-
Notifications
You must be signed in to change notification settings - Fork 214
add ssim psnr metric #1282
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
liuxiao-guan
wants to merge
4
commits into
PaddlePaddle:develop
Choose a base branch
from
liuxiao-guan:develop
base: develop
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
add ssim psnr metric #1282
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# SSIM and PSNR | ||
|
||
SSIM(Structural Similarity Index)是一种用于衡量两幅图像结构相似度的指标,常用于图像质量评价任务。与像素级别的误差不同,SSIM 模拟人类视觉系统从亮度、对比度和结构等多个维度来评估图像之间的差异。其取值范围为 [-1, 1],其中 1 表示两张图像完全相同,值越高说明图像质量越接近参考图像。 | ||
|
||
PSNR(Peak Signal-to-Noise Ratio)是一种基于像素差异的图像质量评估指标,用于衡量图像压缩或生成后与参考图像之间的误差大小。它通过最大像素值与均方误差(MSE)之间的比值计算得出,通常以分贝(dB)为单位。PSNR 值越高表示重建图像与原图越接近,图像失真越小。对于 8-bit 图像,PSNR 值通常大于 30dB 被认为质量良好。 | ||
|
||
|
||
|
||
## 依赖 | ||
- math | ||
- numpy==1.26.4 | ||
- cv2 | ||
|
||
## 快速使用 | ||
计算两个图片数据集的SSIM与PSNR, `path/to/dataset1`/`path/to/dataset2`为图片文件夹 | ||
|
||
``` | ||
python evaluation.py --dataset1 path/to/dataset1 --dataset2 path/to/dataset2 | ||
``` | ||
图片数据集的结构应如下: | ||
```shell | ||
├── dataset | ||
|
||
├── 00000.png | ||
├── 00001.png | ||
...... | ||
├── 00999.png | ||
|
||
``` | ||
|
||
参数说明 | ||
- `num-workers`: 用于加载数据的子进程个数,默认为`min(8, num_cpus)`。 | ||
- `resolution`:调整图片的分辨率 | ||
|
||
|
||
## 参考 | ||
- [https://github.com/ali-vilab/TeaCache](https://github.com/ali-vilab/TeaCache) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import math | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 文件头部都加下paddle的 copyright吧 |
||
|
||
import numpy as np | ||
import paddle | ||
|
||
|
||
def img_psnr(img1, img2): | ||
mse = np.mean((img1 / 1.0 - img2 / 1.0) ** 2) | ||
# compute psnr | ||
if mse < 1e-10: | ||
return 100 | ||
psnr = 20 * math.log10(1 / math.sqrt(mse)) | ||
return psnr | ||
|
||
|
||
|
||
|
||
def calculate_psnr(videos1, videos2): | ||
# videos [batch_size, timestamps, channel, h, w] | ||
|
||
assert videos1.shape == videos2.shape | ||
|
||
psnr_results = [] | ||
|
||
for video_num in range(videos1.shape[0]): | ||
# get a video | ||
# video [timestamps, channel, h, w] | ||
video1 = videos1[video_num] | ||
video2 = videos2[video_num] | ||
|
||
psnr_results_of_a_video = [] | ||
for clip_timestamp in range(len(video1)): | ||
# get a img | ||
# img [timestamps[x], channel, h, w] | ||
# img [channel, h, w] numpy | ||
|
||
img1 = video1[clip_timestamp].numpy() | ||
img2 = video2[clip_timestamp].numpy() | ||
|
||
# calculate psnr of a video | ||
psnr_results_of_a_video.append(img_psnr(img1, img2)) | ||
|
||
psnr_results.append(psnr_results_of_a_video) | ||
|
||
psnr_results = np.array(psnr_results) | ||
|
||
psnr = {} | ||
psnr_std = {} | ||
|
||
for clip_timestamp in range(len(video1)): | ||
psnr[clip_timestamp] = np.mean(psnr_results[:, clip_timestamp]) | ||
psnr_std[clip_timestamp] = np.std(psnr_results[:, clip_timestamp]) | ||
|
||
result = { | ||
"value": psnr, | ||
"value_std": psnr_std, | ||
"video_setting": video1.shape, | ||
"video_setting_name": "time, channel, heigth, width", | ||
} | ||
|
||
return result | ||
|
||
|
||
def main(): | ||
NUMBER_OF_VIDEOS = 8 | ||
VIDEO_LENGTH = 50 | ||
CHANNEL = 3 | ||
SIZE = 64 | ||
videos1 = paddle.zeros(shape=[NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE]) | ||
videos2 = paddle.zeros(shape=[NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE]) | ||
paddle.set_device("gpu") | ||
|
||
import json | ||
|
||
result = calculate_psnr(videos1, videos2) | ||
print(json.dumps(result, indent=4)) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import cv2 | ||
import numpy as np | ||
import paddle | ||
|
||
|
||
def ssim(img1, img2): | ||
