12

Functional and Reactive
Programming Features

In this chapter, we'll look at the following recipes:

e Writing generator functions with the yield statement

¢ Using stacked generator expressions

e Applying transformations to a collection

e Picking a subset — three ways to filter

e Summarizing a collection — how to reduce

¢ Combining map and reduce transformations

¢ Implementing "there exists" processing

¢ Creating a partial function

¢ Simplifying complex algorithms with immutable data structures

e Writing recursive generator functions with the yield from statement

Introduction

The idea of functional programming is to focus on writing small, expressive functions that
perform the required data transformations. Combining functions can often create code
which is more succinct and expressive than long strings of procedural statements or the
methods of complex, stateful objects. Python allows all three kinds of programming.

Functional and Reactive Programming Features

Conventional mathematics defines many things as functions. Multiple functions are
combined to build up a complex result from previous transformations. For example, we
might have two functions, f(x) and g(y), that need to be combined to create a useful result:

y=1fx)
z=9(y)
Ideally, we can create a composite function from these two functions:
z=(g°H(x

Using a composite function, (g f), can help to clarify how a program works. It allows us to
take a number of small details and combine them into a larger knowledge chunk.

Since programming often works with collections of data, we'll often be applying a function
to a whole collection. This fits nicely with the mathematical idea of a set builder or set
comprehension.

There are three common patterns for applying one function to a set of data:

e Mapping: This applies a function to all elements of a collection {M(x): x € C}. We
apply some function, M, to each item, x, of a larger collection, C.

e Filtering: This uses a function to select elements from a collection. {x:c € C if
F(x)}. We use a function, F, to determine whether to pass or reject an item, x, from
a larger collection, C.

¢ Reducing: This summarizes a collection. The details vary, but one of the most

>x
common reductions is creating a sum of all items, x, in a collection, C: == .

We'll often combine these patterns to create more complex applications. What's important
here is that small functions, such as M(x) and F(x), are combined via higher-order functions
such as mapping and filtering. The combined operation can be sophisticated even though
the individual pieces are quite simple.

The idea of reactive programming is to have processing rules that are evaluated when the
inputs become available or change. This fits with the idea of lazy programming. When we
define lazy properties of a class definition, we've created reactive programs.

[656]

Chapter 12

Reactive programming fits with functional programming because there may be multiple
transformations required to react to a change in the input values. Often, this is most clearly
expressed as functions that are combined or stacked into a composite function that
responds to change. See the Using properties for lazy attributes recipe in Chapter 6, Basics of
Classes and Objects, for some examples of reactive class design.

Writing generator functions with the yield
statement

Most of the recipes we've looked at have been designed to work with all of the items in a
single collection. The approach has been to use a for statement to step through each item
within the collection, either mapping the value to a new item, or reducing the collection to
some kind of summary value.

Producing a single result from a collection is one of two ways to work with a collection. The
alternative is to produce incremental results instead of a single result.

This approach is very helpful in the cases where we can't fit an entire collection in memory.
For example, analyzing gigantic web log files is best done in small doses rather than by
creating an in-memory collection.

Is there some way to disentangle the collection structure from the processing function? Can
we yield results from processing as soon as each individual item is available?

Getting ready

We'll look at some web log data that has date-time string values. We need to parse these to
create proper datetime objects. To keep things focused in this recipe, we'll use a simplified
log produced by Flask.

The entries start out as lines of text that look like this:

[2016-05-08 11:08:18,651] INFO in ch09_r09: Sample Message One
[2016-05-08 11:08:18,651] DEBUG in ch09_r09: Debugging

[2016-05-08 11:08:18,652] WARNING in ch09_r09: Something might have gone
wrong

[657]

Functional and Reactive Programming Features

We've seen other examples of working with this kind of log in the Using more complex
structures —maps of lists recipe in Chapter 7, More Advanced Class Design. Using REs from the
String parsing with regular expressions recipe in Chapter 1, Numbers, Strings, and Tuples, we
can decompose each line to look like the following collection of rows:

>>> data = [
. ('2016-04-24 11:05:01,462', 'INFO', 'modulel', 'Sample Message
One'),

('2016-04-24 11:06:02,624', 'DEBUG', 'module2',6 'Debugging'),
('2016-04-24 11:07:03,246', 'WARNING', 'modulel', 'Something might
have gone wrong')

1

We can't use ordinary string parsing to convert the complex date-time stamp into
something more useful. We can, however, write a generator function which can process
each row of the log, producing a more useful intermediate data structure.

A generator function is a function that uses a yield statement. When a function has a yield,
it builds the results incrementally, yielding each individual value in a way that can be
consumed by a client. The consumer might be a for statement or it might be another
function that needs a sequence of values.

How to do it...

1. This requires the datet ime module:
import datetime

2. Define a function that processes a source collection:
def parse_date_iter (source) :

We've included the suffix _iter as a reminder that this function will be an
iterable object, not a simple collection.

3. Include a for statement that visits each item in the source collection:

for item in source:

[658 1]

Chapter 12

4. The body of the for statement can map the item to a new item:

date = datetime.datetime.strptime (
item[0],
"$Y-%$m-%d $H:%M:%S,%$f")
new_item = (date,)+item[1:]

In this case, we mapped a single field from string to datetime object. The
variable date is built from the string in item[0].

Then we mapped the log message three-tuple to a new tuple, replacing the date
string with the proper datetime object. Since the value of the item is a tuple, we
created a singleton tuple with (date,) and then concatenated this with the
item[1:] tuple.

5. Yield the new item with a yield statement:
yield new_item

The whole construct looks like this, properly indented:

import datetime
def parse_date_iter (source):
for item in source:
date = datetime.datetime.strptime (
item[O0],
"$Y-%m-%d S$H:$M:%S,%f")
new_item = (date,)+item[1:]
yield new_item

The parse_date_iter () function expects an iterable input object. A collection is an
example of an iterable object. More importantly, though, other generators are also iterable.
We can leverage this to build stacks of generators which process data from other
generators.

This function doesn't create a collection. It yields each item, so that the items can be
processed individually. The source collection is consumed in small pieces, allowing huge
amounts of data to be processed. In some recipes, the data will start out from an in-memory
collection. In later recipes, we'll work with data from external files—processing external
files benefits the most from this technique.

[659]

Functional and Reactive Programming Features

Here's how we can use this function:

>>> from pprint import pprint

>>> from ch08_r0l1 import parse_date_iter

>>> for item in parse_date_iter (data):

.. pprint (item)

(datetime.datetime (2016, 4, 24, 11, 5, 1, 462000),
"INFO',
'modulel’,
'Sample Message One')

(datetime.datetime (2016, 4, 24, 11, 6, 2, 624000),
'"DEBUG',
'module2’,
'Debugging')

(datetime.datetime (2016, 4, 24, 11, 7, 3, 246000),
'"WARNING',
'modulel’,
'Something might have gone wrong')

We've used a for statement to iterate through the results of the parse_date_iter ()
function, one item at a time. We've used the pprint () function to display each item.

We could also collect the items into a proper list using something like this:

>>> details = list (parse_date_iter (data))

In this example, the 1ist () function consumes all of the items produced by the
parse_date_iter () function. It's essential to use a function such as 1ist () ora for
statement to consume all of the items from the generator. A generator is a relatively passive
construct - until data is demanded, it doesn't do any work.

If we don't actively consume the data, we'll see something like this:

>>> parse_date_iter (data)
<generator object parse_date_iter at 0x10167ddbO0>

The value of the parse_date_iter () function is a generator. It's not a collection of items,
but a function that will produce items on demand.

[660]

Chapter 12

How it works...

Writing generator functions can change the way we perceive an algorithm. There are two
common patterns: mappings and reductions. A mapping transforms each item to a new
item, perhaps computing some derived value. A reduction accumulates a summary such as
a sum, mean, variance, or hash from the source collection. These can be decomposed into
the item-by-item transformation or filter, separate from the overall loop that handles the
collection.

Python has a sophisticated construct called an iterator which lies at the heart of generators
and collections. An iterator will provide each value from a collection while doing all of the
internal bookkeeping required to maintain the state of the process. A generator function
behaves like an iterator - it provides a sequence of values and maintains its own internal
state.

Consider the following common piece of Python code:

for 1 in some_collection:
process (1)

Behind the scenes, something like the following is going on:

the_iterator = iter(some_collection)
try:
while True:
i = next (the_iterator)
process (1)
except Stoplteration:
pass

Python evaluates the iter () function on a collection to create an iterator object for that
collection. The iterator is bound to the collection and maintains some internal state
information. The code uses next () on the iterator to get each value. When there are no
more values, the iterator raises the StopIteration exception.

Each of Python's collections can produce an iterator. The iterator produced by a Sequence
or Set will visit each item in the collection. The iterator produced by a Mapping will visit
each key for the mapping. We can use the values () method of a mapping to iterate over
the values instead of the keys. We can use the items () method of a mapping to visit a
sequence of (key, value) two-tuples. The iterator for a £ile will visit each line in the
file.

[661]

Functional and Reactive Programming Features

The iterator concept can also be applied to functions. A function with a yield statement is
called a generator function. It fits the template for an iterator. To do this, the generator
returns itself in response to the iter () function. In response to the next () function, it
yields the next value.

When we apply 1ist () to a collection or a generator function, the same essential
mechanism used by the for statement gets the individual values. The iter () and next ()
functions are used by 1ist () to get the items. The items are then turned into a sequence.

Evaluating next () on a generator function is interesting. The generator function is
evaluated until it reaches a yield statement. This value is the result of next (). Each time
next () is evaluated, the function resumes processing after the yield statement and
continues to the next yield statement.

Here's a small function which yields two objects:

>>> def gen_func():
print ("pre-yield")
yield 1
print ("post-yield")
yield 2

Here's what happens when we evaluate next (). On the generator this function produces:

>>> y = gen_func()
>>> next (y)
pre-yield

1

>>> next (y)
post-yield

2

The first time we evaluated next (), the first print () function was evaluated, then the
yield statement produced a value. The function's processing was suspended and the >>>
prompt was given. The second time we evaluated the next () function, the statements
between the two yield statements were evaluated. The function was again suspended and
a >>> prompt will be displayed.

[662]

Chapter 12

What happens next? We're out of yield statements:

>>> next (y)
Traceback (most recent call last):
File "<pyshell...>", line 1, in <module>
next (y)
StopIteration

The StopIteration exception is raised at the end of a generator function.

There's more...

The core value of generator functions comes from being able to break complex processing
into two parts:

¢ The transformation or filter to apply
¢ The source set of data with which to work

Here's an example of using a generator to filter data. In this case, we'll filter the input
values and keep only the prime numbers, rejecting all composite numbers.

We can write the processing out as a Python function like this:

def primeset (source) :
for i in source:
if prime (i) :

yield prime

For each value in the source, we'll evaluate the prime () function. If the result is t rue, we'll
yield the source value. If the result is false, the source value will be rejected. We can use
primeset () like this:

p_10 = set (primeset (range (2,2000000)))

The primeset () function will yield individual prime values from a source collection. The
source collection will be the integers in the range of 2 to 2 million. The result is a set object
built from the values provided.

All that's missing from this is the prime () function to determine whether a number is
prime. We'll leave that as an exercise for the reader.

[663 1]

Functional and Reactive Programming Features

Mathematically, it's common to see set builder or set comprehension notation to specify a rule
for building one set from another.

We might see something like this:
P={i:ie NA2<1<2,000,000 if P(i)}

This tells us that P,, is the set of all numbers, i, in the set of natural numbers, N, and
between 2 and 2 million if P(i) is t rue. This defines a rule for building a set.

We can write this in Python too:

p_10 = {i for i in range(2,2000000) if prime (i)}

This is Python notation for the subset of prime numbers. The clauses are rearranged slightly
from the mathematical abstraction, but all of the same essential parts of the expression are
present.

When we start looking at generator expressions like this, we can see that a great deal of
programming fits some common overall patterns:

e Map: {m(x): x € S} becomes (m(x) for x in S).
e Filter: {x: x € Sif f(x)} becomes (x for x in S if f(x)).
¢ Reduce: This is a bit more complex, but common reductions include sums and

X
counts. *§ is sum(x for x in S).Other common reductions include finding

the maximum or the minimum of a set of data.

We can also write these various higher-level functions using the yield statement. Here's
the definition of a generic mapping:

def map(m, S):
for s in S:
yield m(s)

This function applies some other function, m (), to each data element in the source
collection, S. The result of the mapping function is yielded as a sequence of result values.

We can write a similar definition for a generic filter function:

def filter(f, S):
for s in S:
if f(s):
yield s

[664]

Chapter 12

As with the generic mapping, we apply a function, £ (), to each element in the source
collection, s. Where the function is t rue, the values are yielded. Where the function is
false, the values are rejected.

We can use this to create a set of primes like this:

p_10 = set(filter (prime, range(2,2000000)))

This will apply the prime () function to the source range of data. Note that we write just
prime—without () characters—because we're naming the function, not evaluating it. Each
individual value will be checked by the prime () function. Those that pass will be yielded
to be assembled into the final set. Those values which are composite will be rejected and
won't wind up in the final set.

