Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Quick Reference

You're reading from   Machine Learning Quick Reference Quick and essential machine learning hacks for training smart data models

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781788830577
Length 294 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
 Kumar Kumar
Author Profile Icon Kumar
Kumar
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Quantifying Learning Algorithms FREE CHAPTER 2. Evaluating Kernel Learning 3. Performance in Ensemble Learning 4. Training Neural Networks 5. Time Series Analysis 6. Natural Language Processing 7. Temporal and Sequential Pattern Discovery 8. Probabilistic Graphical Models 9. Selected Topics in Deep Learning 10. Causal Inference 11. Advanced Methods 12. Other Books You May Enjoy

Sentiment analysis

Sentiment analysis is one of the application areas of natural language processing. It is widely in use across industries and domains, and there is a big need for it in the industry. Every organization is aiming to focus customers and their needs. Hence, to understand voice and sentiment, the customer turns out to be the prime goal, as knowing the pulse of the customers leads to revenue generation. Nowadays, customers voice their sentiments through Twitter, Facebook, or blogs. It takes some work to refine that textual data and make it consumable. Let's look at how to do it in Python.

Here, verbatims of cinegoers have been taken from IMDB. This is shared on GitHub, too.

We will launch the libraries , as follows:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(color_codes=True)
import os
print(os.listdir...
lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Machine Learning Quick Reference
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon