Skip to content

camenduru/DeepCache

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepCache: Accelerating Diffusion Models for Free

(Results on Stable Diffusion v1.5. Left: 50 PLMS steps. Right: 2.3x acceleration upon 50 PLMS steps)

DeepCache: Accelerating Diffusion Models for Free
Xinyin Ma, Gongfan Fang, Xinchao Wang
Learning and Vision Lab, National University of Singapore
🥯[Arxiv]🎄[Project Page]

Introduction

We introduce DeepCache, a novel training-free paradigm that accelerates diffusion models from the perspective of model architecture. Utilizing the property of the U-Net, we reuse the high-level features while updating the low-level features in a very cheap way. DeepCache accelerates 2.3x for Stable Diffusion v1.5 with only a 0.05 decline in CLIP Score, and 4.1x for LDM-4-G(ImageNet) with a 0.22 decrease in FID.

image

Quick Start

Requirements

pip install diffusers==0.21.4 transformers

Stable Diffusion v1.5

python stable_diffusion.py --model runwayml/stable-diffusion-v1-5

Output:

2023-12-03 16:18:13,636 - INFO - Loaded safety_checker as StableDiffusionSafetyChecker from `safety_checker` subfolder of runwayml/stable-diffusion-v1-5.
2023-12-03 16:18:13,699 - INFO - Loaded vae as AutoencoderKL from `vae` subfolder of runwayml/stable-diffusion-v1-5.
Loading pipeline components...: 100%|██████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00,  5.88it/s]
2023-12-03 16:18:22,837 - INFO - Running baseline...
100%|████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:03<00:00, 15.33it/s]
2023-12-03 16:18:26,174 - INFO - Baseline: 3.34 seconds
2023-12-03 16:18:26,174 - INFO - Running DeepCache...
100%|████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:01<00:00, 34.06it/s]
2023-12-03 16:18:27,718 - INFO - DeepCache: 1.54 seconds
2023-12-03 16:18:27,935 - INFO - Saved to output.png. Done!

Stable Diffusion v2.1

python stable_diffusion.py --model stabilityai/stable-diffusion-2-1

Output:

2023-12-03 16:21:17,858 - INFO - Loaded feature_extractor as CLIPImageProcessor from `feature_extractor` subfolder of stabilityai/stable-diffusion-2-1.
2023-12-03 16:21:17,864 - INFO - Loaded scheduler as DDIMScheduler from `scheduler` subfolder of stabilityai/stable-diffusion-2-1.
Loading pipeline components...: 100%|██████████████████████████████████████████████████████████████████| 6/6 [00:01<00:00,  5.35it/s]
2023-12-03 16:21:49,770 - INFO - Running baseline...
100%|████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:14<00:00,  3.42it/s]
2023-12-03 16:22:04,551 - INFO - Baseline: 14.78 seconds
2023-12-03 16:22:04,551 - INFO - Running DeepCache...
100%|████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:08<00:00,  6.10it/s]
2023-12-03 16:22:12,911 - INFO - DeepCache: 8.36 seconds
2023-12-03 16:22:13,417 - INFO - Saved to output.png. Done!

Currently, our code supports the models that can be loaded by StableDiffusionPipeline. You can specify the model name by the argument --model, which by default, is runwayml/stable-diffusion-v1-5. We are arranging the code for LDM and DDPM and will release it in the next few days.

Usage

from DeepCache.pipeline_stable_diffusion import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to("cuda:0")
prompt = "a photo of an astronaut on a moon"
deepcache_output = pipe(
    prompt, 
    cache_interval=5, cache_layer_id=0, cache_block_id=0,
    uniform=True, #pow=1.4, center=15, # only for uniform = False
    output_type='pt', return_dict=True
).images

Arguments:

  • cache_interval: the interval (N in the 1:N strategy) of cache update. No deepcache if cache_interval set to 1.
  • cache_layer_id & cache_block_id: the block/layer ID of selected skip branch.
  • uniform: whether to adopt uniform caching strategy of not.
  • pow & center: the hyperparameters for non-uniform 1:N strategy.

Visualization

Images in the upper line are the baselines, and the images in the lower line are accelerated by DeepCache.

Stable Diffusion v1.5 (2.15x Acceleration)

LDM-4-G for ImageNet (6.96x Acceleration)

DDPM for LSUN Church & Bedroom (1.48x Acceleration)

Quantitative Results

ImageNet

image

Stable Diffusion v1.5

image

More results can be found in our paper

Bibtex

@misc{ma2023deepcache,
      title={DeepCache: Accelerating Diffusion Models for Free}, 
      author={Xinyin Ma and Gongfan Fang and Xinchao Wang},
      year={2023},
      eprint={2312.00858},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

DeepCache: Accelerating Diffusion Models for Free

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%