See also

e In the Using stacked generator expressions recipe, we'll combine generator functions
to build complex processing stacks from simple components.

e In the Applying transformations to a collection recipe, we'll see how the built-in
map () function can be used to create complex processing from a simple function
and an iterable source of data.

e In the Picking a subset — three ways to filter recipe, we'll see how the built-in
filter () function can also be used to build complex processing from a simple
function and an iterable source of data.

e See nttps://projecteuler.net/problem=10 for a challenging problem related to
prime numbers less than 2 million. Parts of the problem seem obvious. It can be
difficult, however, to test all of those numbers for being prime.

Using stacked generator expressions

In the Writing generator functions with the yield statement recipe, we created a simple
generator function that performed a single transformation on a piece of data. As a practical
matter, we often have several functions that we'd like to apply to incoming data.

How can we stack or combine multiple generator functions to create a composite function?

[665]

https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10

Functional and Reactive Programming Features

Getting ready

We have a spreadsheet that is used to record fuel consumption on a large sailboat. It has
rows which look like this:

date engine on fuel height
engine off fuel height
Other notes

10/25/2013 08:24 29
13:15 27
calm seas - anchor solomon's island

10/26/2013 09:12 27
18:25 22
choppy - anchor in jackson's creek

For more background on this data, see the Slicing and dicing a list recipe in Chapter 4, Built-
in Data Structures —list, set, dict.

As a sidebar, we can take the data like this. We'll look at this in detail in the Reading
delimited files with the csv module recipe in Chapter 8, Input/Output, Physical Format, and
Logical Layout:

>>> from pathlib import Path

>>> import csv

>>> with Path('code/fuel.csv') .open() as source_file:
reader = csv.reader (source_file)
log_rows = list (reader)

>>> log_rows[0]

['date', 'engine on', 'fuel height']
>>> log_rows[-1]
[''", "choppy —— anchor in jackson's creek", '']

We've used the csv module to read the log details. A csv.reader () is an iterable object.
In order to collect the items into a single list, we applied the 1ist () function to the
generator function. We printed at the first and last item in the list to confirm that we really
have a list-of-lists structure.

We'd like to apply two transformations to this list-of-lists:

e Convert the date and two times into two date-time values
¢ Merge three rows into one row so that we have a simple organization to the data

If we create a useful pair of generator functions, we can have software that looks like this:

total_time = datetime.timedelta (0)

[666]

Chapter 12

total_fuel = 0

for row in date_conversion (row_merge (source_data)) :
total_time += row['end_time']-row['start_time']
total_fuel += row['end_fuel']-row['start_fuel']

The combined generator functions, date_conversion (row_merge (...)), will yield a
sequence of single rows with starting information, ending information, and notes. This

structure can easily be summarized or analyzed to create simple statistical correlations and
trends.

How to do it...

1. Define an initial reduce operation that combines rows. We have several ways to
tackle this. One is to always group three rows together.

An alternative is to note that column zero has data at the start of a group; it's
empty for the next two lines of a group. This gives us a slightly more general
approach to creating groups of rows. This is a kind of head-tail merge algorithm.
We'll collect data and yield the data each time we get to the head of the next

group:

def row_merge (source_iter):
group = []
for row in source_iter:
if len(row[O0]) != O:
if group:
yield group
group = row.copy ()
else:
group.extend (row)
if group:
yield group

This algorithm uses len (row[0]) to determine whether this is the head of a
group or a row in the tail of the group. In the case of a head row, any previous
group is yielded. After that has been consumed, the value of the group collection
is reset to be the column data from the head row.

[667]

Functional and Reactive Programming Features

The rows in the tail of the group are simply appended to the group collection.
When the data is exhausted, there will—generally—be one final group in the
group variable. If there's no data at all, then the final value of group will also be a
zero-length list, which should be ignored.

We'll address the copy () method later. It's essential because we're working with
a list of lists data structure and lists are mutable objects. We can write processing
which changes the data structures, making some processing awkward to explain.

2. Define the various mapping operations that will be performed on the merged
data. These apply to the data in the original row. We'll use separate functions to
convert each of the two time columns and merge the times with the date column:

import datetime
def start_datetime (row) :

travel_date = datetime.datetime.strptime (row[0],
"$m/%d/%y") .date ()

start_time = datetime.datetime.strptime (row[1l], "%I:%M:%S
gp") .time ()

start_datetime = datetime.datetime.combine (travel_date,
start_time)

new_row = row+[start_datetime]

return new_row

def end_datetime (row) :

travel_date = datetime.datetime.strptime (row[0],
"$m/%d/%y") .date ()

end_time = datetime.datetime.strptime(row[4], "%$I:%M:%S
gp") .time ()

end_datetime = datetime.datetime.combine (travel_date, end_time)

new_row = row+[end_datetime]

return new_row

We'll combine the date in column zero with the time in column one to create a
starting datet ime object. Similarly, we'll combine the date in column zero with
the time in column four to create an ending datet ime object.

These two functions have a lot of overlaps and could be refactored into a single
function with the column number as an argument value. For now, however, our
goal is to write something that simply works. Refactoring for efficiency can come
later.

[668]

Chapter 12

3. Define mapping operations that apply to the derived data. Columns eight and
nine contain the date-time stamps:

for starting and ending.def duration(row):
travel_hours = round((row[10]-row[9]) .total_seconds()/60/60, 1)
new_row = row+[travel_hours]
return new_row

We've used the values created by start_datetime and end_datetime as
inputs. We've computed the delta time, which provides a result in seconds. We
converted seconds to hours, which is a more useful unit of time for this set of
data.

4. Fold in any filters required to reject or exclude bad data. In this case, we have a
header row that must be excluded:

def skip_header_date (rows) :
for row in rows:
if row[0] == 'date':
continue
yield row

This function will reject any row that has date in the first column. The continue
statement resumes the for statement, skipping all other statements in the body; it
skips the yield statement. All other rows will be passed through this process.
The input is an iterable and this generator will yield rows that have not been
transformed in any way.

5. Combine the operations. We can either write a sequence of generator expressions
or use the built-in map () function. Here's how it might look using generator
expressions:

def date_conversion (source) :

tail_gen = skip_header_date (source)

start_gen = (start_datetime (row) for row in tail_gen)
end_gen = (end_datetime (row) for row in start_gen)
duration_gen = (duration(row) for row in end_gen)

return duration_gen

This operation consists of a series of transformations. Each one does a small
transformation on one value from the original collection of data. It's relatively
simple to add operations or change operations, since each one is defined
independently:

e The tail_gen generator yields rows after skipping the first row of the

[669]

Functional and Reactive Programming Features

source

e The start_gen generator appends a datet ime object to the end of each row
with the start time built from strings into source columns

e The end_gen generator appends a datet ime object to each row that has the
end time built from strings

e The duration_gen generator appends a f1oat object with the duration of
the leg

The output from this overall date_conversion () function is a generator. It can
be consumed with a for statement or a 1ist can be built from the items.

How it works...

When we write a generator function, the argument value can be a collection, or it can be
another kind of iterable. Since generator functions are iterables, it becomes possible to
create a kind of pipeline of generator functions.

Each function can embody a small transformation that changes one feature of the input to
create the output. We've then wrapped each of these small transformations in generator
expressions. Because each transformation is reasonably well isolated from the others, we
can make changes to one without breaking the entire processing pipeline.

The processing works incrementally. Each function is evaluated until it yields a single
value. Consider this statement:

for row in date_conversion (row_merge (data)) :
print (row[11])

We've defined a composition of several generators. This composition uses a variety of
techniques:

¢ The row_merge () function is a generator which will yield rows of data. In order
to yield one row, it will read four lines from the source, assemble a merged row,
and yield it. Each time another row is required, it will read three more rows of
input to assemble the output row.

e The date_conversion () function is a complex generator built from multiple
generators.

[670]

Chapter 12

e skip_header_date () is designed to yield a single value. Sometimes it will have

to read two values from the source iterator. If an input row has date in column
zero, the row is skipped. In that case, it will read the second value, getting
another row from row_merge (); which must, in turn, read three more lines of
input to produce a merged line of output. We've assigned the generator to the
tail_gen variable.

The start_gen, end_gen, and duration_gen generator expressions will apply
relatively simple functions such as start_datetime () and end_datetime () to
each row of its input, yielding rows with more useful data.

The final for statement shown in the example will be gathering values from the
date_conversion () iterator by evaluating the next () function repeatedly. Here's the
step by step view of what will happen to create the needed result. Note that this works on a
very small bit of data—each step makes one small change:

1.

The date_conversion () function result was the duration_gen object. For this
to return a value, it needs a row from its source, end_gen. Once it has the data, it
can apply the duration () function and yield the row.

The end_gen expression needs a row from its source, start_gen. It can then
apply the end_datetime () function and yield the row.

The start_gen expression needs a row from its source, tail_gen. It can then
apply the start_datetime () function and yield the row.

The tail_gen expression is simply the generator skip_header_date (). This
function will read as many rows as required from its source until it finds a row
where column zero is not the column header date. It yields one non-date row.
The source for this is the output from the row_merge () function.

The row_merge () function will read multiple rows from its source until it can
assemble a collection of rows that fits the required pattern. It will yield a
combined row that has some text in column zero, followed by rows that have no
text in column zero. The source for this is a list-of-lists collection of the raw data.
The collection of rows will be processed by a for statement inside the
row_merge () function. This processing will implicitly create an iterator for the
collection so that each individual row is yielded as needed by the body of the
row_merge () function.

Each individual row of data will pass through this pipeline of steps. Some stages of the
pipeline will consume multiple source rows for a single result row, restructuring the data
as it is processed. Other stages consume a single value.

[671]

Functional and Reactive Programming Features

This example relies on concatenating items into a long sequence of values. Items are
identified by position. A small change to the order of the stages in the pipeline will alter the
positions of the items. There are a number of ways to improve on this that we'll look at
next.

What's central to this is that only individual rows are being processed. If the source is a
gigantic collection of data, the processing can proceed very quickly. This technique allows a
small Python program to process vast volumes of data quickly and simply.

There's more...

In effect, a set of interrelated generators is a kind of composite function. We might have
several functions, defined separately like this:

y=1f(x)
z=9(y)
We can combine them by applying the results of the first function to the second function:
z =g(f(x))

This can become awkward as the number of functions grows. When we use this pair of
functions in multiple places, we break the Don't Repeat Yourself (DRY) principle. Having
multiple copies of this complex expression isn't ideal.

What we'd like to have is a way to create a composite function—something like this:
z=(g°Hx

Here, we've defined a new function, (g f), that combines the two original functions into a
new, single, composite function. We can now modify this composite to add or change
features.

This concept drives the definition of the composite date_conversion () function. This
function is composed of a number of functions, each of which can be applied to items of
collections. If we need to make changes, we can easily write more simple functions and
drop them into the pipeline defined by the date_conversion () function.

[672]

Chapter 12

We can see some slight differences among the functions in the pipeline. We have some type
conversions. However, the duration calculation isn't really a type conversion. It's a separate
computation that's based on the results of the date conversions. If we want to compute fuel
use per hour, we'd need to add several more calculations. None of these additional
summaries is properly part of date conversion.

We should really break the high-level data_conversion () into two parts. We should
write another function that does duration and fuel use calculations, named fuel_use ().
This other function can then wrap date_conversion ().

We might aim for something like this:

for row in fuel_use(date_conversion (row_merge (data))) :
print (row[11])

We now have a very sophisticated computation that's defined in a number of very small
and (almost) completely independent chunks. We can modify one piece without having to
think deeply about how the other pieces work.

Namespace instead of list

An important change is to stop avoiding the use of a simple list for the data values. Doing
computations on row [10] is a potential disaster in the making. We should properly
convert the input data into some kind of namespace.

A namedtuple can be used. We'll look at that in the Simplifying complex algorithms with
immutable data structures recipe.

A SimpleNamespace can, in some ways, further simplify this processing. A
SimpleNamespace is a mutable object, and can be updated. It's not always the best idea to
mutate an object. It has the advantage of being simple, but it can also be slightly more
difficult to write tests for state changes in mutable objects.

A function such as make_namespace () can provide a set of names instead of positions.
This is a generator that must be used after the rows are merged, but before any of the other
processing:

from types import SimpleNamespace

def make_namespace (merge_iter) :
for row in merge_iter:
ns = SimpleNamespace (
date = row[O0],
start_time = rowl[1l],

[673]

Functional and Reactive Programming Features

start_fuel_height = row[2],

end_time = row[4],
end_fuel_height = row[5],
other_notes = row[7]

)

yield ns

This will produce an object that allows us to write row. date instead of row [0]. This, of
course, will change the definitions for the other functions, including start_datetime (),
end_datetime (), and duration ().

Each of these functions can emit a new SimpleNamespace object instead of updating the
list of values that represents each row. We can then write functions that look like this:

def duration (row_ns) :
travel_time = row_ns.end_timestamp - row_ns.start_timestamp
travel_hours = round(travel_time.total_seconds()/60/60, 1)
return SimpleNamespace (
**yars (row_ns),
travel_hours=travel_hours

)

Instead of processing a row as a 1ist object, this function processes a row as a
SimpleNamespace object. The columns have clear and meaningful names such as
row_ns.end_timestamp instead of the cryptic row[10].

There's a three-part process to building a new SimpleNamespace from an old namespace:

1. Use the vars () function to extract the dictionary inside the SimpleNamespace
instance.

2. Use the **vars (row_ns) object to build a new namespace based on the old
namespace.

3. Any additional keyword parameters such as t ravel_hours = travel_hours
provides additional values that will load the new object.

The alternative is to update the namespace and return the updated object:

def duration(row_ns) :
travel_time = row_ns.end_timestamp - row_ns.start_timestamp
row_ns.travel_hours = round(travel_time.total_seconds()/60/60, 1)
return row_ns

[674]

Chapter 12

This has the advantage of being slightly simpler. The disadvantage is the small
consideration that stateful objects can sometimes be confusing. When modifying an
algorithm, it's possible to fail to set attributes in the proper order so that lazy (or reactive)
programming operates properly.

While stateful objects are common, they should always be viewed as one of two
alternatives. An immutable namedtuple might be a better choice than a mutable
SimpleNamespace.

See also

e See the Writing generator functions with the yield statement recipe for an
introduction to generator functions

e See the Slicing and dicing a list recipe in Chapter 4, Built-in Data Structures — list,
set, dict, for more information on the fuel consumption dataset

e See the Combining map and reduce transformations recipe for another way to
combine operations

Applying transformations to a collection

In the Writing generator functions with the yield statement recipe, we looked at writing a
generator function. The examples we saw combined two elements: a transformation and a
source of data. They generally look like this:

for item in source:
new_item = some transformation of item
yield new_item

This template for writing a generator function isn't a requirement. It's merely a common
pattern. There's a transformation process buried inside a for statement. The for statement
is largely boilerplate code. We can refactor this to make the transformation function explicit
and separate from the for statement.

In the Using stacked generator expressions recipe, we defined a start_datetime () function
which computed a new datetime object from the string values in two separate columns of
the source collection of data.

[675]

Functional and Reactive Programming Features

We could use this function in a generator function's body like this:

def start_gen(tail_gen):
for row in tail_gen:
new_row = start_datetime (row)
yield new_row

This function applies the start_datetime () function to each item in a source of data,
tail_gen. Each resulting row is yielded so that another function or a for statement can
consume it.

In the Using stacked generator expressions recipe, we looked at another way to apply these
transformation functions to a larger collection of data. In this example, we used a generator
expression. The code looks like this:

start_gen = (start_datetime(row) for row in tail_gen)

This applies the start_datetime () function to each item in a source of data, tail_gen.
Another function or for statement can consume the values available in the start_gen
iterable.

Both the complete generator function and the shorter generator expression are essentially
the same thing with slightly different syntax. Both of these are parallel to the mathematical
notion of a set builder or set comprehension. We could describe this operation mathematically
as:

s=[S(N:reT]

In this expression, S is the start_datetime () function and T is the sequence of values
called tail_gen. The resulting sequence is the value of S(r), where each value for r is an
element of the set T.

Both generator functions and generator expressions have similar boilerplate code. Can we
simplify these?

Getting ready...

We'll look at the web log data from the Writing generator functions with the yield statement
recipe. This had date as a string that we would like to transform into a proper timestamp.

[676]

Chapter 12

Here's the example data:

>>> data = [

('2016-04-24 11:05:01,462', 'INFO', 'modulel', 'Sample Message
One'),

('2016-04-24 11:06:02,624', 'DEBUG', 'module2', 'Debugging'),

('2016-04-24 11:07:03,246', 'WARNING', 'modulel', 'Something might
have gone wrong')

1

We can write a function like this to transform the data:

import datetime
def parse_date_iter (source):
for item in source:
date = datetime.datetime.strptime (
item[O0],
"$Y-%m-%d $H:%M:%S,%f")
new_item = (date,)+item[1:]
yield new_item

This function will examine each item in the source using a for statement. The value in
column zero is a date string, which can be transformed into a proper datet ime object. A
new item, new_item, is built from the datetime object and the remaining items starting
with column one.

Because the function uses the yield statement to produce results, it's a generator function.
We use it with a for statement like this:

for row in parse_date_iter (data) :
print (row[0], row([3])

This statement will gather each value as it's produced by the generator function and print
two of the selected values.

The parse_date_iter () function has two essential elements combined into a single
function. The outline looks like this:

for item in source:
new_item = transformation (item)
yield new_item

The for and yield statements are largely boilerplate code. The transformation ()
function is a really useful and interesting part of this.

[677]

Functional and Reactive Programming Features

How to do it...

1. Write the transformation function that applies to a single row of the data. This is
not a generator, and doesn't use the yield statement. It simply revises a single
item from a collection:

def parse_date(item):
date = datetime.datetime.strptime (
item[O0],
"$Y-%$m-%d $H:%M:%S,%f")
new_item = (date,)+item[1:]
return new_item

This can be used in three ways: statements, expressions, and the map () function.
Here's the explicit for. . .yield pattern of statements:

for item in collection:

new_item = parse_date (item)
yield new_item

This uses a for statement to process each item in the collection using the isolated

parse_date () function. The second choice is a generator expression that looks
like this:

(parse_date (item) for item in data)

This is a generator expression that applies the parse_date () function to each
item. The third choice is the map () function.

2. Use the map () function to apply the transformation to the source data.
map (parse_date, data)

We provide the name of the function, parse_date, without any () after the
name. We aren't applying the function at this time. We're providing the name of
the object to the map () function to apply the parse_date () function to the
iterable source of data, data.

We can use this as follows:

for row in map (parse_date, data):
print (row[0], row[3])

[678]

Chapter 12

The map () function creates an iterable object that applies the parse_date ()
function to each item in the data iterable. It yields each individual item. It saves us
from having to write a generator expression or a generator function.

How it works...

The map () function replaces some common boilerplate code. We can imagine that the
definition looks something like this:

def map(f, iterable):
for item in iterable:
yield f (item)

Or, we can imagine that it looks like this:

def map (f, iterable):
return (f(item) for item in iterable)

Both of these definitions summarize the core feature of the map () function. It's handy
shorthand that eliminates some boilerplate code for applying a function to an iterable
source of data.

There's more...

In this example, we've used the map () function to apply a function that takes a single
parameter to each individual item of a single iterable. It turns out that the map () function
can do a bit more than this.

Consider this function:

>>> def mul(a, b):
return a*b

And these two sources of data:

>>> list_1
>>> list_2

[2, 3, 5, 7]
[11, 13, 17, 23]

[679]

Functional and Reactive Programming Features

We can apply the mul () function to pairs drawn from each source of data:

>>> list (map(mul, list_1, list_2))
[22, 39, 85, 161]

This allows us to merge two sequences of values using different kinds of operators. We can,
for example, build a mapping that behaves like the built-in zip () function.

Here's a mapping;:

>>> def bundle(*args):

.. return args

>>> list (map(bundle, list_1, 1list_2))
[(2, 11), (3, 13), (5, 17), (7, 23)]

We needed to define a small helper function, bundle (), that takes any number of
arguments, and creates a tuple out of them.

Here's the zip function for comparison:

>>> list(zip(list_1, list_2))
[(2, 11), (3, 13), (5, 17), (7, 23)]

See also...

o In the Using stacked generator expressions recipe, we looked at stacked generators.
We built a composite function from a number of individual mapping operations
written as generator functions. We also included a single filter in the stack.

Picking a subset - three ways to filter

In the Using stacked generator expressions recipe, we wrote a generator function that excluded
some rows from a set of data. We defined a function like this:

def skip_header_date (rows) :
for row in rows:
if row[0] == 'date':
continue
yield row

[680]

Chapter 12

When the condition is t rue—row[0] is date—the continue statement will skip the rest
of the statements in the body of the for statement. In this case, there's only a single
statement, yield row.

There are two conditions:

e row[0] == 'date':The yield statement is skipped; the row is rejected from
further processing

e row[0] != 'date':The yield statement means that the row will be passed on
to the function or statement that's consuming the data

At four lines of code, this seems long-winded. The for...if...yield pattern is clearly
boilerplate, and only the condition is really material in this kind of construct.

Can we express this more succinctly?

Getting ready...

We have a spreadsheet that is used to record fuel consumption on a large sailboat. It has
rows which look like this:

date engine on fuel height
engine off fuel height
Other notes

10/25/2013 08:24 29
13:15 27
calm seas - anchor solomon's island

10/26/2013 09:12 27
18:25 22
choppy - anchor in jackson's creek

For more background on this data, see the Slicing and dicing a list recipe.

[681]

Functional and Reactive Programming Features

In the Using stacked generator expressions recipe, we defined two functions to reorganize this
data. The first combined each three-row group into a single row with a total of eight
columns of data:

def row_merge (source_iter):

group = []
for row in source_iter:
if len(row[0]) != O:
if group:
yield group
group = row.copy ()
else:
group.extend (row)
if group:

yield group

This is a variation on the head-tail algorithm. When len (row[0]) != 0, this is the header
row for a new group—any previously complete group is yielded, and then the working
value of the group variable is reset to a fresh, new list based on this header row. A copy ()
is made so that we can avoid mutating the list object later on. When len (row[0]) == 0,
this is the tail of the group; the row is appended to the working value of the group variable.
At the end of the source of data, there's generally a complete group that needs to be
processed. There's an edge case where there's no data at all; in which case, there's no final
group to yield, either.

We can use this function to transform the data from many confusing rows to single rows of
useful information:

>>> from ch08_r02 import row_merge, log_rows
>>> pprint (list (row_merge (log_rows)))

[['date',
'engine on',
'fuel height',
'engine off',
'fuel height',
'Other notes',
ll]’

['10/25/13",
'08:24:00 aM’',
129|,
'01:15:00 PM',
1271,

[682]

Chapter 12

[}
14

"calm seas —- anchor solomon's island",

ll],
['10/26/13"',
'09:12:00 aM',
l27l,
'06:25:00 PM',
1221,

[}
14

"choppy —— anchor in jackson's creek",

ll]]

We see that the first row is just the spreadsheet headers. We'd like to skip this row. We'll
create a generator expression to handle the filtering and reject this extra row.

How to do it...

1. Write the predicate function that tests an item to see whether it should be passed
through the filter for further processing. In some cases, we'll have to start with a
reject rule and then write the inverse to make it into a pass rule:

def pass_non_date (row) :
return row[0] != 'date'

This can be used in three ways: statements, expressions, and the filter ()
function. Here is an example of an explicit for...if...yield pattern of
statements for passing rows:

for item in collection:

if pass_non_date (item) :
yield item

This uses a for statement to process each item in the collection using the filter
function. Selected items are yielded. Other items are rejected.

The second way to use this function is in a generator expression like this:

(item for item in data if pass_non_date (item))

This generator expressions applies the filter function, pass_non_date (), to
each item. The third choice is the filter () function.

[683]

Functional and Reactive Programming Features

2. Usethe filter () function to apply the function to the source data:
filter (pass_non_date, data)

We've provided the name of the function, pass_non_date. We don't use ()
characters after the function name because this expression doesn't evaluate the
function. The filter () function will apply the given function to the iterable
source of data, data. In this case, data is a collection, but it can be any iterable,
including the results of a previous generator expression. Each item for which the
pass_non_date () function is t rue will be passed by the filter; all other values
are rejected.

We can use this as follows:

for row in filter (pass_non_date, row_merge (data)):
print (row[0], row[l], row[4])

The filter () function creates an iterable object that applies the
pass_non_date () function as a rule to pass or reject each item in the
row_merge (data) iterable. It yields the rows that don't have date in column
zero.

How it works...

The filter () function replaces some common boilerplate code. We can imagine that the
definition looks something like this:

def filter(f, iterable):
for item in iterable:

if f(item):
yield f (item)

Or, we can imagine that it looks like this:

def filter(f, iterable):
return (item for item in iterable if f(item))

Both of these definitions summarize the core feature of the filter () function: some data is
passed and some data is rejected. This is a handy shorthand that eliminates some
boilerplate code for applying a function to an iterable source of data.

[684]

Chapter 12

There's more...

Sometimes it's difficult to write a simple rule to pass data. It may be clearer if we write a
rule to reject data. For example, this might make more sense:

def reject_date (row) :
return row([0] == 'date'

We can use a reject rule in a number of ways. Here'sa for...if...continue...yield
pattern of statements. This will use continue to skip the rejected rows, and yield the
remaining rows:

for item in collection:
if reject_date(item):
continue
yield item

We can also use this variation. For some programmers, the not reject concept can become
confusing. It might seem like a double negative:

for item in collection:
if not reject_date(item):
yield item

We can also use a generator expression like this:

(item for item in data if not reject_date(item))

We can't, however, easily use the filter () function with a rule that's designed to reject
data. The filter () function is designed to work with pass rules only.

We have two essential choices for dealing with this kind of logic. We can wrap the logic in
another expression, or we use a function from the itertools module. When it comes to
wrapping, we have two further choices. We can wrap a reject function to create a pass
function from it. We can use something like this:

def pass_date (row) :
return not reject_date (row)

This makes it possible to create a simple reject rule and use it in the filter () function.
Another way to wrap the logic is to create a 1ambda object:

filter (lambda item: not reject_date(item), data)

[685]

Functional and Reactive Programming Features

The lambda function is a small, anonymous function. It's a function that's been reduced to
just two elements: the parameter list and a single expression. We've wrapped the
reject_date () function to create a kind of not_reject_date function via the 1ambda
object.

In the itertools module, we use the filterfalse () function. We can import
filterfalse () and use this instead of the built-in filter () function.

See also...

e In the Using stacked generator expressions recipe, we placed a function like this in a
stack of generators. We built a composite function from a number of individual
mapping and filtering operations written as generator functions.

Summarizing a collection — how to reduce

In the introduction to this chapter, we noted that there are three common processing
patterns: map, filter, and reduce. We've seen examples of mapping in the Applying
transformations to a collection recipe, and examples of filtering in the Picking a subset — three
ways to filter recipe. It's relatively easy to see how these become very generic operations.

Mapping applies a simple function to all elements of a collection. {M(x): x € C} applies a
function, M, to each item, x, of a larger collection, C. In Python, it can look like this:

(M(x) for x in C)
Or, we can use the built-in map () function to remove the boilerplate and simplify it to this:
map (M, c)

Similarly, filtering uses a function to select elements from a collection. {x: x € C if F(x)} uses
a function, F, to determine whether to pass or reject an item, x, from a larger collection, C.
We can express this in a variety of ways in Python, one of which is like this:

filter(F, c)

[686]

Chapter 12

This applies a predicate function, F (), to a collection, c.

The third common pattern is reduction. In the Designing classes with lots of processing and
Extending a collection: a list that does statistics recipes, we looked at class definitions that
computed a number of statistical values. These definitions relied—almost exclusively—on
the built-in sum () function. This is one of the more common reductions.

Can we generalize summation in a way that allows us to write a number of different kinds
of reductions? How can we define the concept of reduction in a more general way?

Getting ready

One of the most common reductions is the sum. Other reductions include a product,
minimum, maximum, average, variance, and even a simple count of values.

Here's a way to think of the mathematical definition of the sum function, +, applied to
values in a collection, C:

Do =c+e o+ 4+,

c;eC

We've expanded the definition of sum by inserting the + operator into the sequence of
values, C=cy, ¢, ¢y, ..., ¢,. This idea of folding in the + operator captures the meaning of the
built-in sum () function.

Similarly, the definition of product looks like this:

[lc¢ =c,xexe,x...xc,

ceC

Here, too, we've performed a different fold on a sequence of values. Expanding a reduction
by folding involves two items: a binary operator and a base value. For sum, the operator
was + and the base value is zero. For product, the operator is x and the base value is one.

[687]

Functional and Reactive Programming Features

We could define a generic higher-level function, F, ,, that captures the ideal of a fold. The
fold function definition includes a placeholder for an operator, ¢, and a placeholder for a
base value, L. The function's value for a given collection, C, can be defined with this
recursive rule:

()= 1 if C=0
AT Ry 1) (Co) 0C, L if C 2 B

If the collection, C, is empty, the value is the base value, L. When defining sum (), the base
value would be zero. If C is not empty, then we'll first compute the fold of everything but
the last value in the collection, F, ,(C, ;). Then we'll apply the operator—for example,
addition—between the previous fold result and the final value in the collection, C, . For
sum (), the operator is +.

We've used the notation C, , in the Pythonic sense of an open-ended range. The values at
indices 0 to n-1 are included, but the value of index # is not included. This means that C, =
@: there are no elements in this range C, ,.

This definition is called a fold left operation because the net effect of this definition is to
perform the underlying operations from left to right in the collection. This could be
changed to also define a fold right operation. Since Python's reduce () function is a fold
left, we'll stick with that.

We'll define a prod () function that can be used to compute factorial values:

n!=Hx

1<x<n+1

The value of n factorial is the product of all of the numbers between 1 and # inclusive. Since
Python uses half-open ranges, it's a little more Pythonic to use or define a range using 1 < x
<n + 1. This definition fits the built-in range () function better.

Using the fold operator that we defined earlier, we have this. We've defined a fold (or
reduce) using an operator of multiplication, *, and a base value of one:

nl= [] x=F,(i:1<i<n+1)

1<x<n+l

[688 1]

Chapter 12

The idea of folding is the generic concept that underlies Python's concept of reduce (). We
can apply this to many algorithms, potentially simplifying the definition.

How to do it...

1. Import the reduce () function from the functools module:

>>> from functools import reduce

2. Pick the operator. For sum, it's +. For product, it's *. These can be defined in a
variety of ways. Here's the long version. Other ways to define the necessary
binary operator will be shown later:

>>> def mul(a, b):
return a * b

3. Pick the base value required. For sum, it's zero. For product, it's one. This allows
us to define a prod () function that computes a generic product:

>>> def prod(values):
return reduce (mul, values, 1)

4. For factorial, we need to define the sequence of values that will be reduced:
range (1, n+l)
Here's how this works with the prod () function:

>>> prod(range (1, 5+1))
120

Here's the whole factorial function:

>>> def factorial(n):
return prod(range(l, n+l))

Here's the number of ways that a 52-card deck can be arranged. This is the value 52!:

>>> factorial (52)
80658175170943878571660636856403766975289505440883277824000000000000

[689]

Functional and Reactive Programming Features

There are a lot of a ways a deck can be shuffled.

How many 5-card hands are possible? The binomial calculation uses factorial:

>>> factorial (52)// (factorial (5) *factorial (52-5))
2598960

For any given shuffle, there are about 2.6 million different possible poker hands. (And yes,
this is a terribly inefficient way to compute the binomial.)

How it works...

The reduce () function behaves as though it had this definition:

def reduce (function, iterable, base):
result = base
for item in iterable:
result = function(result, item)
return result

This will iterate through the values from left to right. It will apply the given binary function
between the previous set of values and the next item from the iterable collection.

When we look at the Recursive functions and Python's stack limits recipe, we can see that the
recursive definition of fold can be optimized to this for statement.

There's more...

When designing a reduce () function, we need to provide a binary operator. There are
three ways to define the necessary binary operator. We used a complete function definition
like this:

def mul (a, b):
return a * b

[690]

Chapter 12

There are two other choices. We can use a 1ambda object instead of a complete function:

>>> add
>>> mul

lambda a, b:

+
lambda a, b: *

= a b
= a b
A lambda function is an anonymous function boiled down to just two essential elements:

the parameters and the return expression. There are no statements inside a lambda, only a

single expression. In this case, the expression simply uses the desired operator.

We can use it like this:

>>> def prod2(values):
return reduce (lambda a, b: a*b, values, 1)

This provides the multiplication function as a 1ambda object without the overhead of a
separate function definition.

We can also import the definition from the operator module:

from operator import add, mul
This works nicely for all of the built-in arithmetic operators.

Note that logical reductions using the logic operators AND and OR are a little different
from other arithmetic reductions. These operators short-circuit: once the value is false, an
and-reduce can stop processing. Similarly, once the value is True, an or-reduce can stop
processing. The built-in functions any () and a1l () embody this nicely. The short-circuit
feature is difficult to capture using the built-in reduce ().

Maxima and minima

How can we use reduce () to compute a maximum or minimum? This is a little more
complex because there's no trivial base value that can be used. We cannot start with zero or
one because these values might be outside the range of values being minimized or
maximized.

Also, the built-in max () and min () must raise an exception for an empty sequence. These
functions can't fit perfectly with the way the sum () function and reduce () functions work.

We have to use something like this to provide the expected feature set:

def mymax (sequence) :
try:
base = sequence[0]
max_rule = lambda a, b: a if a > b else b

[691]

Functional and Reactive Programming Features

reduce (max_rule, sequence, base)
except IndexError:
raise ValueError

This function will pick the first value from the sequence as a base value. It creates a Lambda
object, named max_rule, which selects the larger of the two argument values. We can then
use this base value located in the data, and the 1ambda object. The reduce () function will
then locate the largest value in a non-empty collection. We've captured the IndexError
exception so that an empty collection will raise a ValueError exception.

This example shows how we can invent a more complex or sophisticated minimum or
maximum function that is still based on the built-in reduce () function. The advantage of
this is replacing the boilerplate for statement when reducing a collection to a single value.

Potential for abuse

Note that a fold (or reduce () asit's called in Python) can be abused, leading to poor
performance. We have to be cautious about simply using a reduce () function without
thinking carefully about what the resulting algorithm might look like. In particular, the
operator being folded into the collection should be a simple process such as adding or
multiplying. Using reduce () changes the complexity of an O(1) operation into O(n).

Imagine what would happen if the operator being applied during the reduction involved a
sort over a collection. A complex operator—with O(n log 1) complexity—being used in a
reduce () would change the complexity of the overall reduce () to O(n’ log 1).

Combining map and reduce transformations

In the other recipes in this chapter, we've been looking at map, filter, and reduce
operations. We've looked at each of these in isolation:

e The Applying transformations to a collection recipe shows the map () function
e The Picking a subset — three ways to filter recipe shows the filter () function
e The Summarizing a collection —how to reduce recipe shows the reduce () function

[692]

Chapter 12

Many algorithms will involve combinations of functions. We'll often use mapping, filtering,
and a reduction to produce a summary of available data. Additionally, we'll need to look at
a profound limitation of working with iterators and generator functions. Namely this
limitation:

An iterator can only produce values once.

If we create an iterator from a generator function and a collection data, the iterator will only
produce the data one time. After that, it will appear to be an empty sequence.

Here's an example:

>>> typical_iterator = iter ([0, 1, 2, 3, 4])
>>> sum(typical_iterator)

10

>>> sum(typical_iterator)

0

We created an iterator over a sequence of values by manually applying the iter ()
function to a literal list object. The first time that the sum () function used the value of
typical_iterator, it consumed all five values. The next time we tried to apply any
function to the typical_iterator, there will be no more values to be consumed - the
iterator appears empty.

This basic one-time-only restriction drives some of the design considerations when working
with multiple kinds of generator functions in conjunction with map, filter, and reduce.
We'll often need to cache intermediate results so that we can perform multiple reductions
on the data.

Getting ready

In the Using stacked generator expressions recipe, we looked at data that required a number of
processing steps. We merged rows with a generator function. We filtered some rows to
remove them from the resulting data. Additionally, we applied a number of mappings to
the data to convert dates and times to more useful information.

[693]

Functional and Reactive Programming Features

We'd like to supplement this with two more reductions to get some average and variance
information. These statistics will help us understand the data more fully.

We have a spreadsheet that is used to record fuel consumption on a large sailboat. It has
rows which look like this:

date engine on fuel height
engine off fuel height
Other notes

10/25/2013 08:24 29
13:15 27
calm seas - anchor solomon's island

10/26/2013 09:12 27
18:25 22
choppy - anchor in jackson's creek

The initial processing was a sequence of operations to change the organization of the data,
filter out the headings, and compute some useful values.

How to do it...

1. Start with the goal. In this case, we'd like a function we can use like this:

>>> round (sum_fuel (clean_data (row_merge (log_rows))), 3)
7.0

This shows a three-step pattern for this kind of processing. These three steps will
define our approach to creating the various parts of this reduction:

1. First, transform the data organization. This is sometimes called normalizing
the data. In this case, we'll use a function called row_merge (). See the Using
stacked generator expressions recipe for more information on this.

2. Second, use mapping and filtering to clean and enrich the data. This is
defined as a single function, clean_data ().

[694]

Chapter 12

3. Finally, reduce the data to a sum with sum_fuel (). There are a variety of
other reductions that make sense. We might compute averages, or sums of
other values. There are a lot of reductions we might want to apply.

2. If needed, define the data structure normalization function. This almost always
has to be a generator function. A structural change can't be applied via map () :

from ch08_r02 import row_merge

As shown in the Using stacked generator expressions recipe, this generator function
will restructure the data from three rows per each leg of the voyage to one row
per leg. When all of the columns are in a single row, the data is much easier to
work with.

3. Define the overall data cleansing and enrichment data function. This is a
generator function that's built from simpler functions. It's a stack of map () and
filter () operations that will derive data from the source fields:

def clean_data (source) :
namespace_iter = map (make_namespace, source)
fitered_source = filter (remove_date, namespace_iter)
start_iter = map(start_datetime, fitered_source)
end_iter = map (end_datetime, start_iter)
delta_iter = map(duration, end_iter)
fuel_iter = map (fuel_use, delta_iter)
per_hour_iter = map (fuel_per_hour, fuel_iter)
return per_hour_iter

Each of themap () and filter () operations involves a small function to do a
single conversion or computation on the data.

4. Define the individual functions that are used for cleansing and deriving
additional data.

5. Convert the merged rows of data into a SimpleNamespace. This will allow us to
use names such as start_time instead of row[1]:

from types import SimpleNamespace
def make_namespace (row) :
ns = SimpleNamespace (

date = row[0],
start_time = rowl[1l],
start_fuel_height = row[2],
end_time = row[4]
end_fuel_height = row[5],
other_notes = row[7]

14

[695]

Functional and Reactive Programming Features

)

return ns

This function builds a SimpleNamspace from selected columns of the source
data. Columns three and six were omitted because they were always zero-length
strings, ' '.

