Course 598 deep learning project
The stable monocular depth esimation code (in .\monodepth\torch
) is adpated from [https://github.com/ClubAI/MonoDepth-PyTorch.git
], which is based on https://github.com/mrharicot/monodepth.git
, and was finally used for bounding box prediction.
The Mask-RCNN code (in .\Mask_RCNN\
) is from https://github.com/matterport/Mask_RCNN.git
, and fine-tuned on KITTI by us.
git clone https://github.com/WeilinXu/DL-project.git
cd DL-project
Add pre-trained model for monodepth:
sh ./monodepth/utils/get_model.sh model_kitti ../model/monodepth_model
Add pre-trained and KITTI fine-tuned model for Mask-RCNN:
Download mask_rcnn_kitti.h5
to ../model/maskecnn_model/
from the here.
Add pre-trained model for disparityToDepth network:
Download trained_model_cnn.pth
to ../model/d2z_model/
from here
The input left image file (eg. 000056_10.png
) should be put in DL-project/images/data/left_img
.
The corresponding calibration file (eg. 000056.txt
) should be put in DL-project/images/data/calibration
.
Generate depth image estimation data (eg. 000056_10_disp.npy
) and depth image (eg. 000056_10_disp_pred.png
) in DL-project/images/res
and plot 3D bounding box:
python src/demo2.py
Alternatively, generate depth image estimation data (eg. 000056_10_disp.npy
) and depth image (eg. 000056_10_disp_pred.png
) in DL-project/images/res
(not plot 3D bounding box):
python ./monodepth/monodepth_simple.py --image_path images/data/left_img/000056_10.png --checkpoint_path ../model/monodepth_model/model_kitti