Skip to content

gguf-py: Optimize GGUFReader read-only mode performance #13378

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 43 additions & 20 deletions gguf-py/gguf/gguf_reader.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import logging
import os
import sys
import struct
from collections import OrderedDict
from typing import Any, Literal, NamedTuple, TypeVar, Union

Expand Down Expand Up @@ -130,11 +131,15 @@ class GGUFReader:
}

def __init__(self, path: os.PathLike[str] | str, mode: Literal['r', 'r+', 'c'] = 'r'):
self.data = np.memmap(path, mode = mode)
file_mode = "rb+" if mode == 'r+' else 'rb'
self.mode = mode
self.data = open(path, mode=file_mode)
self.mmap = np.memmap(self.data, mode = mode)
offs = 0

# Check for GGUF magic
if self._get(offs, np.uint32, override_order = '<')[0] != GGUF_MAGIC:
self.data.seek(offs)
if struct.unpack("<I", self.data.read(4))[0] != GGUF_MAGIC:
raise ValueError('GGUF magic invalid')
offs += 4

Expand Down Expand Up @@ -192,13 +197,22 @@ def get_tensor(self, idx: int) -> ReaderTensor:
return self.tensors[idx]

def _get(
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I', 'S', '<'] = None,
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I', 'S', '<'] = None, use_mmap: bool = False
) -> npt.NDArray[Any]:
count = int(count)
itemsize = int(np.empty([], dtype = dtype).itemsize)
dtype = np.dtype(dtype).newbyteorder(override_order or self.byte_order)
itemsize = dtype.itemsize
end_offs = offset + itemsize * count
arr = self.data[offset:end_offs].view(dtype=dtype)[:count]
return arr.view(arr.dtype.newbyteorder(self.byte_order if override_order is None else override_order))
if self.mode != "r" or use_mmap:
data = (
self.mmap[offset:end_offs]
.view(dtype)[:count]
)
self.data.seek(end_offs)
else:
self.data.seek(offset)
data = np.frombuffer(self.data.read(itemsize * count), dtype = dtype)
return data

def _push_field(self, field: ReaderField, skip_sum: bool = False) -> int:
if field.name in self.fields:
Expand All @@ -212,8 +226,17 @@ def _push_field(self, field: ReaderField, skip_sum: bool = False) -> int:
return 0 if skip_sum else sum(int(part.nbytes) for part in field.parts)

def _get_str(self, offset: int) -> tuple[npt.NDArray[np.uint64], npt.NDArray[np.uint8]]:
slen = self._get(offset, np.uint64)
return slen, self._get(offset + 8, np.uint8, slen[0])
if self.mode != "r":
slen = self._get(offset, np.uint64)
sdata = self._get(offset + 8, np.uint8, slen.item())
else:
# This is faster to return a read-only str structure with less seek calling.
self.data.seek(offset)
u64 = np.dtype(np.uint64).newbyteorder(self.byte_order)
u8 = np.dtype(np.uint8).newbyteorder(self.byte_order)
slen = np.frombuffer(self.data.read(8), dtype=u64)
sdata = np.frombuffer(self.data.read(slen.item()), dtype=u8)
return slen, sdata

def _get_field_parts(
self, orig_offs: int, raw_type: int,
Expand All @@ -225,7 +248,7 @@ def _get_field_parts(
# Handle strings.
if gtype == GGUFValueType.STRING:
sparts: list[npt.NDArray[Any]] = list(self._get_str(offs))
size = sum(int(part.nbytes) for part in sparts)
size = 8 + sparts[0].item()
return size, sparts, [1], types
# Check if it's a simple scalar type.
nptype = self.gguf_scalar_to_np.get(gtype)
Expand All @@ -235,9 +258,9 @@ def _get_field_parts(
# Handle arrays.
if gtype == GGUFValueType.ARRAY:
raw_itype = self._get(offs, np.uint32)
offs += int(raw_itype.nbytes)
offs = self.data.tell()
alen = self._get(offs, np.uint64)
offs += int(alen.nbytes)
offs = self.data.tell()
aparts: list[npt.NDArray[Any]] = [raw_itype, alen]
data_idxs: list[int] = []
# FIXME: Handle multi-dimensional arrays properly instead of flattening
Expand All @@ -258,23 +281,23 @@ def _get_tensor_info_field(self, orig_offs: int) -> ReaderField:

# Get Tensor Name
name_len, name_data = self._get_str(offs)
offs += int(name_len.nbytes + name_data.nbytes)
offs = self.data.tell()

# Get Tensor Dimensions Count
n_dims = self._get(offs, np.uint32)
offs += int(n_dims.nbytes)
offs = self.data.tell()

# Get Tensor Dimension Array
dims = self._get(offs, np.uint64, n_dims[0])
offs += int(dims.nbytes)
offs = self.data.tell()

# Get Tensor Encoding Scheme Type
raw_dtype = self._get(offs, np.uint32)
offs += int(raw_dtype.nbytes)
offs = self.data.tell()

# Get Tensor Offset
offset_tensor = self._get(offs, np.uint64)
offs += int(offset_tensor.nbytes)
offs = self.data.tell()

return ReaderField(
orig_offs,
Expand All @@ -287,9 +310,9 @@ def _build_fields(self, offs: int, count: int) -> int:
for _ in range(count):
orig_offs = offs
kv_klen, kv_kdata = self._get_str(offs)
offs += int(kv_klen.nbytes + kv_kdata.nbytes)
offs = self.data.tell()
raw_kv_type = self._get(offs, np.uint32)
offs += int(raw_kv_type.nbytes)
offs = self.data.tell()
parts: list[npt.NDArray[Any]] = [kv_klen, kv_kdata, raw_kv_type]
idxs_offs = len(parts)
field_size, field_parts, field_idxs, field_types = self._get_field_parts(offs, raw_kv_type[0])
Expand All @@ -308,7 +331,7 @@ def _build_tensor_info(self, offs: int, count: int) -> tuple[int, list[ReaderFie
tensor_fields = []
for _ in range(count):
field = self._get_tensor_info_field(offs)
offs += sum(int(part.nbytes) for part in field.parts)
offs = self.data.tell()
tensor_fields.append(field)
return offs, tensor_fields

Expand Down Expand Up @@ -361,7 +384,7 @@ def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None:
n_elements = n_elems,
n_bytes = n_bytes,
data_offset = data_offs,
data = self._get(data_offs, item_type, item_count).reshape(np_dims),
data = self._get(data_offs, item_type, item_count, use_mmap=True).reshape(np_dims),
field = field,
))
self.tensors = tensors