6. Here's the function used by the filter () to remove the heading rows. If
needed, this can be expanded to remove blank lines or other bad data from the
source. The idea is to remove bad data as soon as possible in the processing:

def remove_date (row_ns) :
return not (row_ns.date == 'date')

7. Convert data to a usable form. First, we'll convert strings to dates. The next two
functions depend on this t imestamp () function that converts a date string from
one column plus a time string from another column into a proper datetime
instance:

import datetime
def timestamp (date_text, time_text):
date = datetime.datetime.strptime (date_text, "%m/%d/%y") .date()
time = datetime.datetime.strptime (time_text, "$I:%M:%S
Sp") .time ()
timestamp = datetime.datetime.combine (date, time)
return timestamp

This allows us to do simple date calculations based on the datet ime library. In
particular, subtracting two timestamps will create a t imedelta object that has
the exact number of seconds between any two dates.

Here's how we'll use this function to create a proper timestamp for the start of the
leg and the end of the leg:

def start_datetime (row_ns) :
row_ns.start_timestamp = timestamp (row_ns.date,
row_ns.start_time)
return row_ns

def end_datetime (row_ns) :
row_ns.end_timestamp = timestamp (row_ns.date, row_ns.end_time)
return row_ns

[696]

Chapter 12

Both of these functions will add a new attribute to the SimpleNamespace and
also return the namespace object. This allows these functions to be used in a stack
of map () operations. We can also rewrite these functions to replace the mutable
SimpleNamespace with an immutable namedtuple () and still preserve the
stack of map () operations.

. Compute derived time data. In this case, we can compute a duration too. Here's a

function which must be performed after the previous two:

def duration (row_ns):
travel_time = row_ns.end_timestamp - row_ns.start_timestamp
row_ns.travel_hours = round(travel_time.total_seconds()/60/60,

return row_ns

This will convert the difference in seconds into a value in hours. It will also round
to the nearest tenth of an hour. Any more accuracy than this is largely noise. The
departure and arrival times are (generally) off by at least a minute; they depend
on when the skipper remembered to look at her watch. In some cases, she may
have estimated the time.

9. Compute other metrics that are needed for the analyses. This includes creating

the height values that are converted to float numbers. The final calculation is
based on two other calculated results:

def fuel_use (row_ns) :
end_height = float (row_ns.end_fuel_height)
start_height = float (row_ns.start_fuel_height)
row_ns.fuel_change = start_height - end_height
return row_ns

def fuel_per_hour (row_ns):
row_ns.fuel_per_hour = row_ns.fuel_change/row_ns.travel_hours
return row_ns

The fuel per hour calculation depends on the entire preceding stack of
calculations. The travel hours comes from the start and end timestamps which are
computed separately.

[697]

Functional and Reactive Programming Features

How it works...

The idea is to create a composite operation that follows a common template:

1. Normalize the structure: This often requires a generator function to read data in
one structure and yield data in a different structure.

2. Filter and cleanse: This may involve a simple filter as shown in this example.
We'll look at more complex filters later.

3. Derive data via mappings or via lazy properties of class definitions: A class with
lazy properties is a reactive object. Any change to the source property should
cause changes to the computed properties.

In some cases, we may want to combine the basic facts with other dimensional descriptions.
For example, we might need to look up reference data, or decode coded fields.

Once we've done the preliminary steps, we have data which is usable for a variety of
analyses. Many times, this is a reduce operation. The initial example computes a sum of
fuel use. Here are two other examples:

from statistics import *
def avg_fuel_per_hour (iterable) :

return mean (row.fuel_per_hour for row in iterable)
def stdev_fuel_per_hour (iterable) :

return stdev (row.fuel_per_hour for row in iterable)

These functions apply the mean () and stdev () functions to the fuel_per_hour attribute
of each row of the enriched data.

We might use this as follows:

>>> round (avg_fuel_per_ hour (

. clean_data (row_merge (log_rows))), 3)
0.48

We've used the clean_data (row_merge (log_rows)) mapping pipeline to cleanse and

enrich the raw data. Then we applied a reduction to this data to get the value we're

interested in.

We now know that our 30" tall tank is good for about 60 hours of motoring. At 6 knots, we
can go about 360 nautical miles on a full tank of fuel.

[698]

Chapter 12

There's more...

As we noted, we can only perform one reduction on an iterable source of data. If we want
to compute several averages, or the average and the variance, we'll need to use a slightly
different pattern.

In order to compute multiple summaries of the data, we'll need to create a sequence object
of some kind that can be summarized repeatedly:

data = tuple(clean_data (row_merge (log_rows)))

m = avg_fuel_per_hour (data)

s = 2*stdev_fuel_per_hour (data)

print ("Fuel use {m:.2f} *{s:.2f}".format (m=m, s=s))

Here, we've created a tuple from the cleaned and enriched data. This tuple will produce
an iterable, but unlike a generator function, it can produce this iterable many times. We can
compute two summaries by using the tuple object.

This design involves a large number of transformations of source data. We've built it using
a stack of map, filter, and reduce operations. This provides a great deal of flexibility.

The alternative approach is to create a class definition. A class can be designed with lazy
properties. This would create a kind of reactive design embodied in a single block of code.
See the Using properties for lazy attributes recipe for examples of this.

We can also use the tee () function in the itertools module for this kind of processing:

from itertools import tee

datal, data2 = tee(clean_data(row_merge (log_rows)), 2)
m = avg_fuel_per_hour (datal)

s = 2*stdev_fuel_per_hour (data2)

We've used tee () to create two clones of the iterable output from
clean_data (row_merge (log_rows)). We can use these two clones to compute a mean
and a standard deviation.

See also

e We looked at how to combine mapping and filtering in the Using stacked generator
expressions recipe.

e We looked at lazy properties in the Using properties for lazy attributes recipe. Also,
this recipe looks at some important variations on map-reduce processing.

[699]

Functional and Reactive Programming Features

Implementing "there exists" processing

The processing patterns we've been looking at can all be summarized with the quantifier for
all. It's been an implicit part of all of the processing definitions:

e Map: For all items in the source, apply the map function. We can use the
quantifier to make this explicit: {M(x) ¥V x: x € C}

e Filter: For all items in the source, pass those for which the filter function is t rue.
Here also, we've used the quantifier to make this explicit. We want all values, x,
from a set, C, if some function, F(x), is t rue: {x V x: x € C if F(x)}

¢ Reduce: For all items in the source, use the given operator and base value to
compute a summary. The rule for this is a recursion that clearly works for all

) {J_ if C=0

E),L (CO,,n = N
values of the source collection or iterable: Fo, (CO"H) 0C,.,if C 20 .

We've used the notation C, , in the Pythonic sense of an open-ended range. Values with
index positions of 0 and n-1 are included, but the value at index position 7 is not included.
This means that there are no elements in this range.

What's more important is that C, ;U C, ;= C. That is, when we take the last item from the
range, no items are lost—we're always processing all the items in the collection. Also, we
aren't processing item C, ; twice. It's not part of the C, ,, range, but it is a standalone item
C,s

How can we write a process using generator functions that stops when the first value
matches some predicate? How do we avoid for all and quantify our logic with there exists?

Getting ready

There's another quantifier that we might need—there exists, 3. Let's look at an example of an
existence test.

We might want to know whether a number is prime or composite. We don't need all of the
factors of a number to know it's not prime. It's sufficient to show that a factor exists to know
that a number is not prime.

[700]

Chapter 12

We can define a prime predicate, P(n), like this:
Pn)=-3i2<i<nifnmodi=0

A number, 1, is prime if there does not exist a value of i (between 2 and the number) that
divides the number evenly. We can move the negation around and rephrase this as follows:

aP(n)=3i2<i<nifnmodi=0

A number, 1, is composite (non-prime) if there exists a value, i, between 2 and the number
itself, that divides the number evenly. We don't need to know all such values. The existence
of one value that satisfies the predicate is sufficient.

Once we've found such a number, we can break early from any iteration. This requires the
break statement inside for and if statements. Because we're not processing all values, we
can't easily use a higher-order function such asmap (), filter (), or reduce ().

How to do it...

1. Define a generator function template that will skip items until the required one is
found. This will yield only one value that passes the predicate test:

def find_first (predicate, iterable):
for item in iterable:
if predicate(item) :
yield item
break

2. Define a predicate function. For our purposes, a simple 1lambda object will do.
Also, a lambda allows us to work with a variable bound to the iteration and a
variable that's free from the iteration. Here's the expression:

oe

lambda i: n i ==0

We're relying on a non-local value, n, in this lambda. This will be global to the
lambda, but still local to the overall function. If n % i is 0, then i is a factor of n,
and n is not prime.

[701]

Functional and Reactive Programming Features

3. Apply the function with the given range and predicate:

import math
def prime(n):

factors = find_first(

lambda i: n % 1 == 0,

range (2, int (math.sgrt(n)+1)))
return len(list (factors)) == 0

If the factors iterable has an item, then n is composite. Otherwise, there are no
values in the factors iterable, which means n is a prime number.

As a practical matter, we don't need to test every single number between two and
n to see whether n is prime. It's only necessary to test values, i, such that 2 <i<

Vn.

How it works...

In the find_first () function, we introduce a break statement to stop processing the
source iterable. When the for statement stops, the generator will reach the end of the
function, and return normally.

The process which is consuming values from this generator will be given the
StopIteration exception. This exception means the generator will produce no more
values. The find_first () function raises as an exception, but it's not an error. It's the
normal way to signal that an iterable has finished processing the input values.

In this case, the signal means one of two things:

e If a value has been yielded, the value is a factor of n
e If no value was yielded, then n is prime

This small change of breaking early from the for statement makes a dramatic difference in
the meaning of the generator function. Instead of processing all values from the source, the
find_first () generator will stop processing as soon as the predicate is true.

This is different from a filter, where all of the source values will be consumed. When using
the break statement to leave the for statement early, some of the source values may not be
processed.

[702]

Chapter 12

There's more...

In the itertools module, there is an alternative to this find_first () function. The
takewhile () function uses a predicate function to keep taking values from the input.
When the predicate becomes false, then the function stops processing values.

We can easily change the lambda from lambda i: n % i == Otolambda i: n % i !=
0. This will allow the function to take values while they are not factors. Any value that is a
factor will stop the processing by ending the takewhile () process.

Let's look at two examples. We'll test 13 for being prime. We need to check numbers in the
range. We'll also test 15 for being prime:

>>> from itertools import takewhile
>>> n = 13

>>> list (takewhile(lambda i: n % i != 0, range(2, 4)))
[2, 3]

>>> n = 15

>>> list (takewhile(lambda i: n % i != 0, range(2, 4)))

[2]

For a prime number, all of the test values pass the takewhile () predicate. The resultis a
list of non-factors of the given number, n. If the set of non-factors is the same as the set of
values being tested, then n is prime. In the case of 13, both collections of values are [2, 3].

For a composite number, some values pass the takewhile () predicate. In this example, 2
is not a factor of 15. However, 3 is a factor; this does not pass the predicate. The collection
of non-factors, [2], is not the same as the set of values collection that was tested, [2, 3].

We wind up with a function that looks like this:

def prime_t (n):

tests = set (range (2, int (math.sqgrt(n)+1)))
non_factors = set (
takewhile (
lambda i: n % 1 != 0,
tests
)
)
return tests == non_factors

[703]

Functional and Reactive Programming Features

This creates two intermediate set objects, tests and non_factors. If all of the tested
values are not factors, the number is prime. The function shown previously, based on
find_first () only creates one intermediate list object. That list will have at most one
member, making the data structure much smaller.

The itertools module

There are a number of additional functions in the itertools module that we can use to
simplify complex map-reduce applications:

e filterfalse ():Itis the companion to the built-in filter () function. It inverts
the predicate logic of the filter () function; it rejects items for which the
predicate is true.

e zip_longest (): Itis the companion to the built-in zip () function. The built-in
zip () function stops merging items when the shortest iterable is exhausted. The
zip_longest () function will supply a given fill value to pad short iterables to
match the longest.

e starmap () : It is a modification to the essential map () algorithm. When we
perform map (function, iterl, iter2),then anitem from each iterable is
provided as two positional arguments to the given function. The starmap ()
expects an iterable to provide a tuple that contains the argument values. In effect:

map = starmap (function, zip(iterl, iter2))
There are still others that we might use, too:

e accumulate (): This function is a variation on the built-in sum () function. This
will yield each partial total that's produced before reaching the final sum.

chain () : This function will combine iterables in order.

e compress (): This function uses one iterable as a source of data and the other as
a source of selectors. When the item from the selector is true, the corresponding
data item is passed. Otherwise, the data item is rejected. This is an item-by-item
filter based on true-false values.

e dropwhile (): While the predicate to this function is t rue, it will reject values.
Once the predicate becomes false, it will pass all remaining values. See
takewhile ().

® groupby () : This function uses a key function to control the definition of groups.
Items with the same key value are grouped into separate iterators. For the results
to be useful, the original data should be sorted into order by the keys.

[704]

Chapter 12

e islice (): This function is like a slice expression, except it applies to an iterable,
not a list. Where we use 1ist [1:] to discard the first row of a list, we can use
islice (iterable, 1) to discard the firstitem from an iterable.

e takewhile (): While the predicate is t rue, this function will pass values. Once
the predicate becomes false, stop processing any remaining values. See
dropwhile ().

e tee (): This splits a single iterable into a number of clones. Each clone can then
be consumed separately. This is a way to perform multiple reductions on a single
iterable source of data.

Creating a partial function

When we look at functions such as reduce (), sorted (), min (), and max (), we see that
we'll often have some permanent argument values. For example, we might find a need to
write something like this in several places:

reduce (operator.mul, ..., 1)

Of the three parameters to reduce (), only one - the iterable to process - actually changes.
The operator and the base value arguments are essentially fixed at operator.mul and 1.

Clearly, we can define a whole new function for this:

def prod(iterable):
return reduce (operator.mul, iterable, 1)

However, Python has a few ways to simplify this pattern so that we don't have to repeat the
boilerplate def and return statements.

How can we define a function that has some parameters provided in advance?

Note that the goal here is different from providing default values. A partial function doesn't
provide a way to override the defaults. Instead, we want to create as many partial functions
as we need, each with specific parameters bound in advance.

[705]

Functional and Reactive Programming Features

Getting ready

Some statistical modeling is done with standard scores, sometimes called z-scores. The idea
is to standardize a raw measurement onto a value that can be easily compared to a normal
distribution, and easily compared to related numbers that are measured in different units.

The calculation is this:
z=(x-uw)lo

Here, x is the raw value, p is the population mean, and o is the population standard
deviation. The value z will have a mean of 0 and a standard deviation of 1. This makes it
particularly easy to work with.

We can use this value to spot outliers - values which are suspiciously far from the mean.
We expect that (about) 99.7% of our z values will be between -3 and +3.

We could define a function like this:

def standarize (mean, stdev, x):
return (x-mean)/stdev

This standardize () function will compute a z-score from a raw score, x. This function has
two kinds of parameters:

e The values for mean and stdev are essentially fixed. Once we've computed the
population values, we'll have to provide them to the standardize () function
over and over again.

¢ The value for x is more variable.

Let's say we've got a collection of data samples in big blocks of text:

text_1 = '"'"'10 8.04
8 6.95
13 7.58
5 5.68

[706]

Chapter 12

We've defined two small functions to convert this data to pairs of numbers. The first simply
breaks each block of text to a sequence of lines, and then breaks each line into a pair of text
items:

text_parse = lambda text: (r.split() for r in text.splitlines())

We've used the splitlines () method of the text block to create a sequence of lines. We
put this into a generator function so that each individual line could be assigned to r. Using
r.split () separates the two blocks of text in each row.

If we use 1ist (text_parse (text_1)), we'll see data like this:

[(r1o0', 's8.04'y],
['g¢', '6.95'7],
[*13*, '7.58'],

['5", '5.68']]

We need to further enrich this data to make it more usable. We need to convert the strings
to proper float values. While doing that, we'll create SimpleNamespace instances from
each item:

from types import SimpleNamespace
row_build = lambda rows: (SimpleNamespace (x=float (x), y=float (y)) for
X,y 1in rows)

The 1ambda object creates a SimpleNamespace instance by applying the float () function
to each string item in each row. This gives us data we can work with.

We can apply these two 1ambda objects to the data to create some usable datasets. Earlier,
we showed text_1. We'll assume that we have a second, similar set of data assigned to
text_2:

data_1 = list(row_build(text_parse (text_1)))
data_2 = list (row_build(text_parse (text_2)))

This creates data from two blocks of similar text. Each has pairs of data points. The
SimpleNamespace object has two attributes, x and y, assigned to each row of the data.

Note that this process creates instances of types. SimpleNamespace. When we print them,
they will be displayed using the class namespace. These are mutable objects, so that we can
update each one with the standardized z-score.

[707]

Functional and Reactive Programming Features

Printing data_1 looks like this:

[namespace (x=10.0, y=8.04), namespace (x=8.0, y=6.95),
namespace (x=13.0, y=7.58),
L4

namespace (x=5.0, y=5.68)]

As an example, we'll compute a standardized value for the x attribute. This means getting
mean and standard deviation. Then we'll need to apply these values to standardize data in
both of our collections. It looks like this:

import statistics
mean_x = statistics.mean(item.x for item in data_1)
stdev_x = statistics.stdev(item.x for item in data_l1)

for row in data_1:
z_x = standardize (mean_x, stdev_x, row.x)
print (row, z_x)

for row in data_2:
z_x = standardize (mean_x, stdev_x, row.x)
print (row, z_x)

Providing the mean_v1, stdev_v1 values each time we evaluate standardize () can
clutter an algorithm with details that aren't deeply important. In some rather complex
algorithms, the clutter can lead to more confusion than clarity.

How to do it...

In addition to simply using the de £ statement to create a function that has a partial set of
argument values, we have two other ways to create a partial function:

e Using the partial () function from the functools module
¢ Creating a 1ambda object

[708]

Chapter 12

Using functools.partial()
1. Import the partial function from functools:

from functools import partial

2. Create an object using partial (). We provide the base function, plus the
positional arguments that need to be included. Any parameters which are not
supplied when the partial is defined must be supplied when the partial is
evaluated:

z = partial (standardize, mean_x, stdev_x)

3. We've provided values for the first two positional parameters, mean and stdev.
The third positional parameter, x, must be supplied in order to compute a value.

Creating a lambda object
1. Define a 1ambda object that binds the fixed parameters:
lambda x: standardize (mean_vl, stdev_vil, x)
2. Create an object using lambda:

z = lambda x: standardize (mean_vl, stdev_vl, Xx)

How it works...

Both techniques create a callable object - a function - named z () that has the values for
mean_v1 and stdev_v1 already bound to the first two positional parameters. With either
approach, we have processing that can look like this:

for row in data_1:
print (row, z(row.x))

for row in data_2:
print (row, z(row.x))

We've applied the z () function to each set of data. Because the function has some
parameters already applied, its use here looks very simple.

[709]

Functional and Reactive Programming Features

We can also do the following because each row is a mutable object:

for row in data_1:
row.z = z(row.vl)

for row in data_2:
row.z = z(row.vl)

We've updated the row to include a new attribute, z, with the value of the z () function. In
a complex algorithm, tweaking the row objects like this may be a helpful simplification.

There's a significant difference between the two techniques for creating the z () function:

e The partial () function binds the actual values of the parameters. Any
subsequent change to the variables that were used doesn't change the definition
of the partial function that's created. After creating z =
partial (standardize (mean_v1, stdev_v1l)), changing the value of
mean_v1 or stdev_v1 doesn't have an impact on the partial function, z ().

¢ The lambda object binds the variable name, not the value. Any subsequent
change to the variable's value will change the way the lambda behaves. After
Creating z = lambda x: standardize (mean_vl, stdev_vil, x), Changing
the value of mean_v1 or stdev_v1 changes the values used by the 1ambda
object, z ().

We can modify the lambda slightly to bind values instead of names:
z = lambda x, m=mean_vl, s=stdev_vl: standardize(m, s, Xx)

This extracts the values of mean_v1 and stdev_v1 to create default values for the 1ambda
object. The values of mean_v1 and stdev_v1 are now irrelevant to proper operation of the
lambda object, z ().

There's more...

We can provide keyword argument values as well as positional argument values when
creating a partial function. In many cases, this works nicely. There are a few cases where it
doesn't work.

[710]

Chapter 12

The reduce () function, specifically, can't be trivially turned into a partial function. The
parameters aren't in the ideal order for creating a partial. The reduce () function has the

following notional definition. This is not how it's defined - this is how it appears to be
defined:

def reduce (function, iterable, initializer=None)

If this was the actual definition, we could do this:
prod = partial (reduce (mul, initializer=1))

Practically, we can't do this because the definition of reduce () is a bit more complex than
it might appear. The reduce () function doesn't permit named argument values. This
means that we're forced to use the lambda technique:

>>> from operator import mul
>>> from functools import reduce
>>> prod = lambda x: reduce(mul, x, 1)

We've used a 1ambda object to define a function, prod (), with only one parameter. This
function uses reduce () with two fixed parameters, and one variable parameter.

Given this definition for prod (), we can define other functions that rely on computing
products. Here's a definition of the factorial function:

>>> factorial = lambda x: prod(range(2,x+1))
>>> factorial (5)
120

The definition of factorial () depends on prod (). The definition of prod () is a kind of
partial function that uses reduce () with two fixed parameter values. We've managed to
use a few definitions to create a fairly sophisticated function.

In Python, a function is an object. We've seen numerous ways that functions can be an
argument to a function. A function that accepts another function as an argument is
sometimes called a higher-order function.

Similarly, functions can also return a function object as a result. This means that we can
create a function like this:

def prepare_z (data):
mean_x = statistics.mean(item.x for item in data_1l)
stdev_x = statistics.stdev(item.x for item in data_1l)
return partial (standardize, mean_x, stdev_x)

[711]

Functional and Reactive Programming Features

We've defined a function over a set of (x,y) samples. We've computed the mean and
standard deviation of the x attribute of each sample. We've then created a partial function
which can standardize scores based on the computed statistics. The result of this function is
a function we can use for data analysis:

z = prepare_z (data_1)
for row in data_2:
print (row, z(row.x))

When we evaluated the prepare_z () function, it returned a function. We assigned this
function to a variable, z. This variable is a callable object; it's the function z () that will
standardize a score based on the sample mean and standard deviation.

Simplifying complex algorithms with
immutable data structures

The concept of a stateful object is a common feature of object-oriented programming. We
looked at a number of techniques related to objects and state in Chapter 6, Basics of Classes
and Objects, and Chapter 7, More Advanced Class Design. A great deal of the emphasis of
object-oriented design is creating methods that mutate an object's state.

We've also looked at some stateful functional programming techniques in the Using stacked
generator expressions, Combining map and reduce transformations, and Creating a partial function
recipes. We've used types.SimpleNamespace because it creates a simple, stateful object
with easy to use attribute names.

In most of these cases, we've been working with objects that have a Python dict object that
defines the attributes. The one exception is the Optimizing small objects with __slots__ recipe,
where the attributes are fixed by the __slots__ attribute definition.

Using a dict object to store an object's attributes has several consequences:

e We can trivially add and remove attributes. We're not limited to simply setting
and getting defined attributes; we can create new attributes too.

¢ Each object uses a somewhat larger amount of memory than is minimally
necessary. This is because dictionaries use a hashing algorithm to locate keys and
values. The hash processing generally requires more memory than other
structures such asa 1ist or a tuple. For very large amounts of data, this can
become a problem.

[712]

Chapter 12

The most significant issue with stateful object-oriented programming is that it can
sometimes be challenging to write clear assertions about state change of an object. Rather
than defining assertions about state change, it's much easier to create entirely new objects
with a state that can be simply mapped to the object's type. This, coupled with Python type
hints, can sometimes create more reliable, and easier to test, software.

When we create new objects, the relationships between data items and computations can be
captured explicitly. The mypy project provides tools that can analyze those type hints to
provide some confirmation that the objects used in a complex algorithm are used properly.

In some cases, we can also reduce the amount of memory by avoiding stateful objects in the
first place. We have two techniques for doing this:

¢ Using class definitions with __slots__: See the Optimizing small objects with
__slots__ recipe for this. These objects are mutable, so we can update attributes
with new values.

e Using immutable tuples or namedtuples: See the Designing classes with little
unique processing recipe for some background on this. These objects are
immutable. We can create new objects, but we can't change the state of an object.
The cost savings from less memory overall have to be balanced against the
additional costs of creating new objects.

Immutable objects can be somewhat faster that mutable objects. The more important benefit
is to algorithm design. In some cases, writing functions that create new immutable objects
from old immutable objects can be simpler, and easier to test and debug, than algorithms
that work with stateful objects. Writing type hints can help this process.

Getting ready

As we noted in the Using stacked generator expressions and Implementing “there exists”
processing recipes, we can only process a generator once. If we need to process it more than
one time, the iterable sequence of objects must be transformed into a complete collection
like a list or tuple.

[713]

Functional and Reactive Programming Features

This often leads to a multi-phase process:

e Initial extract of the data: This might involve a database query, or reading a
.csv file. This phase can be implemented as a function that yields rows or even
returns a generator function.

¢ Cleansing and filtering the data: This may involve a stack of generator
expressions that can process the source just once. This phase is often
implemented as a function that includes several map and filter operations.

¢ Enriching the data: This, too, may involve a stack of generator expressions that
can process the data one row at a time. This is typically a series of map
operations to create new, derived data from existing data.

¢ Reducing or summarizing the data: This may involve multiple summaries. In
order for this to work, the output from the enrichment phase needs to be a
collection object that can be processed more than one time.

In some cases, the enrichment and summary processes may be interleaved. As we saw in
the Creating a partial function recipe, we might do some summarization followed by more
enrichment.

There are two common strategies for handling the enriching phase:

e Mutable objects: This means that enrichment processing adds or sets values of
attributes. This can be done with eager calculations as attributes are set. See the
Using settable properties to update eager attributes recipe. It can also be done with
lazy properties. See the Using properties for lazy attributes recipe. We've shown
examples using types.SimpleNamespace where the computation is done in
functions separate from the class definition.

e Immutable objects: This means that the enrichment process creates new objects
from old objects. Immutable objects are derived from tuple or are a type created
by namedtuple (). These objects have the advantage of being very small and
very fast. Also, the lack of any internal state change can make them very simple.

Let's say we've got a collection of data samples in big blocks of text:

text_1 = '"'"'10 8.04
8 6.95
13 7.58
5 5.68

[714]

Chapter 12

Our goal is a three-step process that includes the get, cleanse, and enrich operations:

data = list (enrich(cleanse (get (text))))

The get () function acquires the data from a source; in this case, it would parse the big
block of text. The cleanse () function would remove blank lines and other unusable data.
The enrich () function would do the final calculation on the cleaned data. We'll look at
each phase of this pipeline separately.

The get () function is limited to pure text processing, doing as little filtering as possible:
from typing import *

def get (text: str) —-> Iterator[List([str]]:
for line in text.splitlines():
if len(line) ==
continue
yield line.split ()

In order to write type hints, we've imported the t yping module. This allows us to make an
explicit declaration about the inputs and outputs of this function. The get () function
accepts a string, str. It yields a List [str] structure. Each line of input is decomposed to a
sequence of values.

This function will generate all non-empty lines of data. There is a small filtering feature to
this, but it's related to a small technical issue around data serialization, not an application-
specific filtering rule.

The cleanse () function will generate named tuples of data. This will apply a number of
rules to assure that the data is valid:

from collections import namedtuple
DataPair = namedtuple ('DataPair', ['x', 'v'])

def cleanse(iterable: Iterable[List[str]]) -> Iterator[DataPair]:
for text_items in iterable:

try:
x_amount = float (text_items[0])
y_amount = float (text_items[1])
yield DataPair (x_amount, y_amount)

except Exception as ex:
print (ex, repr (text_items))

[715]

Functional and Reactive Programming Features

We've defined a namedtuple with the uninformative name of DataPair. This item has two
attributes, x, and y. If the two text values can be properly converted to f1oat, then this
generator will yield a useful DataPair instance. If the two text values cannot be converted,
this will display an error for the offending pair.

Note the technical subtlety that's part of the mypy project's type hints. A function with a
yield statement is an iterator. We can use it as if it's an iterable object because of a formal
relationship that says iterators are a kind of iterable.

Additional cleansing rules could be applied here. For example, assert statements could be
added inside the try statement. Any exception raised by unexpected or invalid data will
stop processing the given row of input.

Here's the result of this initial cleanse () and get () processing:

list (cleanse (get (text)))

The output looks like this:

[DataPair (x=10.0, y=8.04),

DataPair (x=8.0, y=6.95),

DataPair (x=13.0, y=7.58),
.7

DataPair (x=5.0, y=5.68)]

In this example, we'll rank order by the y value of each pair. This requires sorting the data
first, and then yielding the sorted values with an additional attribute value, the y rank
order.

How to do it...

1. Define the enriched namedtuple:
RankYDataPair = namedtuple ('RankYDataPair', ['y_rank', 'pair'])

Note that we've specifically included the original pair as a data item in this new
data structure. We don't want to copy the individual fields; instead, we've
incorporated the original object as a whole.

2. Define the enrichment function:

PairIter = Iterable[DataPair]
RankPairIter = Iterator[RankYDataPair]

def rank_by_y (iterable:PairIter) -> RankPairIter:

[716]

Chapter 12

We've included type hints on this function to make it clear precisely what types
are expected and returned by this enrichment function. We defined the type hints
separately so that they're shorter and so that they can be reused in other
functions.

3. Write the body of the enrichment. In this case, we're going to be rank ordering, so
we'll need sorted data, using the original y attribute. We're creating new objects
from the old objects, so the function yields instances of RankYDataPair:

all_data = sorted(iterable, key=lambda pair:pair.y)
for y_rank, pair in enumerate (all_data, start=1):
yield RankYDataPair (y_rank, pair)

We've used enumerate () to create the rank order numbers to each value. The
starting value of 1 is sometimes handy for some statistical processing. In other
cases, the default starting value of 0 will work out well.

Here's the whole function:

def rank_by_y(iterable: PairIter) -> RankPairIter:
all_data = sorted(iterable, key=lambda pair:pair.y)
for y_rank, pair in enumerate (all_data, start=1l):
yield RankYDataPair (y_rank, pair)

We can use this in a longer expression to get, cleanse, and then rank. The use of type hints
can make this clearer than an alternative involving stateful objects. In some cases, there can
be a very helpful improvement in the clarity of the code.

How it works...

The result of the rank_by_y () function is a new object which contains the original object,
plus the result of the enrichment. Here's how we'd use this stacked sequence of generators:
rank_by_y (), cleanse (), and get ():

>>> data = rank_by_y(cleanse(get (text_1)))

>>> pprint (list (data))

[RankYDataPair (y_rank=1, pair=DataPair(x=4.0, y=4.26)),
RankYDataPair (y_rank=2, pair=DataPair(x=7.0, y=4.82)),
RankYDataPair (y_rank=3, pair=DataPair(x=5.0, y=5.68)),

.7

RankYDataPair (y_rank=11, pair=DataPair(x=12.0, y=10.84))]

[717]

Functional and Reactive Programming Features

The data is in ascending order by the y value. We can now use these enriched data values
for further analysis and calculation.

Creating new objects can - in many cases - be more expressive of the algorithm than
changing the state of objects. This is often a subjective judgement.

The Python type hints work best with the creation of new objects. Consequently, this
technique can provide strong evidence that a complex algorithm is correct. Using mypy
makes immutable objects more appealing.

Finally, we may sometimes see a small speed-up when we use immutable objects. This
relies on a balance between three features of Python to be effective:

e Tuples are small data structures. Using these can improve performance.

¢ Any relationship between objects in Python involves creating an object reference,
a data structure that's also very small. A number of related immutable objects
might be smaller than a mutable object.

e Object creation can be costly. Creating too many immutable objects outweighs
the benefits.

The memory savings from the first two features must be balanced against the processing
cost from the third feature. Memory savings can lead to better performance when there's a
huge volume of data that constrains processing speeds.

For small examples like this one, the volume of data is so tiny that the object creation cost is
large compared with any cost savings from reducing the volume of memory in use. For
larger sets of data, the object creation cost may be less than the cost of running low on
memory.

There's more...

The get () and cleanse () functions in this recipe both refer to a similar data structure:
Iterable[List[str]] and Iterator[List[str]].Inthe collections.abc module,
we see that Iterable is the generic definition, and Iterator is a special case of
Iterable.

The mypy release used for this book—mypy 0.2.0-dev—is very particular about functions
with the yield statement being defined as an Iterator. A future release may relax this
strict check of the subclass relationship, allowing us to use one definition for both cases.

[718]

Chapter 12

The typing module includes an alternative to the namedtuple () function:
NamedTuple (). This allows specification of a data type for the various items within the
tuple.

It looks like this:
DataPair = NamedTuple ('DataPair', [
('x', float),
('y', float)

)

We use typing.NamedTuple () almost exactly the same way we use
collection.namedtuple (). The definition of the attributes uses a list of two-tuples
instead of a list of names. The two-tuples have a name and a type definition.

This supplemental type definition is used by mypy to determine whether the NamedTuple
objects are being populated correctly. It can also be used by other people to understand the
code and make proper modifications or extensions.

In Python, we can replace some stateful objects with immutable objects. There are a number
of limitations, though. The collections such as list, set, and dict, must remain as mutable
objects. Replacing these collections with immutable monads can work out well in other
programming languages, but it's not a part of Python.

Writing recursive generator functions with
the yield from statement

There are a number of algorithms that can be expressed neatly as recursions. In the
Designing recursive functions around Python's stack limits recipe, we looked at some recursive
functions that could be optimized to reduce the number of function calls.

When we look at some data structures, we see that they involve recursion. In particular,
JSON documents (as well as XML and HTML documents) can have a recursive structure. A
JSON document might include a complex object that contains other complex objects within
it.

In many cases, there are advantages to using generators for processing these kinds of
structures. How can we write generators that work with recursion? How does the yield
from statement save us from writing an extra loop?

[719]

Functional and Reactive Programming Features

Getting ready

We'll look at a way to search an ordered collection for all matching values in a complex
data structure. When working with complex JSON documents, we'll often model them as
dict-of-dict, and dict-of-list structures. Of course, a JSON document is not a two-level thing;
dict-of-dict really means dict-of-dict-of.... Similarly, dict-of-list really means dict-of-list-of...
These are recursive structures, which means a search must descend through the entire
structure looking for a particular key or value.

A document with this complex structure might look like this:

document = {
"field": "valuel",
"field2": "value",
"array": [
{"array_item_keyl": "value"},
{"array_item_key2": "array_item_value2"}
J 14
"object": {
"attributel": "value",
"attribute2": "value2"

}

This shows a document that has four keys, field, field2, array, and object. Each of
these keys has a distinct data structure as its associated value. Some of the values are
unique, and some are duplicated. This duplication is the reason why our search must find
all instances inside the overall document.

The core algorithm is a depth-first search. The output from this function will be a list of
paths that identify the target value. Each path will be a sequence of field names or field
names mixed with index positions.

In the previous example, the value value can be found in three places:

e ["array", 0, "array_item_key1"]: This path starts with the top-level field
named array, then visits item zero of a list, then a field named
array_item keyl

e ["field2"]: This path has just a single field name where the value is found

e ["object", "attributel"]:This path starts with the top-level field named
object, then the child attributel of that field

[720]

Chapter 12

The find_value () function yield both of these paths when it searches the overall
document for the target value. Here's the conceptual overview of this search function:

def find_path(value, node, path=[]):
if isinstance (node, dict):
for key in node.keys{():
find_value (value, nodelkey], path+[key])
This must yield multiple values
elif isinstance (node, list):
for index in range(len(node)):
find_value (value, node[index], path+[index])
This will yield multiple values
else:
a primitive type
if node == value:
yield path

There are three alternatives in the find_path () process:

e When the node is a dictionary, the value of each key must be examined. The
values may be any kind of data, so we'll use the find_path () function
recursively on each value. This will yield a sequence of matches.

e If node is a list, the items for each index position must be examined. The items
may be any kind of data, so we'll use the £ind_path () function recursively on
each value. This will yield a sequence of matches.

¢ The other choice is for the node to be a primitive value. The JSON specification
lists a number of primitives that may be present in a valid document. If the node
value is the target value, we've found one instance, and can yield this single
match.

There are two ways to handle the recursion. One is like this:

for match in find_value(value, nodelkey], path+[key]):
yield match

This seems to have too much boilerplate for such a simple idea. The other way is simpler
and a bit clearer.

[721]

Functional and Reactive Programming Features

How to do it...

1. Write out the complete for statement:

for match in find_value (value, nodelkey], path+[key]):
yield match

For debugging purposes, we might insert a print () function inside the body of
the for statement.

2. Replace this with a yield from statement once we're sure things work:
yield from find_value (value, nodelkey], path+[key])

The complete depth-first find_value () search function will look like this:

def find_path(value, node, path=[]):
if isinstance (node, dict):
for key in node.keys{():
yield from find_path(value, nodelkey], path+[key])
elif isinstance (node, list):
for index in range(len(node)):
yield from find_path(value, node[index], path+[index])
else:
if node == value:
yield path

When we use the find_path () function, it looks like this:

>>> list (find_path('array_item_value2', document))
[['array', 1, 'array_item_key2']]

The find_path () function is iterable. It can yield a number of values. We consumed all of
the results to create a list. In this example, the list had one item, ['array', 1,
'array_item_key2']. This item has the path to the matching item.

We can then evaluate document ['array'] [1] ['array_item_key2'] to find the
referenced value.

[722]

Chapter 12

When we look for a non-unique value, we might see a list like this:

>>> list (find_value('value', document))
[['array', O, 'array_item_keyl'],
['field2'],
['object', 'attributel']]

The resulting list has three items. Each of these provides the path to an item with the target
value of value.

How it works...

The yield from X statement is shorthand for:

for item in X:
yield item

This lets us write a succinct recursive algorithm that will behave as an iterator and properly
yield multiple values.

This can also be used in contexts that don't involve a recursive function. It's entirely
sensible to use a yield from statement anywhere that an iterable result is involved. It's a
big simplification for recursive functions, however, because it preserves a clearly recursive
structure.

There's more...

Another common style of definition assembles a list using append operations. We can
rewrite this into an iterator and avoid the overhead of building a list object.

When factoring a number, we can define the set of prime factors like this:

i}

{n}uF X if nisa factor of x
n

F(x) _ if xis prime

If the value, x, is prime, it has only itself in the set of prime factors. Otherwise, there must
be some prime number, 1, which is the least factor of x. We can assemble a set of factors
starting with n and including all factors of x/n. In order to be sure that only prime factors
are found, then n must be prime. If we search in ascending order, we'll find prime factors
before finding composite factors.

[723]

Functional and Reactive Programming Features

We have two ways to implement this in Python: one builds a list, the other generates
factors. Here's a list-building function:

import math
def factor_list (x):
limit = int (math.sqgrt (x)+1)
for n in range (2, limit):
g, r = divmod(x, n)
if r == 0:
return [n] + factor_list (q)
return [Xx]

This factor_list () function will search all numbers, 7, such that 2 < 1 <x. The first
number that's a factor of x will be the least factor. It will also be prime. We'll—of
course—search a number of composite values, wasting time. For example, after testing two
and three, we'll also test values for line four and six, even though they're composite and all
of their factors have already been tested.

This function builds a 1ist object. If a factor, n, is found, it will start a list with that factor.
It will append factors from x // n.If there are no factors of x, then the value is prime, and
we return a list with just that value.

We can rewrite this to be an iterator by replacing the recursive calls with yield from. The
function will look like this:

def factor_iter (x):
limit = int (math.sqgrt (x)+1)
for n in range (2, limit):

g, r = divmod(x, n)
if r == 0:
yield n
yield from factor_iter (q)
return
yield x

As with the list-building version, this will search numbers, 1, such that . When a factor is
found, then the function will yield the factor, followed by any other factors found by a
recursive call to factor_iter (). If no factors are found, the function will yield just the
prime number and nothing more.

[724]

Chapter 12

Using an iterator allows us to build any kind of collection from the factors. Instead of being
limited to always creating a list, we can create a multiset using the collection.Counter
class. It would look like this:

>>> from collections import Counter
>>> Counter (factor_iter (384))
Counter ({2: 7, 3: 1})

This shows us that:
384=2"x3

In some cases, this kind of multiset is easier to work with than the list of factors.

See also

e In the Designing recursive functions around Python’s stack limits recipe, we cover the
core design patterns for recursive functions. This recipe provides an alternative
way to create the results.

[725]

	Title Page
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Numbers, Strings, and Tuples
	Introduction
	Creating meaningful names and using variables
	Getting ready
	How to do it...
	Choosing names wisely
	Assigning names to objects

	How it works...
	There's more...
	See also

	Working with large and small integers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Choosing between float, decimal, and fraction
	Getting ready
	How to do it...
	Doing currency calculations
	Fraction calculations
	Floating-point approximations
	Converting numbers from one type to another

	How it works...
	There's more...
	See also

	Choosing between true division and floor division
	Getting ready
	How to do it...
	Doing floor division
	Doing true division
	Rational fraction calculations

	How it works...
	See also

	Rewriting an immutable string
	Getting ready
	How to do it...
	Slicing a piece of a string
	Updating a string with a replacement
	Making a string all lowercase
	Removing extra punctuation marks

	How it works...
	There's more...
	See also

	String parsing with regular expressions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building complex strings with "template".format()
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building complex strings from lists of characters
	Getting ready
	How to do it...
	How it works...
	There's more
	See also

	Using the Unicode characters that aren't on our keyboards
	Getting ready
	How to do it...
	How it works...
	See also

	Encoding strings – creating ASCII and UTF-8 bytes
	Getting ready
	How to do it...
	How it works...
	See also

	Decoding bytes – how to get proper characters from some bytes
	Getting ready
	How to do it..
	How it works...
	See also

	Using tuples of items
	Getting ready
	How to do it...
	Creating tuples
	Extracting items from a tuple

	How it works...
	There's more
	See also...

	Statements and Syntax
	Introduction
	Writing Python script and module files – syntax basics
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing long lines of code
	Getting ready
	How to do it...
	Using backslash to break a long statement into logical lines
	Using the () characters to break a long statement into sensible pieces
	Using string literal concatenation
	Assigning intermediate results to separate variables

	How it works...
	There's more...
	See also

	Including descriptions and documentation
	Getting ready
	How to do it...
	Writing docstrings for scripts
	Writing docstrings for library modules

	How it works...
	There's more...
	See also

	Writing better RST markup in docstrings
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using directives
	Using inline markup

	See also

	Designing complex if...elif chains
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Designing a while statement which terminates properly
	Getting ready
	How to do it...
	How it works...
	See also

	Avoiding a potential problem with break statements
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Leveraging the exception matching rules
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Avoiding a potential problem with an except: clause
	Getting ready
	How to do it...
	How it works...
	See also

	Chaining exceptions with the raise from statement
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Managing a context using the with statement
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Function Definitions
	Introduction
	Designing functions with optional parameters
	Getting ready
	How to do it...
	Particular to General Design
	General to Particular design

	How it works...
	There's more...
	See also

	Using super flexible keyword parameters
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Forcing keyword-only arguments with the * separator
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing explicit types on function parameters
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Picking an order for parameters based on partial functions
	Getting ready
	How to do it...
	Wrapping a function
	Creating a partial function with keyword parameters
	Creating a partial function with positional parameters

	How it works...
	There's more...
	See also

	Writing clear documentation strings with RST markup
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Designing recursive functions around Python's stack limits
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing reusable scripts with the script library switch
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Built-in Data Structures – list, set, dict
	Introduction
	Choosing a data structure
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building lists – literals, appending, and comprehensions
	Getting ready
	How to do it...
	Building a list with the append() method
	Writing a list comprehension
	Using the list function on a generator expression

	How it works...
	There's more...
	Other ways to extend a list

	See also

	Slicing and dicing a list
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Deleting from a list – deleting, removing, popping, and filtering
	Getting ready
	How to do it...
	Deleting items from a list
	The remove() method
	The pop() method
	The filter() function

	How it works...
	There's more...
	See also

	Reversing a copy of a list
	Getting ready
	How to do it...
	How it works...
	See also

	Using set methods and operators
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Removing items from a set – remove(), pop(), and difference
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating dictionaries – inserting and updating
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Removing from dictionaries – the pop() method and the del statement
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Controlling the order of dict keys
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Handling dictionaries and sets in doctest examples
	Getting ready
	How to do it...
	How it works...
	There's more...

	Understanding variables, references, and assignment
	How to do it...
	How it works...
	There's more...
	See also

	Making shallow and deep copies of objects
	Getting ready
	How to do it...
	How it works...
	See also

	Avoiding mutable default values for function parameters
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	User Inputs and Outputs
	Introduction
	Using features of the print() function
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using input() and getpass() for user input
	Getting ready
	How to do it...
	How it works...
	There's more...
	Input string parsing
	Interaction via the cmd module

	See also

	Debugging with "format".format_map(vars())
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using argparse to get command-line input
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using cmd for creating command-line applications
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using the OS environment settings
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Basics of Classes and Objects
	Introduction
	Using a class to encapsulate data and processing
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Designing classes with lots of processing
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Designing classes with little unique processing
	Getting ready
	How to do it...
	Stateless objects
	Stateful objects with a new class
	Stateful objects using an existing class

	How it works...
	There's more...
	See also

	Optimizing small objects with __slots__
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using more sophisticated collections
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Extending a collection – a list that does statistics
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using properties for lazy attributes
	Getting ready...
	How to do it...
	How it works...
	There's more...
	See also...

	Using settable properties to update eager attributes
	Getting ready
	How to do it...
	How it works...
	There's more...
	Initialization
	Calculation

	See also

	More Advanced Class Design
	Introduction
	Choosing between inheritance and extension – the is-a question
	Getting ready
	How to do it...
	Wrapping – aggregation and composition
	Extending - inheritance

	How it works...
	There's more...
	See also

	Separating concerns via multiple inheritance
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Leveraging Python's duck typing
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Managing global and singleton objects
	Getting ready
	How to do it...
	Module global variable
	Class-level static variable

	How it works...
	There's more...

	Using more complex structures – maps of lists
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a class that has orderable objects
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Defining an ordered collection
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Deleting from a list of mappings
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Input/Output, Physical Format, and Logical Layout
	Introduction
	Using pathlib to work with filenames
	Getting ready
	How to do it...
	Making the output filename by changing the input suffix
	Making a number of sibling output files with distinct names
	Creating a directory and a number of files
	Comparing file dates to see which is newer
	Removing a file
	Finding all files that match a given pattern

	How it works...
	There's more...
	See also

	Reading and writing files with context managers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Replacing a file while preserving the previous version
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading delimited files with the CSV module
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading complex formats using regular expressions
	Getting ready
	How to do it...
	Defining the parse function
	Using the parse function

	How it works...
	There's more...
	See also

	Reading JSON documents
	Getting ready
	How to do it...
	How it works...
	There's more...
	Serializing a complex data structure
	Deserializing a complex data structure

	See also

	Reading XML documents
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading HTML documents
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Upgrading CSV from DictReader to namedtuple reader
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Upgrading CSV from a DictReader to a namespace reader
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using multiple contexts for reading and writing files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Testing
	Introduction
	Using docstrings for testing
	Getting ready
	How to do it...
	Writing examples for stateless functions
	Writing examples for stateful objects

	How it works...
	There's more...
	See also

	Testing functions that raise exceptions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Handling common doctest issues
	Getting ready
	How to do it...
	Writing doctest examples for mapping or set values
	Writing doctest examples for floating-point values

	How it works...
	There's more...
	See also

	Creating separate test modules and packages
	Getting ready
	How to do it...
	How it works...
	There's more...
	Some other assertions
	Separate tests directory

	See also

	Combining unittest and doctest tests
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Testing things that involve dates or times
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Testing things that involve randomness
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Mocking external resources
	Getting ready
	Creating an entry document in the entrylog collection
	Seeing a typical response
	Client class for database access

	How to do it...
	How it works...
	Creating a context manager
	Creating a dynamic, stateful test
	Mocking a complex object
	Using the load_tests protocol

	There's more...
	See also

	Web Services
	Introduction
	Implementing web services with WSGI
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using the Flask framework for RESTful APIs
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Parsing the query string in a request
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Making REST requests with urllib
	Getting ready
	How to do it...
	How it works...
	There's more...
	The OpenAPI (Swagger) specification
	Adding Swagger to the server

	See also

	Parsing the URL path
	Getting ready
	How to do it...
	Server
	Client

	How it works...
	Deck slicing
	Client side

	There's more...
	Providing a Swagger specification
	Using a Swagger specification

	See also

	Parsing a JSON request
	Getting ready
	How to do it...
	Swagger specification
	Server
	Client

	How it works...
	There's more...
	Location header
	Additional resources
	Query for a specific player
	Exception handling

	See also

	Implementing authentication for web services
	Getting ready
	Configuring SSL
	Users and credentials
	Flask view function decorator

	How to do it...
	Defining the User class
	Defining a view decorator
	Creating the server
	Creating an example client

	How it works...
	There's more...
	Creating a command-line interface
	Building the Authentication header

	See also

	Application Integration
	Introduction
	Finding configuration files
	Getting ready
	Why so many choices?

	How to do it...
	How it works...
	There's more...
	See also

	Using YAML for configuration files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using Python for configuration files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using class-as-namespace for configuration
	Getting ready
	How to do it...
	How it works...
	There's more...
	Configuration representation

	See also

	Designing scripts for composition
	Getting ready
	How to do it...
	How it works...
	There's more...
	Designing as a class hierarchy

	See also

	Using logging for control and audit output
	Getting ready
	How to do it...
	How it works...
	There's more...

	Combining two applications into one
	Getting ready
	How to do it...
	How it works...
	There's more...
	Refactoring
	Concurrency
	Logging

	See also

	Combining many applications using the Command design pattern
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Managing arguments and configuration in composite applications
	Getting ready
	How to do it...
	How it works...
	The Command design pattern

	There's more...
	See also

	Wrapping and combining CLI applications
	Getting ready
	How to do it...
	How it works...
	There's more...
	Unit test

	See also

	Wrapping a program and checking the output
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Controlling complex sequences of steps
	Getting ready
	How to do it...
	How it works...
	There's more...
	Building conditional processing

	See also

	Functional and Reactive Programming Features
	Introduction
	Writing generator functions with the yield statement
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using stacked generator expressions
	Getting ready
	How to do it...
	How it works...
	There's more...
	Namespace instead of list

	See also

	Applying transformations to a collection
	Getting ready...
	How to do it...
	How it works...
	There's more...
	See also...

	Picking a subset - three ways to filter
	Getting ready...
	How to do it...
	How it works...
	There's more...
	See also...

	Summarizing a collection – how to reduce
	Getting ready
	How to do it...
	How it works...
	There's more...
	Maxima and minima
	Potential for abuse

	Combining map and reduce transformations
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing "there exists" processing
	Getting ready
	How to do it...
	How it works...
	There's more...
	The itertools module

	Creating a partial function
	Getting ready
	How to do it...
	Using functools.partial()
	Creating a lambda object

	How it works...
	There's more...

	Simplifying complex algorithms with immutable data structures
	Getting ready
	How to do it...
	How it works...
	There's more...

	Writing recursive generator functions with the yield from statement
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Statistical Programming and Linear Regression
	Introduction
	Using the built-in statistics library
	Getting ready
	How to do it...
	How it works...
	There's more...

	Average of values in a Counter
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Computing the coefficient of a correlation
	Getting ready
	How to do it...
	How it works...
	There's more...

	Computing regression parameters
	Getting ready
	How to do it...
	How it works...
	There's more...

	Computing an autocorrelation
	Getting ready
	How to do it...
	How it works...
	There's more...
	Long-term model

	See also

	Confirming that the data is random – the null hypothesis
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Locating outliers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Analyzing many variables in one pass
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using map()

	See also

	Index

