewhere else than inside each block separately.

2.4 Header
From the LoRa patent [6], we know that the header should always be encoded using the lowest coding rate
(4/8) to make use of all the error correction capabilities of the hamming code. �e objective is to increase
the chance of decoding the header content correctly since crucial informations about the transmission are
speci�ed in it. Moreover, heaving a de�ned coding rate for the header is mandatory because the coding rate
of the message is not known in advance by the receiver. �e patent also describe what could be included
in the header: ”According to a possible implementation of the invention, the header �elds are coding rate,
enable of payload CRC, payload length, CRC, a burst mode indication, a compressed mode indication, some
reserved bits, and a ranging bit”. Until now we have only received packets in implicit header mode and
since we have already seen the presence of an implicit header, we need to know where is added the explicit
header.

�e �gure 2.14 present the 16 �rst codeword of a di�erence message obtained by sending the packet
varying only the coding rate used. �e objective is to see which part of the header didn’t stay constant,
meaning that the coding rate information and by extension the explicit header is present at that position.

11

We can see that the di�erences are situated in the �rsts height symbols and in the 16th one. �e last row is
di�erent because, for the bigger coding rate, it is the parity bits p3 of each interleaved codewords and for
the smaller coding rate, it is the data bits d0, meaning that it is not cause by the header position. Because
of that we can deduce that the explicit header is situated in the �rst height symbols and we will only have
to examine the �rst height symbols to extract the explicit header data.

Figure 2.14: Di�erence message between two coding rates in explicit header mode

In order to �nd the position of each element in the header, we sent packet with a lot of di�erent con-
�guration, varying coding rate, payload CRC presence and payload length. We then take all the received
headers and create the matrix shown on �gure 2.15. In this matrix, all bits that stayed to zero indepen-
dently of the parameters aforementioned are in black, the ones that stayed at one are white and the others
are grey. We can already see that something is particular with the lasts 2 columns and they require further
investigation.

Figure 2.15: Summary matrix of many di�erent headers

�e �gure 2.16 present the header received with a packet of 16 bytes, no payload CRC and a coding
rate of 4/7. We can observe that the last column is as expected always zeros. For the columns marked in
red, it appears that it contains the checksum of each row.

12

Figure 2.16: Header received for CR=4/7, Payload length=16B and CRC= OFF

Coding rate �e �gure 2.17 present the matrices created in the same manner as explained above. each
of these matrices being created from header of packet using the same coding rate. We can �nally �nd the
bit that are constant (black or white) for each individual coding rate but di�erent between two of them, if
such bit exist they are the one containing the information about the coding rate.

Figure 2.17: Summary matrices for 3 di�erent coding rates

�e �gure 2.18 present the mask obtained by this method, on which the white squares represent the
position of the bits indicating the coding rate. By applying this mask on top of the headers of �gure 2.17,
meaning to look only at the bits having the same position as the white ones in the mask, we get the three
pa�ern presented alongside the mask. From our understanding of the interleaving method, we know that
the data bits should be in the �rst four rows, the other ones being parity bits.

Figure 2.18: Mask and bit corresponding to the coding rate information

13

�e coding rate should be encoded in the bits of rows two to four which are in our case :

• 0 1 0 for CR = 4/6

• 1 1 0 for CR = 4/7

• 0 0 1 for CR = 4/8

�e bits recovered correspond to the LSB �rst version of the way the coding rate is speci�ed to the chip.
As explained in the chip datasheet [8] the coding rate has to be speci�ed by the number n as CR= 4

4 + n
.

�is also explain why only 3 bits are required since n can be between 1 and 4.
Lastly, we can conclude that the header is not whitened, which can also be deduced by comparing the
whitening sequence obtained for the implicit and explicit header mode (�g. 2.19). By looking at the pat-
terns we clearly see that for the explicit header the whitening sequence is shi�ed by 5 rows, meaning that
the whitening starts a�er the explicit header which is also 5 codewords long.

Figure 2.19: Deinterleaved whitening sequence

We can also note that the lasts two columns are added to the header bloc a�er that the data has been
interleaved. And in order to account for those two added bits in the end of each symbols, knowing that total
number of bits per symbol should be equal to the spreading factor, the interleaving should be performed in
a modi�ed way. �is modi�cation only consist of interleaving SF-2 codeword together instead of SF in the
normal case, what can be achieved by simply replacing the term term SF in the equation 2.4 by SF-2. �e
advantage of decreasing the number of values that can modulate the LoRa symbols is to provide a greater
distance between the candidate values during the demodulation.

