Data processing and instruction calling with ML, LLM and Vision LLM
🚀 Try Sparrow Online | 📖 Quick Start | 🛠️ Installation | 📚 Examples | 🤖 Agents
- ✨ Key Features
- 🏗️ Architecture
- 🚀 Quickstart
- 🛠️ Installation
- 📚 Examples
- 💻 CLI Usage
- 🌐 API Usage
- 🤖 Sparrow Agent
- 📊 Dashboard
- 🔧 Pipeline Comparison
- ⚡ Performance Tips
- 🔍 Troubleshooting
- 🌟 Sparrow UI
- ⭐ Star History
- 📜 License
🎯 Universal Document Processing: Handle invoices, receipts, forms, bank statements, tables
🔧 Pluggable Architecture: Mix and match different pipelines (Sparrow Parse, Instructor, Agents)
🖥️ Multiple Backends: MLX (Apple Silicon), Ollama, vLLM, PyTorch, Hugging Face Cloud GPU
📱 Multi-format Support: Images (PNG, JPG) and multi-page PDFs
🎨 Schema Validation: JSON schema-based extraction with automatic validation
🌐 API-First Design: RESTful APIs for easy integration
💬 Instruction Calling: Beyond document extraction - text processing, validation, decision making
📊 Visual Monitoring: Built-in dashboard and agent workflow tracking
🔒 Enterprise Ready: Rate limiting, usage analytics, commercial licensing available
Component | Purpose | Use Case |
---|---|---|
Sparrow ML LLM | Main API engine | Document processing pipelines |
Sparrow Parse | Vision LLM library | Structured JSON extraction |
Sparrow Agents | Workflow orchestration | Complex multi-step processing |
Sparrow OCR | Text recognition | OCR preprocessing |
Sparrow UI | Web interface | Interactive document processing |
- Python 3.10.4+ (use
pyenv
for version management) - macOS (for MLX backend) or Linux/Windows (for other backends)
- GPU (optional, for better performance)
# 1. Install pyenv and Python 3.10.4
pyenv install 3.10.4
pyenv global 3.10.4
# 2. Create virtual environment
python -m venv .env_sparrow_parse
source .env_sparrow_parse/bin/activate # Linux/Mac
# or .env_sparrow_parse\Scripts\activate # Windows
# 3. Install Sparrow Parse pipeline
git clone https://github.com/katanaml/sparrow.git
cd sparrow/sparrow-ml/llm
pip install -r requirements_sparrow_parse.txt
# 4. For macOS: Install poppler for PDF processing
brew install poppler
# 5. Start the API server
python api.py
# Extract data from a bonds table
./sparrow.sh '[{"instrument_name":"str", "valuation":0}]' \
--pipeline "sparrow-parse" \
--options mlx \
--options mlx-community/Qwen2.5-VL-72B-Instruct-4bit \
--file-path "data/bonds_table.png"
Result:
{
"data": [
{"instrument_name": "UNITS BLACKROCK...", "valuation": 19049},
{"instrument_name": "UNITS ISHARES...", "valuation": 83488}
],
"valid": "true"
}
# 1. Clone repository
git clone https://github.com/katanaml/sparrow.git
cd sparrow
# 2. Follow detailed setup instructions
📖 For complete installation instructions, see our detailed environment setup guide.
