-
🚀 Stable Video 4D (SV4D): A video-to-4D diffusion model for novel-view video synthesis.
- Quickstart: Run
python scripts/sampling/simple_video_sample_4d.py --input_path assets/sv4d_videos/test_video1.mp4 --output_folder outputs/sv4d
. - Technical Details:
- Trained to generate 40 frames at 576x576 resolution.
- Run demo locally with
python -m scripts.demo.gradio_app_sv4d
.
- Resources: Project page, Technical report, Video summary.
- Quickstart: Run
-
🎥 SV3D: An image-to-video model for multi-view synthesis.
- Run a demo with
streamlit run scripts/demo/video_sampling.py
. - Models:
- SV3D_u: Generates orbital videos from single images.
- SV3D_p: Allows for camera path specification for 3D video.
- Documentation: Project page, Tech report, Video summary.
- Run a demo with
- 🌟 Released SD-Turbo.
- ⚡ SDXL-Turbo: A fast, high-quality text-to-image model.
- Installation:
pip install streamlit-keyup
. - Demo: Run
streamlit run scripts/demo/turbo.py
. - Technical Report.
- Installation:
- 🎬 Stable Video Diffusion (SVD) for image-to-video generation.
- Model Details:
- SVD: Generates 14 frames at 576x1024 resolution.
- SVD-XT: Finetuned for 25 frames.
- Run Locally:
python -m scripts.demo.gradio_app
. - Demos:
scripts/demo/video_sampling.py
andscripts/sampling/simple_video_sample.py
. - Technical Report.
- Model Details:
- 🌐 Released SDXL-base-1.0 and SDXL-refiner-1.0 models under the
CreativeML Open RAIL++-M
license.
- 📄 Technical report for SDXL available here.
- 🌱 Released two new diffusion models:
- SDXL-base-0.9: Trained with various aspect ratios and resolution 1024².
- SDXL-refiner-0.9: Denoises data with small noise levels for image-to-image use only.
git clone https://github.com/Stability-AI/generative-models.git
cd generative-models
Note: Tested with python3.10
.
# Create virtual environment
python3 -m venv .pt2
source .pt2/bin/activate
pip3 install -r requirements/pt2.txt
pip3 install .
pip3 install -e git+https://github.com/Stability-AI/datapipelines.git@main#egg=sdata
- Build Wheel:
pip install hatch
hatch build -t wheel
- Install Wheel:
pip install dist/*.whl
Streamlit Demo: scripts/demo/sampling.py
.
Supported Models:
Weights available under the CreativeML Open RAIL++-M
license.
Run detection with:
python -m venv .detect
source .detect/bin/activate
pip install "numpy>=1.17" "PyWavelets>=1.1.1" "opencv-python>=4.1.0.25"
pip install --no-deps invisible-watermark
Test Commands:
python scripts/demo/detect.py <your filename>
python scripts/demo/detect.py <filename 1> <filename 2> ... <filename n>
python scripts/demo/detect.py <your folder name>/*
Training configurations are available in configs/example_training
. Start training with:
python main.py...
- Icons for visual engagement.
- Bold headers for improved section visibility.
- Consistent layout for easier navigation.
- Shortened key instructions with emphasis on main points.
Let me know if you need further tweaks!