C1 = 0.01**2 | ||
C2 = 0.03**2 | ||
img1 = img1.astype(np.float64) | ||
img2 = img2.astype(np.float64) | ||
kernel = cv2.getGaussianKernel(11, 1.5) | ||
window = np.outer(kernel, kernel.transpose()) | ||
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid | ||
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] | ||
mu1_sq = mu1**2 | ||
mu2_sq = mu2**2 | ||
mu1_mu2 = mu1 * mu2 | ||
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq | ||
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq | ||
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 | ||
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) | ||
return ssim_map.mean() | ||
|
||
|
||
def calculate_ssim_function(img1, img2): | ||
# [0,1] | ||
# ssim is the only metric extremely sensitive to gray being compared to b/w | ||
if not img1.shape == img2.shape: | ||
raise ValueError("Input images must have the same dimensions.") | ||
if img1.ndim == 2: | ||
return ssim(img1, img2) | ||
elif img1.ndim == 3: | ||
if img1.shape[0] == 3: | ||
ssims = [] | ||
for i in range(3): | ||
ssims.append(ssim(img1[i], img2[i])) | ||
return np.array(ssims).mean() | ||
elif img1.shape[0] == 1: | ||
return ssim(np.squeeze(img1), np.squeeze(img2)) | ||
else: | ||
raise ValueError("Wrong input image dimensions.") | ||
|
||
|
||
def trans(x): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这个函数有啥作用? |
||
return x | ||
|
||
|
||
def calculate_ssim(videos1, videos2): | ||
# videos [batch_size, timestamps, channel, h, w] | ||
|
||
assert videos1.shape == videos2.shape | ||
|
||
videos1 = trans(videos1) | ||
videos2 = trans(videos2) | ||
|
||
ssim_results = [] | ||
|
||
for video_num in range(videos1.shape[0]): | ||
# get a video | ||
# video [timestamps, channel, h, w] | ||
video1 = videos1[video_num] | ||
video2 = videos2[video_num] | ||
|
||
ssim_results_of_a_video = [] | ||
for clip_timestamp in range(len(video1)): | ||
# get a img | ||
# img [timestamps[x], channel, h, w] | ||
# img [channel, h, w] numpy | ||
|
||
img1 = video1[clip_timestamp].numpy() | ||
img2 = video2[clip_timestamp].numpy() | ||
|
||
# calculate ssim of a video | ||
ssim_results_of_a_video.append(calculate_ssim_function(img1, img2)) | ||
|
||
ssim_results.append(ssim_results_of_a_video) | ||
|
||
ssim_results = np.array(ssim_results) | ||
|
||
ssim = {} | ||
ssim_std = {} | ||
|
||
for clip_timestamp in range(len(video1)): | ||
ssim[clip_timestamp] = np.mean(ssim_results[:, clip_timestamp]) | ||
ssim_std[clip_timestamp] = np.std(ssim_results[:, clip_timestamp]) | ||
|
||
result = { | ||
"value": ssim, | ||
"value_std": ssim_std, | ||
"video_setting": video1.shape, | ||
"video_setting_name": "time, channel, heigth, width", | ||
} | ||
|
||
return result | ||
|
||
def main(): | ||
NUMBER_OF_VIDEOS = 8 | ||
VIDEO_LENGTH = 50 | ||
CHANNEL = 3 | ||
SIZE = 64 | ||
videos1 = paddle.zeros(shape=[NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE]) | ||
videos2 = paddle.zeros(shape=[NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE]) | ||
paddle.set_device("gpu") | ||
|
||
import json | ||
|
||
result = calculate_ssim(videos1, videos2) | ||
print(json.dumps(result, indent=4)) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import argparse | ||
import paddle | ||
import sys | ||
|
||
|
||
from calculate_ssim import calculate_ssim_function | ||
from calculate_psnr import img_psnr | ||
from ppdiffusers import StableDiffusionXLPipeline, PixArtAlphaPipeline, StableVideoDiffusionPipeline | ||
from ppdiffusers import UNet2DConditionModel, LCMScheduler,FluxPipeline | ||
from ppdiffusers import DPMSolverMultistepScheduler | ||
from ppdiffusers.utils import load_image, export_to_video | ||
|
||
import paddle.vision.transforms as TF | ||
from tqdm import tqdm | ||
import pathlib | ||
import re | ||
import numpy as np | ||
from PIL import Image | ||
import sys | ||
import os | ||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'fid_clip_score'))) | ||
from fid_score import ImagePathDataset | ||
def extract_number(filename): | ||
filename = os.path.basename(filename) | ||
match = re.search(r'\d+', filename) | ||
return int(match.group()) if match else float('inf') | ||
|
||
IMAGE_EXTENSIONS = {"bmp", "jpg", "jpeg", "pgm", "png", "ppm", "tif", "tiff", "webp"} | ||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser(description="Simple example of TGATE V2.") | ||
parser.add_argument( | ||
"--dataset1", | ||
type=str, | ||
default=None, | ||
required=True, | ||
help="Path to save the original generated results.", | ||
) | ||
parser.add_argument( | ||
"--dataset2", | ||
type=str, | ||
default=None, | ||
required=True, | ||
help="Path to save the speed up generated results.", | ||
) | ||
parser.add_argument( | ||
"--resolution", | ||
type=int, | ||
default=None, | ||
help="The resolution to resize." | ||
) | ||
parser.add_argument("--batch_size", type=int, default=1, help="Batch size to use") | ||
parser.add_argument("--num_workers", type=int, default=1, help="Number of workers to use for data loading") | ||
|
||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
if __name__ == '__main__': | ||
args = parse_args() | ||
|
||
gen_path = pathlib.Path(args.dataset1) | ||
gen_files = sorted([file for ext in IMAGE_EXTENSIONS for file in gen_path.glob("*.{}".format(ext))],key=extract_number) | ||
# get dataset1 path | ||
dataset_gen = ImagePathDataset(gen_files, transforms=TF.ToTensor(), resolution=args.resolution) | ||
dataloader_gen = paddle.io.DataLoader( | ||
dataset_gen, | ||
batch_size=args.batch_size, | ||
shuffle=False, | ||
drop_last=False, | ||
num_workers=args.num_workers, | ||
) | ||
#get dataset2 path | ||
speedgen_path = pathlib.Path(args.dataset2) | ||
files = sorted([file for ext in IMAGE_EXTENSIONS for file in speedgen_path.glob("*.{}".format(ext))],key=extract_number) | ||
dataset_speedgen = ImagePathDataset(files, transforms=TF.ToTensor(), resolution=args.resolution) | ||
dataloader_speedgen = paddle.io.DataLoader( | ||
dataset_speedgen, | ||
batch_size=args.batch_size, | ||
shuffle=False, | ||
drop_last=False, | ||
num_workers=args.num_workers, | ||
) | ||
print(len(dataloader_gen)) | ||
print(len(dataloader_speedgen)) | ||
ssim_value_list=[] | ||
psnr_value_list=[] | ||
# calculate ssim与psnr | ||
for batch_gen, batch_speedgen in tqdm(zip(dataloader_gen, dataloader_speedgen), | ||
total=len(dataloader_gen), | ||
desc="Calculating SSIM and PSNR"): | ||
batch_speedgen = batch_speedgen["img"] | ||
batch_gen = batch_gen["img"] | ||
batch_speedgen = batch_speedgen.squeeze().numpy() # 将Tensor转换为numpy数组,并调整通道顺序 | ||
batch_gen = batch_gen.squeeze().numpy() | ||
ssim_value = calculate_ssim_function(batch_gen,batch_speedgen) | ||
psnr_value = img_psnr(batch_gen,batch_speedgen) | ||
ssim_value_list.append(ssim_value) | ||
psnr_value_list.append(psnr_value) | ||
mean_ssim = np.mean(ssim_value_list) | ||
mean_psnr = np.mean(psnr_value_list) | ||
from pathlib import Path | ||
|
||
path = Path(args.dataset1) | ||
parent_path = path.parent | ||
# save the result | ||
res_txt = os.path.basename(args.dataset2) | ||
with open(os.path.join(parent_path, f"{res_txt}.txt"), "w") as f: # ← 注意这里用 "a" | ||
f.write(f"mean_ssim: {mean_ssim}\n") | ||
f.write(f"mean_psnr: {mean_psnr}\n") | ||
print('mean_ssim: ',mean_ssim,'mean_psnr: ',mean_psnr) |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
这里参考的内容是不是不对