Skip to content

Modular custom config object serialization #11868

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 5, 2025

Conversation

a-r-r-o-w
Copy link
Member

@a-r-r-o-w a-r-r-o-w commented Jul 5, 2025

Adds support for serializing/deserializing custom config objects. LMK if this approach does not sound good.

@yiyixuxu Could you elaborate on #11862 (comment)?

(I think we probably just don't need the special config class now that it is a ConfigMixin, but it is up to you)

Do you mean we completely get rid of LayerSkipConfig? And if so, how do we provide the users with the option to conditionally skip different layers/attention scores?

Testing code:

import json
import torch
from diffusers import AutoGuidance, SkipLayerGuidance, ClassifierFreeGuidance, SmoothedEnergyGuidance, SmoothedEnergyGuidanceConfig, AdaptiveProjectedGuidance, PerturbedAttentionGuidance, ClassifierFreeZeroStarGuidance, TangentialClassifierFreeGuidance, LayerSkipConfig
from diffusers.modular_pipelines import SequentialPipelineBlocks, ComponentSpec
from diffusers.modular_pipelines.stable_diffusion_xl import TEXT2IMAGE_BLOCKS
from diffusers.utils.logging import set_verbosity_debug

set_verbosity_debug()

blocks = SequentialPipelineBlocks.from_blocks_dict(TEXT2IMAGE_BLOCKS)

modular_repo_id = "YiYiXu/modular-loader-t2i"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.to("cuda")

for guider_cls in [
    AutoGuidance,
    SkipLayerGuidance,
    ClassifierFreeGuidance,
    SmoothedEnergyGuidance,
    AdaptiveProjectedGuidance,
    PerturbedAttentionGuidance,
    ClassifierFreeZeroStarGuidance,
    TangentialClassifierFreeGuidance
]:
    print(f"Testing {guider_cls.__name__}...")
    
    kwargs = {"guidance_scale": 5.0}
    if guider_cls is AutoGuidance:
        kwargs.update({"auto_guidance_config": LayerSkipConfig(indices=[9, 10], fqn="mid_block.attentions.0.transformer_blocks", skip_attention=True, skip_ff=True, dropout=0.75)})
        kwargs.update({"stop": 0.6})
    elif guider_cls is SkipLayerGuidance:
        kwargs.update({"skip_layer_config": LayerSkipConfig(indices=[9, 10], fqn="mid_block.attentions.0.transformer_blocks", skip_attention=True, skip_ff=True)})
        kwargs.update({"skip_layer_guidance_stop": 0.4})
    elif guider_cls is SmoothedEnergyGuidance:
        kwargs.update({"seg_guidance_config": SmoothedEnergyGuidanceConfig(indices=[9, 10], fqn="mid_block.attentions.0.transformer_blocks")})
        kwargs.update({"seg_guidance_stop": 0.8})
    elif guider_cls is PerturbedAttentionGuidance:
        kwargs.update({"perturbed_guidance_config": LayerSkipConfig(indices=[9, 10], fqn="mid_block.attentions.0.transformer_blocks", skip_attention=False, skip_attention_scores=True, skip_ff=False)})
        kwargs.update({"perturbed_guidance_stop": 0.5})
    0
    pipeline.loader.update(
        guider=ComponentSpec(
            name="cfg",
            type_hint=guider_cls,
            config=kwargs,
            default_creation_method="from_config",
        )
    )
    pipeline.save_pretrained("test_modular_t2i_guider")
    pipeline.loader.guider.save_config("test_modular_t2i_guider/guider")
    
    with open("test_modular_t2i_guider/guider/guider_config.json", "r") as f:
        guider_config = json.load(f)
    guider_config["guidance_scale"] = 10.0
    with open("test_modular_t2i_guider/guider/guider_config.json", "w") as f:
        json.dump(guider_config, f, indent=2)
    
    guider_spec = ComponentSpec(
        name="cfg",
        type_hint=guider_cls,
        config=guider_cls.from_config("test_modular_t2i_guider/guider").config,
        default_creation_method="from_config",
    )
    pipeline.loader.update(guider=guider_spec.create())
    print(pipeline.loader.guider)

    image = pipeline(prompt="Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", num_inference_steps=20, output="images", generator=torch.Generator().manual_seed(42))[0]
    output_filename = f"output_guider_{guider_cls.__name__.lower()}.png"
    image.save(output_filename)

@a-r-r-o-w a-r-r-o-w requested a review from yiyixuxu July 5, 2025 17:23
@a-r-r-o-w
Copy link
Member Author

Additionally, in a follow-up PR, I want to change LayerSkipConfig -> SkipLayerConfig for consistency with the guider name

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

@yiyixuxu yiyixuxu merged commit 284f827 into modular-diffusers Jul 5, 2025
2 checks passed
@yiyixuxu yiyixuxu deleted the modular-custom-config-serialization branch July 5, 2025 17:49
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants