Skip to content

anonymousdouble/PaddleX

 
 

Repository files navigation

PaddleX

PaddleX -- 飞桨全流程开发工具,以低代码的形式支持开发者快速实现产业实际项目落地

近期动态

  • 🔥 发布飞桨AI套件PaddleX —— 精选产业实用模型的一站式开发平台。飞桨AI套件沿用旧版本PaddleX(本Repo)的名称和低代码理念,而且做了全面升级。
  • 🔥 飞桨AI套件PaddleX,具有如下优势:
    • 【丰富的算法库】提供36个精选模型,覆盖了10大AI任务场景,并附带模型推理benchmark数据。开发者可以根据业务需求轻松选择合适的模型,并进行开发和部署。
    • 【简便的开发方式】支持无代码和低代码开发,只需四个简单步骤,即可完成全流程AI开发,包括数据处理、模型训练、验证和部署。
    • 【高效的模型部署】平台提供强大的部署能力,支持快速实现产业级部署,实现跨平台、跨硬件的部署。
    • 【多样的硬件支持】不仅能够在AI Studio云端使用,还支持在Windows本地环境使用,并正在积极扩展支持Linux版本、昆仑芯版本、昇腾版本和寒武纪版本。
    • 【共赢的合作机会】除了提供便捷的AI应用开发工具,还为企业提供商业收益机会,共同探索更多商业空间,实现共同成长和共赢。
  • 🔥 飞桨AI套件PaddleX的安装和使用,请参考官网。注意本Repo的代码和文档,只适用于旧版本PaddleX。
  • 🔥 欢迎大家进入AI Studio【PaddleX社区频道】进一步交流~

产品介绍

🤗 PaddleX 集成飞桨智能视觉领域图像分类目标检测语义分割实例分割任务能力,将深度学习开发全流程从数据准备模型训练与优化多端部署端到端打通,并提供统一任务API接口图形化开发界面Demo。开发者无需分别安装不同套件,以低代码的形式即可快速完成飞桨全流程开发。

🏭 PaddleX 经过质检安防巡检遥感零售医疗等十多个行业实际应用场景验证,沉淀产业实际经验,并提供丰富的案例实践教程,全程助力开发者产业实践落地。

安装与快速体验

PaddleX提供了图像化开发界面、本地API、Restful-API三种开发模式。用户可根据自己的需求选择任意一种开始体验

产业级应用示例

PaddleX 使用文档

本文档介绍了PaddleX从数据准备、模型训练到模型剪裁量化,及最终部署的全流程使用方法。

1. 数据准备

2. 模型训练/评估/预测

3. 模型压缩

4. 模型部署

5. 附录

常见问题汇总

🤗 贡献代码🤗

我们非常欢迎您为PaddleX贡献代码或者提供使用建议。如果您可以修复某个issue或者增加一个新功能,欢迎给我们提交Pull Requests。

开发者贡献项目

About

PaddlePaddle End-to-End Development Toolkit(『飞桨』深度学习全流程开发工具)

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 84.7%
  • C++ 6.7%
  • HTML 4.7%
  • CMake 1.3%
  • C# 1.2%
  • Java 1.0%
  • Other 0.4%