CRC presence �e same way as for the coding rate, we recover the mask of the CRC presence indicator
position. �e result is shown on the �gure 2.20 and shows that only one bit indicate theMACCRC presence
which was expected. Now that we are aware of the special interleaving that is used, we can look at the
deinterleaved version of the header to be�er see what is contain in the rest of it.

14

Figure 2.20: Mask and bit corresponding to the MAC CRC presence

Payload length From the chip datasheet [8] we know that the maximal payload length is 255 Bytes,
meaning that the payload length information would require 16 bits (with the parity bits included) of the
header. By looking at the mask found through the same method as before, shown on the �gure 2.21, it
appears that the two �rst rows contains the payload length, since they are white in the calculated mask.
A�er looking to the value given by the payload length in the header, we get:

• 16 Bytes: 0b0001 0100⇒ 20
• 17 Bytes: 0b0001 0101⇒ 21
• 127 Bytes: 0b1000 0011⇒ 131

An o�set of 4 appears, and is due to the addition of the implicit header which seems to be added in the
beginning of our payload and which is indeed 4 Bytes long.

Since we know that the smaller spreading factor is 7 and that the header block uses an e�ective inter-
leaving spreading factor of SF-2, 5 in the worst case, we know that we there still is two codewords of the
header that are not known.

Figure 2.21: Deinterleaved mask and bits corresponding to the Payload length

Header CRC �e patent [6] also mentioned the presence of a CRC in the header. We can now look only
at the four �rst columns since the other ones are parity bits. By varying each parameters, we observe that
the last two nibbles change, highly encouraging us to think that the CRC is present there. But as show in
the �gure 2.22, only the 5 LSBs seemed to change depending on the parameters. We weren’t able to make
the 3 other bits change to non-zero, even by changing the values described as potentially in the header
which where modi�able on the chip we used (RFM95W).

15

Figure 2.22: Header structure

Since the patent talk about a CRC, we considered it as true and started from there. To calculate the
CRC of a bitstream, there are mainly 3 parameters to know: �e divisor polynomial, the initial CRC value
and the �nal XORing value [9].
We �rstly want test if the initial and �nal XORing values are non-zero. �is can be easily veri�ed by send-
ing an all-zeros messages and verifying if the corresponding CRC is also all-zeros. Unfortunately we can’t
do that in our case since we have to send at least 4 bytes of implicit header, leading to at least one non-zero
value in the explicit header. An alternative is to send three headers, namely H1, H2 and H3. H1 and H2
can be any two di�erent headers and H3 should be H1 ⊕ H2. If the CRC of H3 is not equal to the (CRC of
H1)⊕ (CRC of H2), those two parameters are non all-zeros. �is veri�cation is based on the superposition
principle that holds for homogeneous CRCs (CRC without initial value and �nal XOR).

�e �gure 2.23 present three di�erent headers received. �e third was constructed to be the XOR of
the two previous one and by looking at the CRC obtained (under the red line), we can deduce that an
homogeneous CRC is used

Figure 2.23: Header received with 3 di�erent con�gurations

Only the polynomial used was still unknown which can easily be found knowing the CRC calculation
algorithm. If we take twomessages in which only one bit is 1 and that the position of those ones is adjacent,
their CRCs should di�er only by a shi�-XOR operation. Meaning that if we take the two CRCs, shi� one
of them by one (the direction being another parameter of the CRC calculation but could have only two
values) and XOR them together we will either get all 0 if the LSB of the non-shi�ed one was 0. Indeed if
the lsb was zero, the shi�-XOR operation wouldn’t have happened. In the case of a 1 as LSB, we would
recover the polynomial used.
Unfortunately in our case the result wasn’t what was expected and no polynomial seemed to get out of
this procedure. And by looking at �gure 2.24 the CRC is not a shi�ed version of an adjacent one when this

16

adjacent one end or begin with a zero (we should look at both possibilities since we don’t know if the CRC
is reversed or not in the end).

Figure 2.24: ’Impulse response’ of the CRC

�is lead us to conclude that it isn’t a conventional CRC but since it is linear as CRC(x) ⊕ CRC(y) =
CRC(x ⊕ y), and we have what we could consider as the impulse response of each of the 12 bits, we can
easily calculate the CRC value thanks to the following equation:

[
h11 h10 ... h0

]
·



1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1
0 0 1 1 1
0 1 0 1 1



mod 2 =
[
crc4 crc3 crc2 crc1 crc0

]
(2.15)

Implicit header A�er observing that this implicit header was not at all data dependant and treated
exactly as the rest of the payload, we started to doubt that the radio was handling it. By looking at the
library we used to program the chip, it appears that during the sending operation 4 bytes are sent to the
chip before our payload and are namely:

• To
• From
• Id
• Flags

meaning that this implicit header is not part of LoRa PHY.

17

2.5 Payload CRC
�e only still unknown part of the received packets is the payload CRC which has a length of 2 Bytes, as
speci�ed by the chip datasheet [8]. We will start by considering that it is a conventional CRC and perform
in the same way as for the header CRC. By sending the same message in implicit and explicit mode, we
observed that the CRC calculation in only performed on the payload.

In order to �nd the polynomial used, we have to generate what we will call di�erence message in order
to make abstraction of the initial and XOR values. To achieve that, we will require more theory about
CRC [10] which imply that a CRC C can be expressed as follows C = TnI ⊕ D ⊕ F with I being the
initial value, F the �nal XOR, n the message length, D the CRC if I and F where null and T ix the result
of applying i shi�-xor steps to register contents x with zero data. And if we XOR two messages, we get:

C1⊕ C2 = (TnI ⊕D1 ⊕ F)⊕ (TnI ⊕D2 ⊕ F) = D1⊕D2 (2.16)

Which means that by XORing two messages and their CRCs together, we get a new message and CRC. But
this new CRC will be the one corresponding to the new message calculated using the original polynomial
but no initial value and �nal XOR.

By generating these di�erence messages in a way that the have only one 1 in them and that these
ones are adjacent in each message, we get the CRCs shown on the �gure 2.25. We can recognize the CRC
characteristic pa�ern where two adjacent CRCs are just a shi�ed version of one another in the case of the
�rst one ending with a zero. We only need to shi� each line by one and XOR it with the next one to either
get zeros or the polynomial used. In our case we obtain 0x8810 which correspond to the polynomial named
CCITT-16, being x16 + x12 + x5 + 1.

Figure 2.25: CRCs of adjacent one-hot di�erence messages

By sending a message containing only zeros we can easily test if the initial value and �nal XOR are null
since in such a case, the CRC corresponding will be all zero. �e result of this test gave us not all-zeros
CRC but a�er taking a closer look we found out that it was the whitening sequence that appears, meaning
that the CRC should not have been de-whitened. By not dewhitening the CRC we received every time
all-zeros CRCs for di�erent length of all-zero messages.

18

Unfortunately, the CRC calculation wasn’t working with message that weren’t all-zeros ones. By send-
ing one hotmessages, and comparing their CRCs to the onewe generate using our polynomial, we observed
that we get the correct value when we shi� the one hot position by 16. Since adding zeros in the beginning
of a payload should have no impact on the CRC value, it means that the CRC is calculated without using
the lasts 2 Bytes of the payload. Which leads us to ask what comes of those two bytes which are not taken
into account for the CRC calculation, and we observed that they are used as the �nal XOR value. Using
this method, we are now able to calculate the payload CRC and use it to verify packet integrity.

19

Bibliography

[1] G. Jaume and M. Co�ing, “Lora phy implementation and analysis,” 2016.

[2] M. Jo�rey, “Usrp implementation of lora lpwan physical layer,” 2017.

[3] J. A. M. Galicia, “Reverse engineering lora header and crc,” 2018.

[4] S. Corporation, AN1200.22 LoRa™ Modulation Basics, 2015.

[5] R. Ghanaatian, O. A�siadis, M. Co�ing, and A. Burg, “Lora digital receiver analysis and implementa-
tion,” 2018.

[6] O. Seller and N. Sornin, “Low power long range transmi�er,” Patent EP 2 763 321 A1, 2014.

[7] P. Robyns, P. �ax, W. Lamo�e, and W. �enaers, “A multi-channel so�ware decoder for the lora
modulation scheme,” 2017.

[8] RFM95/96/97/98(W) - Low Power Long Range Transceiver Module.

[9] R. N. Williams, “A painless guide to crc error detection algorithms,” 1993.

[10] G. Ewing, “Reverse-engineering a crc algorithm,” 2010.

20

	Introduction
	LoRa Physical layer
	LoRa modulation
	Preamble
	LoRa encoding scheme
	Gray coding
	Interleaving
	Whitening
	Hamming Coding

	Header
	Payload CRC

