Skip to content

csfarzin/DVC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DVC

Deep Variational Clustering Framework for Self-labeling Large-scale Medical Images This is the official PyTorch implementation of the DVC paper:

@Article{

}

Requirements

conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge

Dataset

  • MNIST
  • Skin Cancer
  • REFUGE-2

Training

To Train DVC run cvae_idec.py

python cvae_idec.py --batch_size 256 --lr 0.001
optional arguments:
--lr                          Learnig rate
--n_clusters                  Number of cluster
--n_z                         Size of embbeding layer
--batch_size                  Number of images in each mini-batch [default value is 512]
--dataset-name                Name of the dataset (e.g., mnist, skin, retina)
--pretrain_path               Path of pretrained model (e.g., "saved_models/VAE/cvae_cifar10.pkl")
--early_patience              Number of epochs before triggering the early stopping.
--gamma                       Coefficient of clustering loss
--update_interval             Specify the update interval of target distribution

About

Deep Variational Clustering Framework for Self-labeling Large-scale Medical Images

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages