Skip to content

Patiencewantae123/generative-models

 
 

Repository files navigation

Generative Models by Stability AI

sample1

🗞️ News

July 24, 2024

  • 🚀 Stable Video 4D (SV4D): A video-to-4D diffusion model for novel-view video synthesis.

    • Quickstart: Run python scripts/sampling/simple_video_sample_4d.py --input_path assets/sv4d_videos/test_video1.mp4 --output_folder outputs/sv4d.
    • Technical Details:
      • Trained to generate 40 frames at 576x576 resolution.
      • Run demo locally with python -m scripts.demo.gradio_app_sv4d.
    • Resources: Project page, Technical report, Video summary.

    tile

March 18, 2024

  • 🎥 SV3D: An image-to-video model for multi-view synthesis.

    • Run a demo with streamlit run scripts/demo/video_sampling.py.
    • Models:
      • SV3D_u: Generates orbital videos from single images.
      • SV3D_p: Allows for camera path specification for 3D video.
    • Documentation: Project page, Tech report, Video summary.

    tile

November 30, 2023

November 28, 2023

  • SDXL-Turbo: A fast, high-quality text-to-image model.
    • Installation: pip install streamlit-keyup.
    • Demo: Run streamlit run scripts/demo/turbo.py.
    • Technical Report.
    • tile

November 21, 2023

  • 🎬 Stable Video Diffusion (SVD) for image-to-video generation.
    • Model Details:
      • SVD: Generates 14 frames at 576x1024 resolution.
      • SVD-XT: Finetuned for 25 frames.
    • Run Locally: python -m scripts.demo.gradio_app.
    • Demos: scripts/demo/video_sampling.py and scripts/sampling/simple_video_sample.py.
    • Technical Report.
    • tile

July 26, 2023

  • 🌐 Released SDXL-base-1.0 and SDXL-refiner-1.0 models under the CreativeML Open RAIL++-M license.

sample2

July 4, 2023

  • 📄 Technical report for SDXL available here.

June 22, 2023

  • 🌱 Released two new diffusion models:
    • SDXL-base-0.9: Trained with various aspect ratios and resolution 1024².
    • SDXL-refiner-0.9: Denoises data with small noise levels for image-to-image use only.

🔧 Installation Guide

Step 1: Clone the Repository

git clone https://github.com/Stability-AI/generative-models.git
cd generative-models

Step 2: Set Up Virtual Environment

Note: Tested with python3.10.

# Create virtual environment
python3 -m venv .pt2
source .pt2/bin/activate
pip3 install -r requirements/pt2.txt

Step 3: Install sgm

pip3 install .

Step 4: Install sdata for Training

pip3 install -e git+https://github.com/Stability-AI/datapipelines.git@main#egg=sdata

📦 Packaging

  • Build Wheel:
pip install hatch
hatch build -t wheel
  • Install Wheel:
pip install dist/*.whl

🤖 Inference

Streamlit Demo: scripts/demo/sampling.py.

Supported Models:

Weights available under the CreativeML Open RAIL++-M license.


🛡️ Invisible Watermark Detection

Run detection with:

python -m venv .detect
source .detect/bin/activate

pip install "numpy>=1.17" "PyWavelets>=1.1.1" "opencv-python>=4.1.0.25"
pip install --no-deps invisible-watermark

Test Commands:

python scripts/demo/detect.py <your filename>
python scripts/demo/detect.py <filename 1> <filename 2> ... <filename n>
python scripts/demo/detect.py <your folder name>/*

🏋️ Training

Training configurations are available in configs/example_training. Start training with:

python main.py...

Enhancements Added:

  • Icons for visual engagement.
  • Bold headers for improved section visibility.
  • Consistent layout for easier navigation.
  • Shortened key instructions with emphasis on main points.

Let me know if you need further tweaks!

About

Generative Models by Stability AI

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.1%
  • Roff 1.9%