Skip to content

imLingo/SCGRU

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SCGRU-PyTorch

PyTorch implementation of "One-shot Pruning of Gated Recurrent Unit Neural Network by Sensitivity for Time-series Prediction" by Hong Tang, Xiangzheng Ling, Liangzhi Li (Member, IEEE) et al.

In PowerLoad Task

In LAN Task

Requirements

Following packages are required for this project

  • Python 3.6+

  • PyTorch-GPU 0.4.1

  • tqdm, csv, time

  • numpy, pandas

  • matplotlib

  • argparse

Usage

  1. train a simple local areal network traffic
python main.py --k_level 0.01 --sensitivity 3.754
  1. training comparison model GVGRUs
python GVGRU.py --model [Model_Name]

Results

In Local Area Network traffic Task

  1. The test results of the standard GRU (Baseline).

LAN Baseline

  1. The test results of SCGRU (Our).

LAN SCGRU

In Power Load Task

  1. The test results of the standard GRU (Baseline).

Power load Baseline

  1. The test results of SCGRU (Our).

Power load SCGRU

Note

Note that the power load data set used in the paper is temporarily unavailable due to its industry sensitivity. Please understand.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages