
 1

Lola-2: A Logic Description Language
N. Wirth, 24.4.1994 / 1.9.2015

Lola is a notation (language) for specifying digital circuits (logic). In many ways it resembles a
programming language. However, Lola texts describe static circuits rather than dynamic processes.
Objects occurring in a description can be variables representing signals or registers. Their values
are defined as expressions of other objects and operators representing gates.

0. Vocabulary
The vocabulary of Lola consists of special characters (or pairs), and so-called reserved words which
cannot be chosen as identifiers.

Special characters:

~ & | ^ + - * = # < <= > >=
() [] { } -> . , ; : := ' !

Reserved words:

BEGIN CONST END IN INOUT MODULE OUT REG TS TYPE VAR

1. Identifiers, integers, and comments
Identifiers are used to denote constants, variables, and types.

identifier = letter {letter | digit}.
integer = digit {digit} ["H"].

Examples: Lola begin 100 100H 0FFH

Capital and lower case letters are considered as distinct. If an integer is followed by the capital letter
H it is in hexadecimal form with digits 0, 1, ..., 9, and A ... F.

Comments are sequences of characters enclosed by the brackets (* and *), and they may occur
between any two symbols within a Lola text.

2. Simple types and array types
Every variable in Lola has a type. The elementary type is BIT (BInary digiT), and its variables
assume the values 0 or 1.

type = {"[" expression "]"} SimpleType.
SimpleType = identifier |."MODULE" unit ";" identifier.
TypeDeclaration = identifier "=" type .

An array type is specified by the form [n]T, where T is the type of the elements, and the integer n
specifies the number of elements. In expressions, individual elements are designated by an index.
Indices range from 0 to the array's length minus 1.

Examples: [10] BIT [8][16] BIT

The identifiers BIT, BYTE and WORD are predeclared. The latter denote arrays of 8 and 32 bits
respectively.

3. Constant declarations
Constant declarations serve to introduce identifiers denoting a constant, numeric value.

ConstDeclaration = identifier "=" integer ";".

 2

4. Variable and register declarations
Variable declarations introduce registers and variables and associate a type with them. All variables
declared in an identifier list have the same type. Variables of type [n] BIT are called bitstrings.

varlist = identifier {"," identifier} ":" type.

Examples: x, y: BIT a: [32] BIT R: BIT Q (clk50): [4] BIT

If a register declaration contains an expression, this denotes the register's clock. The default is a
variable clk, which must be declared (see also Section 7).

5. Expressions
Expressions serve to combine variables with operators to define new values. The operators are
logical negation, conjunction, disjunction, and difference, or arithmetic sum and difference. Elements
of an array are selected by an index. (e.g. a.5, a[10]).

| logical disjunction (or)
^ logical difference (exclusive or)
& logical conjunction (and)
~ logical negation (not)

+ arithmetic sum
- arithmetic difference

Operands are registers, variables, and constants. Whereas variables denote the value given by the
assigned expression, registers denote the value of the expression in the preceding clock cycle.
Registers are instrumental in sequential circuits. The operands of diadic operators must be of the
same type.

expression = uncondExpr ["->" expression ":" expression].
uncondExpr = simpleExpr [("=" | "#" | "<" | "<=" | ">" | ">=") simpleExpr].
simpleExpr = ["+" | "-"] term {("|" | "^" | "+" | "-") term}.
term = factor {"&" factor}.
factor = variable | integer | "~" factor | constructor | "(" expression ")".
variable = identifier {selector}.
selector = "." factor | "[" expression [":" expression] "]".
constructor = "{" element {"," element} "}".
element = expression ["!" integer].

The form a[m : n] denotes the range of indexed elements a[m], ... , a[n].

Constructors denote bitstrings and are sequences of elements. The length (number of bits) of every
element must be known. This length is specified in a declaration, and in this case of constants by an
explicit integer. For example 10'8 denotes the number 10 represented by 8 bits. The length of the
bitstring is the sum of the lengths of its elements. Also, an element can be followed by a replication
factor of the form !n.

A conditional expression of the form z := cond -> x : y expresses represents a multiplexer. Cond
must be of type BIT. If cond yields 1, z is equal to x, otherwise to y.

Examples: x count 1 100 a.4 a[20] operands
 a[15 : 8] range
 {u, a.4, a[25:20], 0'8, 15'4} constructor (20 bit)
 (x & y) | (z & w) (m + n) + 10 simple expressions
 a.5 -> b : c expression

6. Assignments and statements
Assignments serve to define a register's or a variable's value, which is specified by an expression.
An assignment must be understood as a variable's definition (in contrast to an identifier's

 3

declaration). In an assignment v := x, v and x do not have the same roles, and this asymmetry is
emphasized by the use of the symbol := instead of the symmetric equal sign. v and x must be of the
same type.

assignment = variable ":=" expression..

Examples: x := y & z a := {x, y, z} R := rst -> 0 : enb -> x : R

Every variable and register can be assigned in only one single assignment statement, and the
assignment must be to the entire variable (not to elements). The only exception is the indexed
assignment to an array of registers (e.g. R[n] := x).

For example, instead of

a.0 := x; a.1 := x+y; a.2 := x-y; a.3 := x*y

the single assignment

a := {x, x+y, x-y, x*y)

must be used.

Statements are either assignments, or instantiations of modules (see next section), or TSgates.

statement = [assignment | instantiation | TSgate].
StatementSequence = statement {";" statement}.

A TSgate (TS stads for tri-state) is used for INOUT interface parameters.

TSgate = "TS" "(" iogate "," input "," output "," control ")".
iogate = variable.
input = variable. from interface
output = expression. to interface
control = expression. 1 for output, 0 for input from interface

Examples

 TS(io, in, out, ~wr) TS(io[k], in[k], out[k], ctrl[k])

The parameters may be simple variables or arrays. They must be of the same type, except that the
control parameter may be of type BIT, even if the other parameters are arrays. In this case it
controls all elements of the arrays

7. Modules
A module specifies constants, types, variables, registers, and assignments to variables and
registers. Modules are specified as types, and variables can be declared of this type. This implies
that modules can be replicated.

ModuleType = "MODULE" ["*"] unit ";".
paramlist = ("IN" | "OUT" | "INOUT") varlist.
unit = "(" paramlist {";" paramlist} ")" ("^" | ";"

["CONST" {ConstDeclaration}]
["TYPE" {TypeDeclaration}]
{("VAR" | "REG" "(" expression ")") {varlist ";"}}
["BEGIN" StatementSequence] "END").

The expression after the symbol REG specifies the register's clock.

Example of a module type:

TYPE Counter = MODULE (IN clk, rst, enb: BIT; OUT data: WORD);
 REG (clk) R: Word;
BEGIN data := R;
 R := ~rst -> 0 : enb -> R + 1 : R

 4

END Counter

Given a variable of this type (cnt: Counter), its instantiation could be

cnt (clock, reset, enable, val)

where clock, reset, enable and data are variables called actual parameters. They must be expressions
of the corresponding types.

instantiation = identifier selector "(" expression {"," expression} ")".

A "main program" has the form

module = "MODULE" identifier unit identifier ".".

Evidently, a "main program" is the combined declaration of an (anonymous) module type and of a
single instance. The identifier at the end of the module's declaration must be the same as the one
following the symbol MODULE.

