Skip to content

TigerMachineLearning/statistical-learning-method-solutions-manual

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

统计学习方法(第一版)习题解答

  李航老师的《统计学习方法》是机器学习领域的经典入门教材之一。
  本书全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文献。
  申明: 习题解答主要参考了文献1中的内容。

使用说明

  统计学习方法习题解答,主要完成了该书(第一版)的全部习题,并提供代码和运行之后的截图,里面的内容是以统计学习方法的内容为前置知识,该习题解答的最佳使用方法是以李航老师的《统计学习方法》为主线,并尝试完成课后习题,如果遇到不会的,再来查阅习题解答。
  如果觉得解答不详细,可以点击这里提交你希望补充推导或者习题编号,我们看到后会尽快进行补充。

在线阅读地址

在线阅读地址:https://datawhalechina.github.io/statistical-learning-method-solutions-manual

目录

选用的《统计学习方法》版本

书名:统计学习方法
作者:李航
出版社:清华大学出版社
版次:2012年3月第1版
勘误表:http://blog.sina.com.cn/s/blog_7ad48fee01017dpi.html

参考文献

  1. 李航《统计学习方法》习题笔记
  2. 李航《统计学习方法笔记》中的代码、notebook、参考文献、Errata
  3. CART剪枝详解
  4. CART剪枝算法详解

Notebook运行环境配置

  1. 安装相关的依赖包
    pip install -r requirements.txt
  2. 安装graphviz(用于决策树展示)
    可参考博客:https://blog.csdn.net/HNUCSEE_LJK/article/details/86772806

协作规范

  1. 由于习题解答中需要有程序和执行结果,采用jupyter notebook的格式进行编写(文件路径:notebook/notes),然后将其导出成markdown格式,再覆盖到docs对应的章节下。
  2. 目前已完成全部习题解答,需要进行全部解答校对。
  3. 可按照Notebook运行环境配置,配置相关的运行环境。
  4. 校对过程中,在数学概念补充上,尽量使用初学者(有高数基础)能理解的数学概念,如果涉及到推导和证明,可附上参考链接。

主要贡献者(按首字母排名)

@胡锐锋-天国之影-Relph

关注我们

Datawhale,一个专注于AI领域的学习圈子。初衷是for the learner,和学习者一起成长。目前加入学习社群的人数已经数千人,组织了机器学习,深度学习,数据分析,数据挖掘,爬虫,编程,统计学,Mysql,数据竞赛等多个领域的内容学习,微信搜索公众号Datawhale可以加入我们。

LICENSE

GNU General Public License v3.0

About

《统计学习方法》(第一版)习题解答,在线阅读地址:https://datawhalechina.github.io/statistical-learning-method-solutions-manual

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%