Check if reversing a sub array make the array sorted
Last Updated :
13 Sep, 2023
Given an array of n distinct integers. The task is to check whether reversing any one sub-array can make the array sorted or not. If the array is already sorted or can be made sorted by reversing any one subarray, print "Yes", else print "No".
Examples:
Input : arr [] = {1, 2, 5, 4, 3}
Output : Yes
By reversing the subarray {5, 4, 3}, the array will be sorted.
Input : arr [] = { 1, 2, 4, 5, 3 }
Output : No
Method 1: Brute force (O(n3))
Consider every subarray and check if reversing the subarray makes the whole array sorted. If yes, return True. If reversing any of the subarrays doesn't make the array sorted, then return False. Considering every subarray will take O(n2), and for each subarray, checking whether the whole array will get sorted after reversing the subarray in consideration will take O(n). Thus overall complexity would be O(n3).
Method 2: Sorting ( O(n*log(n) ))
The idea is to compare the given array with its sorted version. Make a copy of the given array and sort it. Now, find the first index and last index in the given array which does not match with the sorted array. If no such indices are found (given array was already sorted), return True. Else check if the elements between the found indices are in decreasing order, if Yes then return True else return False
Below is the implementation of the above approach:
C++
// C++ program to check whether reversing a
// sub array make the array sorted or not
#include<bits/stdc++.h>
using namespace std;
// Return true, if reversing the subarray will
// sort the array, else return false.
bool checkReverse(int arr[], int n)
{
// Copying the array.
int temp[n];
for (int i = 0; i < n; i++)
temp[i] = arr[i];
// Sort the copied array.
sort(temp, temp + n);
// Finding the first mismatch.
int front;
for (front = 0; front < n; front++)
if (temp[front] != arr[front])
break;
// Finding the last mismatch.
int back;
for (back = n - 1; back >= 0; back--)
if (temp[back] != arr[back])
break;
// If whole array is sorted
if (front >= back)
return true;
// Checking subarray is decreasing or not.
do
{
front++;
if (arr[front - 1] < arr[front])
return false;
} while (front != back);
return true;
}
// Driver Program
int main()
{
int arr[] = { 1, 2, 5, 4, 3 };
int n = sizeof(arr)/sizeof(arr[0]);
checkReverse(arr, n)? (cout << "Yes" << endl):
(cout << "No" << endl);
return 0;
}
Java
// Java program to check whether reversing a
// sub array make the array sorted or not
import java.util.Arrays;
class GFG {
// Return true, if reversing the subarray will
// sort the array, else return false.
static boolean checkReverse(int arr[], int n) {
// Copying the array.
int temp[] = new int[n];
for (int i = 0; i < n; i++) {
temp[i] = arr[i];
}
// Sort the copied array.
Arrays.sort(temp);
// Finding the first mismatch.
int front;
for (front = 0; front < n; front++) {
if (temp[front] != arr[front]) {
break;
}
}
// Finding the last mismatch.
int back;
for (back = n - 1; back >= 0; back--) {
if (temp[back] != arr[back]) {
break;
}
}
// If whole array is sorted
if (front >= back) {
return true;
}
// Checking subarray is decreasing or not.
do {
front++;
if (arr[front - 1] < arr[front]) {
return false;
}
} while (front != back);
return true;
}
// Driver Program
public static void main(String[] args) {
int arr[] = {1, 2, 5, 4, 3};
int n = arr.length;
if (checkReverse(arr, n)) {
System.out.print("Yes");
} else {
System.out.print("No");
}
}
}
//This code contributed by 29AjayKumar
Python3
# Python3 program to check whether
# reversing a sub array make the
# array sorted or not
# Return true, if reversing the
# subarray will sort the array,
# else return false.
def checkReverse(arr, n):
# Copying the array
temp = [0] * n
for i in range(n):
temp[i] = arr[i]
# Sort the copied array.
temp.sort()
# Finding the first mismatch.
for front in range(n):
if temp[front] != arr[front]:
break
# Finding the last mismatch.
for back in range(n - 1, -1, -1):
if temp[back] != arr[back]:
break
#If whole array is sorted
if front >= back:
return True
while front != back:
front += 1
if arr[front - 1] < arr[front]:
return False
return True
# Driver code
arr = [1, 2, 5, 4, 3]
n = len(arr)
if checkReverse(arr, n) == True:
print("Yes")
else:
print("No")
# This code is contributed
# by Shrikant13
C#
// C# program to check whether reversing a
// sub array make the array sorted or not
using System;
class GFG
{
// Return true, if reversing the
// subarray will sort the array,
// else return false.
static bool checkReverse(int []arr, int n)
{
// Copying the array.
int []temp = new int[n];
for (int i = 0; i < n; i++)
{
temp[i] = arr[i];
}
// Sort the copied array.
