This repository contains several machine learning algorithm implementations as well as templates for various ML pipeline works such as preprocessing and visualization.
Every model is implemented in both R and Python's scikit-learn.
For Python, both notebooks and .py files are included.
-
- a. Linear Regression
- Simple Linear Regression
- Multiple Linear Regression
- Polynomial Regression
- Regularization
- Lasso
- Ridge
- ElasticNet
- b. Decision Tree Regression
- c. Random Forest Regression
- d. Support Vector Regression
- a. Linear Regression
-
- a. Logistic Regression
- b. Decision Trees
- c. Random Forest
- d. Support Vector Machines
- Kernel SVM
- e. Näive Bayes Classifier
- f. XGBoost
-
- a. K-Means
- b. Hierarchical Clustering
- Dendrograms
-
-
- Thompson Sampling
-
- Upper Confidence Bound
-
-
-
- Apriori
-
-
-
- Principal Component Analysis
-
- Linear Discriminiant Analysis
-
- t-SNE
-
-
-
- Grid Search
-
- Random Search
-
- K-fold Cross Validation
-
-
-
- Artificial Neural Networks (with Keras)
-
- Preprocessing templates
- Importing
- Scaling
- Encoding
- Dummy variables
- Non-linear transformation
- Matrix manipulations
-
- NLP - Bag of Words
-
- Download or clone repository:
git clone https://github.com/sukruc/machine-learning-algorithms.git
- Follow table of contents to find a specific application or template, or randomly explore the content.
- Enjoy!