PyTorch implementation of "One-shot Pruning of Gated Recurrent Unit Neural Network by Sensitivity for Time-series Prediction" by Hong Tang, Xiangzheng Ling, Liangzhi Li (Member, IEEE) et al.
Following packages are required for this project
-
Python 3.6+
-
PyTorch-GPU 0.4.1
-
tqdm, csv, time
-
numpy, pandas
-
matplotlib
-
argparse
- train a simple local areal network traffic
python main.py --k_level 0.01 --sensitivity 3.754
- training comparison model GVGRUs
python GVGRU.py --model [Model_Name]
- The test results of the standard GRU (Baseline).
- The test results of SCGRU (Our).
- The test results of the standard GRU (Baseline).
- The test results of SCGRU (Our).
Note that the power load data set used in the paper is temporarily unavailable due to its industry sensitivity. Please understand.