Array.Sort(temp);
// Finding the first mismatch.
int front;
for (front = 0; front < n; front++)
{
if (temp[front] != arr[front])
{
break;
}
}
// Finding the last mismatch.
int back;
for (back = n - 1; back >= 0; back--)
{
if (temp[back] != arr[back])
{
break;
}
}
// If whole array is sorted
if (front >= back)
{
return true;
}
// Checking subarray is decreasing
// or not.
do
{
front++;
if (arr[front - 1] < arr[front])
{
return false;
}
} while (front != back);
return true;
}
// Driver Program
public static void Main()
{
int []arr = {1, 2, 5, 4, 3};
int n = arr.Length;
if (checkReverse(arr, n))
{
Console.Write("Yes");
}
else
{
Console.Write("No");
}
}
}
// This code is contributed
// by PrinciRaj
PHP
<?php
// PHP program to check whether reversing a
// sub array make the array sorted or not
// Return true, if reversing the subarray
// will sort the array, else return false.
function checkReverse($arr, $n)
{
// Copying the array.
$temp[$n] = array();
for ($i = 0; $i < $n; $i++)
$temp[$i] = $arr[$i];
// Sort the copied array.
sort($temp, 0);
// Finding the first mismatch.
$front;
for ($front = 0; $front < $n; $front++)
if ($temp[$front] != $arr[$front])
break;
// Finding the last mismatch.
$back;
for ($back = $n - 1; $back >= 0; $back--)
if ($temp[$back] != $arr[$back])
break;
// If whole array is sorted
if ($front >= $back)
return true;
// Checking subarray is decreasing or not.
do
{
$front++;
if ($arr[$front - 1] < $arr[$front])
return false;
} while ($front != $back);
return true;
}
// Driver Code
$arr = array( 1, 2, 5, 4, 3 );
$n = sizeof($arr);
if(checkReverse($arr, $n))
echo "Yes" . "\n";
else
echo "No" . "\n";
// This code is contributed
// by Akanksha Rai
?>
JavaScript
<script>
// Javascript program to check whether reversing a
// sub array make the array sorted or not
// Return true, if reversing the subarray will
// sort the array, else return false.
function checkReverse(arr, n) {
// Copying the array.
let temp = [];
for (let i = 0; i < n; i++) {
temp[i] = arr[i];
}
// Sort the copied array.
temp.sort();
// Finding the first mismatch.
let front;
for (front = 0; front < n; front++) {
if (temp[front] != arr[front]) {
break;
}
}
// Finding the last mismatch.
let back;
for (back = n - 1; back >= 0; back--) {
if (temp[back] != arr[back]) {
break;
}
}
// If whole array is sorted
if (front >= back) {
return true;
}
// Checking subarray is decreasing or not.
do {
front++;
if (arr[front - 1] < arr[front]) {
return false;
}
} while (front != back);
return true;
}
// Driver Code
let arr = [1, 2, 5, 4, 3];
let n = arr.length;
if (checkReverse(arr, n)) {
document.write("Yes");
} else {
document.write("No");
}
</script>
Time Complexity: O(n*log(n) ).
Auxiliary Space: O(n).
Method 3: Linear time solution (O(n)):
The idea to solve this problem is based on the observation that if we perform one rotation of any subarray in the sorted array (increasing order), then we there will be exactly one subarray which will be in decreasing order. So, we have to find that rotated subarray and perform one rotation on it. Finally check if the array becomes sorted or not.
- Initialize two variables x and y with -1.
- Iterate over the array.
- Find the first number for which a[i] > a[i+1] and store it into x.
- Similarly, Store index i+1 as well into y, As this will keep track of the ending of the subarray which is needed to reverse.
- Check if x == -1 then array is already sorted so return true.
- Otherwise, reverse the array from index x to index y.
- Traverse the array to check for every element is sorted or not.
- If not sorted, return false.
- Finally, return true.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
bool sortArr(int a[], int n)
{
int x = -1;
int y = -1;
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
if (x == -1) {
x = i;
}
y = i + 1;
}
}
if (x != -1) {
reverse(a + x, a + y + 1);
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
return false;
return 0;
}
}
}
return true;
}
// Driver Program
int main()
{
int arr[] = { 1, 2, 5, 4, 3 };
int n = sizeof(arr) / sizeof(arr[0]);
sortArr(arr, n) ? (cout << "Yes" << endl)
: (cout << "No" << endl);
return 0;
}
//This code is contributed by Shaurya Dixit (B19EE077)
Java
public class GFG {
static void reverse(int[] a,int x,int y)
{
while(x<y)
{
int temp = a[x];
a[x] = a[y];
a[y] = temp;
x++;
y--;
}
}
static boolean sortArr(int[] a, int n)
{
int x = -1;
int y = -1;
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
if (x == -1) {
x = i;
}
y = i + 1;
}
}
if (x != -1) {
reverse(a,x,y);
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
return false;
}
}
}
return true;
}
// Driver Code
public static void main (String[] args)
{
int arr[] = { 1, 2, 5, 4, 3 };
int n = arr.length;
if(sortArr(arr, n))
{
System.out.println("Yes");
}
else
{
System.out.println("No");
}
}
}
// This code is contributed by aditya942003patil
Python3
def reverse(a, x, y):
while(x < y):
temp = a[x]
a[x] = a[y]
a[y] = temp
x += 1
y -= 1
def sortArr(a, n):
x, y = -1, -1
for i in range(n-1):
if(a[i] > a[i+1]):
if(x == -1):
x = i
y = i + 1
if(x != -1):
reverse(a, x, y)
for i in range(0, n-1):
if(a[i] > a[i+1]):
return False
return True
arr = [1, 2, 5, 4, 3]
n = len(arr)
if(sortArr(arr, n)):
print("Yes")
else:
print("No")
# This code is contributed by lokesh
C#
// C# code to implement the above approach
using System;
public class GFG {
static void reverse(int[] a, int x, int y)
{
while (x < y) {
int temp = a[x];
a[x] = a[y];
a[y] = temp;
x++;
y--;
}
}
static bool sortArr(int[] a, int n)
{
int x = -1;
int y = -1;
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
if (x == -1) {
x = i;
}
y = i + 1;
}
}
if (x != -1) {
reverse(a, x, y);
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
return false;
}
}
}
return true;
}
static public void Main()
{
// Code
int[] arr = { 1, 2, 5, 4, 3 };
int n = arr.Length;
if (sortArr(arr, n)) {
Console.WriteLine("Yes");
}
else {
Console.WriteLine("No");
}
}
}
// This code is contributed by lokeshmvs21.
JavaScript
function sortArr(arr, n) {
let x=-1;
let y=-1;
for (let i = 0; i < n-1; i++) {
if (arr[i] > arr[i + 1]) {
if (x == -1) {
x = i;
}
y = i + 1;
}
}
if (x != -1) {
while(x<y)
{
let temp=arr[x];
arr[x]=arr[y];
arr[y]=temp;
x++;
y--;
}
for (let i = 0; i < n - 1; i++) {
if (arr[i] > arr[i + 1]) {
return false;
return 0;
}
}
}
return true;
}
// Driver Code
let arr = [1, 2, 5, 4, 3];
let n = arr.length;
if (sortArr(arr, n)) {
console.log("Yes");
} else {
console.log("No");
}
// This code is contributed by garg28harsh.
Time Complexity: O(n)
Auxiliary Space: O(1)
Method 4: Another linear time solution (O(n)):
Observe, that the answer will be True when the array is already sorted or when the array consists of three parts. The first part is increasing subarray, then decreasing subarray, and then again increasing subarray. So, we need to check that array contains increasing elements then some decreasing elements, and then increasing elements if this is the case the answer will be True. In all other cases, the answer will be False.
Note: Simply finding the three parts does not guarantee the answer to be True eg consider
arr [] = {10,20,30,40,4,3,2,50,60,70}
The answer would be False in this case although we are able to find three parts. We will be handling the validity of the three parts in the code below.
Below is the implementation of this approach:
C++
// C++ program to check whether reversing a sub array
// make the array sorted or not
#include<bits/stdc++.h>
using namespace std;
// Return true, if reversing the subarray will sort t
// he array, else return false.
bool checkReverse(int arr[], int n)
{
if (n == 1)
return true;
// Find first increasing part
int i;
for (i=1; i < n && arr[i-1] < arr[i]; i++);
if (i == n)
return true;
// Find reversed part
int j = i;
while (j < n && arr[j] < arr[j-1])
{
if (i > 1 && arr[j] < arr[i-2])
return false;
j++;
}
if (j == n)
return true;
// Find last increasing part
int k = j;
// To handle cases like {1,2,3,4,20,9,16,17}
if (arr[k] < arr[i-1])
return false;
while (k > 1 && k < n)
{
if (arr[k] < arr[k-1])
return false;
k++;
}
return true;
}
// Driver Program
int main()
{
int arr[] = {1, 3, 4, 10, 9, 8};
int n = sizeof(arr)/sizeof(arr[0]);
checkReverse(arr, n)? cout << "Yes" : cout << "No";
return 0;
}
Java
// Java program to check whether reversing a sub array
// make the array sorted or not
class GFG {
// Return true, if reversing the subarray will sort t
// he array, else return false.
static boolean checkReverse(int arr[], int n) {
if (n == 1) {
return true;
}
// Find first increasing part
int i;
for (i = 1; arr[i - 1] < arr[i] && i < n; i++);
if (i == n) {
return true;
}
// Find reversed part
int j = i;
while (j < n && arr[j] < arr[j - 1]) {
if (i > 1 && arr[j] < arr[i - 2]) {
return false;
}
j++;
}
if (j == n) {
return true;
}
// Find last increasing part
int k = j;
// To handle cases like {1,2,3,4,20,9,16,17}
if (arr[k] < arr[i - 1]) {
return false;
}
while (k > 1 && k < n) {
if (arr[k] < arr[k - 1]) {
return false;
}
k++;
}
return true;
}
// Driver Program
public static void main(String[] args) {
int arr[] = {1, 3, 4, 10, 9, 8};
int n = arr.length;
if (checkReverse(arr, n)) {
System.out.print("Yes");
} else {
System.out.print("No");
}
}
}
// This code is contributed
// by Rajput-Ji
Python3
# Python3 program to check whether reversing
# a sub array make the array sorted or not
import math as mt
# Return True, if reversing the subarray
# will sort the array, else return False.
def checkReverse(arr, n):
if (n == 1):
return True
# Find first increasing part
i = 1
for i in range(1, n):
if arr[i - 1] < arr[i] :
if (i == n):
return True
else:
break
# Find reversed part
j = i
while (j < n and arr[j] < arr[j - 1]):
if (i > 1 and arr[j] < arr[i - 2]):
return False
j += 1
if (j == n):
return True
# Find last increasing part
k = j
# To handle cases like 1,2,3,4,20,9,16,17
if (arr[k] < arr[i - 1]):
return False
while (k > 1 and k < n):
if (arr[k] < arr[k - 1]):
return False
k += 1
return True
# Driver Code
arr = [ 1, 3, 4, 10, 9, 8]
n = len(arr)
if checkReverse(arr, n):
print("Yes")
else:
print("No")
# This code is contributed by
# Mohit kumar 29
C#
// C# program to check whether reversing a
// sub array make the array sorted or not
using System;
public class GFG{
// Return true, if reversing the subarray will sort t
// he array, else return false.
static bool checkReverse(int []arr, int n) {
if (n == 1) {
return true;
}
// Find first increasing part
int i;
for (i = 1; arr[i - 1] < arr[i] && i < n; i++);
if (i == n) {
return true;
}
// Find reversed part
int j = i;
while (j < n && arr[j] < arr[j - 1]) {
if (i > 1 && arr[j] < arr[i - 2]) {
return false;
}
j++;
}
if (j == n) {
return true;
}
// Find last increasing part
int k = j;
// To handle cases like {1,2,3,4,20,9,16,17}
if (arr[k] < arr[i - 1]) {
return false;
}
while (k > 1 && k < n) {
if (arr[k] < arr[k - 1]) {
return false;
}
k++;
}
return true;
}
// Driver Program
public static void Main() {
int []arr = {1, 3, 4, 10, 9, 8};
int n = arr.Length;
if (checkReverse(arr, n)) {
Console.Write("Yes");
} else {
Console.Write("No");
}
}
}
// This code is contributed
// by 29AjayKumar
JavaScript
<script>
// Javascript program to check whether reversing a sub array
// make the array sorted or not
// Return true, if reversing the subarray will sort t
// he array, else return false.
function checkReverse( arr, n)
{
if (n == 1)
return true;
// Find first increasing part
let i;
for (i=1; i < n && arr[i-1] < arr[i]; i++);
if (i == n)
return true;
// Find reversed part
let j = i;
while (j < n && arr[j] < arr[j-1])
{
if (i > 1 && arr[j] < arr[i-2])
return false;
j++;
}
if (j == n)
return true;
// Find last increasing part
let k = j;
// To handle cases like {1,2,3,4,20,9,16,17}
if (arr[k] < arr[i-1])
return false;
while (k > 1 && k < n)
{
if (arr[k] < arr[k-1])
return false;
k++;
}
return true;
}
// Driver program
let arr = [1, 3, 4, 10, 9, 8];
let n = arr.length;
if (checkReverse(arr, n)) {
document.write("Yes");
} else {
document.write("No");
}
</script>
Time Complexity: O(n).
Auxiliary Space: O(1).
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read