Skip to content

CUDA: faster Deepseek FA, add Turing support #13435

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 14, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 13 additions & 5 deletions ggml/src/ggml-cuda/fattn-common.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -678,17 +678,25 @@ void launch_fattn(
) {
constexpr int ncols = ncols1 * ncols2;

const bool is_mla = DV == 512; // TODO better parameterization

const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];

GGML_ASSERT(V || is_mla);

const ggml_tensor * mask = dst->src[3];

ggml_tensor * KQV = dst;

GGML_ASSERT(Q->type == GGML_TYPE_F32);
GGML_ASSERT(KQV->type == GGML_TYPE_F32);

GGML_ASSERT( Q->nb[0] == ggml_element_size(Q));
GGML_ASSERT( K->nb[0] == ggml_element_size(K));
GGML_ASSERT(!V || V->nb[0] == ggml_element_size(V));

GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
Expand All @@ -713,10 +721,10 @@ void launch_fattn(
size_t nb12 = K->nb[2];
size_t nb13 = K->nb[3];

const char * V_data = (const char *) V->data;
size_t nb21 = V->nb[1];
size_t nb22 = V->nb[2];
size_t nb23 = V->nb[3];
const char * V_data = V ? (const char *) V->data : nullptr;
size_t nb21 = V ? V->nb[1] : nb11;
size_t nb22 = V ? V->nb[2] : nb12;
size_t nb23 = V ? V->nb[3] : nb13;

if (need_f16_K && K->type != GGML_TYPE_F16) {
GGML_ASSERT(ggml_is_contiguously_allocated(K));
Expand All @@ -733,7 +741,7 @@ void launch_fattn(
nb13 = nb13*bs*sizeof(half)/ts;
}

if (need_f16_V && V->type != GGML_TYPE_F16) {
if (V && need_f16_V && V->type != GGML_TYPE_F16) {
GGML_ASSERT(ggml_is_contiguously_allocated(V));
V_f16.alloc(ggml_nelements(V));
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
Expand Down
Loading
Loading