- Python Environment: Install Python 3.10.4 using pyenv
- Virtual Environments: Create separate environments for different pipelines:
.env_sparrow_parse
- for Sparrow Parse (Vision LLM).env_instructor
- for Instructor (Text LLM).env_ocr
- for OCR service (optional)
- System Dependencies: Install poppler for PDF processing
- Requirements: Install pipeline-specific dependencies
macOS:
brew install poppler # Required for PDF processing
Ubuntu/Debian:
sudo apt-get install poppler-utils libpoppler-cpp-dev
Apple Silicon: MLX backend available for optimal performance
NVIDIA GPU: Use local_gpu backend for best performance
CPU Only: Use smaller models or Hugging Face cloud backend
# Test installation
python api.py --port 8002
# Visit http://localhost:8002/api/v1/sparrow-llm/docs
# Extract all data from bank statement
./sparrow.sh "*" \
--pipeline "sparrow-parse" \
--options mlx \
--options mlx-community/Qwen2.5-VL-72B-Instruct-4bit \
--file-path "data/bank_statement.pdf"
📄 View Complete JSON Output
{
"bank": "First Platypus Bank",
"address": "1234 Kings St., New York, NY 12123",
"account_holder": "Mary G. Orta",
"account_number": "1234567890123",
"statement_date": "3/1/2022",
"period_covered": "2/1/2022 - 3/1/2022",
"account_summary": {
"balance_on_march_1": "$25,032.23",
"total_money_in": "$10,234.23",
"total_money_out": "$10,532.51"
},
"transactions": [
{
"date": "02/01",
"description": "PGD EasyPay Debit",
"withdrawal": "203.24",
"deposit": "",
"balance": "22,098.23"
},
{
"date": "02/02",
"description": "AB&B Online Payment*****",
"withdrawal": "71.23",
"deposit": "",
"balance": "22,027.00"
},
{
"date": "02/04",
"description": "Check No. 2345",
"withdrawal": "",
"deposit": "450.00",
"balance": "22,477.00"
},
{
"date": "02/05",
"description": "Payroll Direct Dep 23422342 Giants",
"withdrawal": "",
"deposit": "2,534.65",
"balance": "25,011.65"
},
{
"date": "02/06",
"description": "Signature POS Debit - TJP",
"withdrawal": "84.50",
"deposit": "",
"balance": "24,927.15"
},
{
"date": "02/07",
"description": "Check No. 234",
"withdrawal": "1,400.00",
"deposit": "",
"balance": "23,527.15"
},
{
"date": "02/08",
"description": "Check No. 342",
"withdrawal": "",
"deposit": "25.00",
"balance": "23,552.15"
},
{
"date": "02/09",
"description": "FPB AutoPay***** Credit Card",
"withdrawal": "456.02",
"deposit": "",
"balance": "23,096.13"
},
{
"date": "02/08",
"description": "Check No. 123",
"withdrawal": "",
"deposit": "25.00",
"balance": "23,552.15"
},
{
"date": "02/09",
"description": "FPB AutoPay***** Credit Card",
"withdrawal": "156.02",
"deposit": "",
"balance": "23,096.13"
},
{
"date": "02/08",
"description": "Cash Deposit",
"withdrawal": "",
"deposit": "25.00",
"balance": "23,552.15"
}
],
"valid": "true"
}
# Extract structured data from financial table
./sparrow.sh '[{"instrument_name":"str", "valuation":0}]' \
--pipeline "sparrow-parse" \
--options mlx \
--options mlx-community/Qwen2.5-VL-72B-Instruct-4bit \
--file-path "data/bonds_table.png"
📄 View JSON Output
{
"data": [
{
"instrument_name": "UNITS BLACKROCK FIX INC DUB FDS PLC ISHS EUR INV GRD CP BD IDX/INST/E",
"valuation": 19049
},
{
"instrument_name": "UNITS ISHARES III PLC CORE EUR GOVT BOND UCITS ETF/EUR",
"valuation": 83488
},
{
"instrument_name": "UNITS ISHARES III PLC EUR CORP BOND 1-5YR UCITS ETF/EUR",
"valuation": 213030
},
{
"instrument_name": "UNIT ISHARES VI PLC/JP MORGAN USD E BOND EUR HED UCITS ETF DIST/HDGD/",
"valuation": 32774
},
{
"instrument_name": "UNITS XTRACKERS II SICAV/EUR HY CORP BOND UCITS ETF/-1D-/DISTR.",
"valuation": 23643
}
],
"valid": "true"
}
# Extract invoice with cropping for better accuracy
./sparrow.sh "*" \
--pipeline "sparrow-parse" \
--options mlx \
--options mlx-community/Qwen2.5-VL-72B-Instruct-4bit \
--crop-size 60 \
--file-path "data/invoice.pdf"
📄 View Complete JSON Output
{
"invoice_number": "61356291",
"date_of_issue": "09/06/2012",
"seller": {
"name": "Chapman, Kim and Green",
"address": "64731 James Branch, Smithmouth, NC 26872",
"tax_id": "949-84-9105",
"iban": "GB50ACIE59715038217063"
},
"client": {
"name": "Rodriguez-Stevens",
"address": "2280 Angela Plain, Hortonshire, MS 93248",
"tax_id": "939-98-8477"
},
"items": [
{
"description": "Wine Glasses Goblets Pair Clear",
"quantity": 5,
"unit": "each",
"net_price": 12.0,
"net_worth": 60.0,
"vat_percentage": 10,
"gross_worth": 66.0
},
{
"description": "With Hooks Stemware Storage Multiple Uses Iron Wine Rack Hanging",
"quantity": 4,
"unit": "each",
"net_price": 28.08,
"net_worth": 112.32,
"vat_percentage": 10,
"gross_worth": 123.55
},
{
"description": "Replacement Corkscrew Parts Spiral Worm Wine Opener Bottle Houdini",
"quantity": 1,
"unit": "each",
"net_price": 7.5,
"net_worth": 7.5,
"vat_percentage": 10,
"gross_worth": 8.25
},
{
"description": "HOME ESSENTIALS GRADIENT STEMLESS WINE GLASSES SET OF 4 20 FL OZ (591 ml) NEW",
"quantity": 1,
"unit": "each",
"net_price": 12.99,
"net_worth": 12.99,
"vat_percentage": 10,
"gross_worth": 14.29
}
],
"summary": {
"total_net_worth": 192.81,
"total_vat": 19.28,
"total_gross_worth": 212.09
}
}
# Process multi-page PDF with structured output per page
./sparrow.sh '{"table": [{"description": "str", "latest_amount": 0, "previous_amount": 0}]}' \
--pipeline "sparrow-parse" \
--options mlx \
--options mlx-community/Qwen2.5-VL-72B-Instruct-4bit \
--file-path "data/financial_report.pdf" \
--debug-dir "debug/"
📄 View JSON Output
[
{
"table": [
{
"description": "Revenues",
"latest_amount": 12453,
"previous_amount": 11445
},
{
"description": "Operating expenses",
"latest_amount": 9157,
"previous_amount": 8822
}
],
"valid": "true",
"page": 1
},
{
"table": [
{
"description": "Revenues",
"latest_amount": 12453,
"previous_amount": 11445
},
{
"description": "Operating expenses",
"latest_amount": 9157,
"previous_amount": 8822
}
],
"valid": "true",
"page": 2
}
]
# Instruction-based processing
./sparrow.sh "instruction: do arithmetic operation, payload: 2+2=" \
--pipeline "sparrow-instructor" \
--options mlx \
--options mlx-community/Mistral-Small-3.1-24B-Instruct-2503-8bit
📄 View Output
The result of 2 + 2 is:
4
# Function calling example
./sparrow.sh assistant --pipeline "stocks" --query "Oracle"
JSON Output:
{
"company": "Oracle Corporation",
"ticker": "ORCL"
}
Additional Output:
The stock price of the Oracle Corporation is 186.3699951171875. USD
./sparrow.sh "<JSON_SCHEMA>" --pipeline "<PIPELINE>" [OPTIONS] --file-path "<FILE>"
Argument | Type | Description | Example |
---|---|---|---|
query |
JSON/String | Schema or instruction | '[{"field":"str"}]' |
--pipeline |
String | Pipeline to use | sparrow-parse |
--file-path |
Path | Input document | data/invoice.pdf |
--options |
String | Backend configuration | mlx,model-name |
--crop-size |
Integer | Border cropping pixels | 60 |
--debug |
Boolean | Enable debug mode | --debug |
--debug-dir |
Path | Debug output folder | ./debug/ |
# MLX Backend (Apple Silicon)
--options mlx --options mlx-community/Qwen2.5-VL-72B-Instruct-4bit
# Hugging Face Cloud GPU
--options huggingface --options your-space/model-name
# Additional flags
--options tables_only # Extract only tables
--options validation_off # Disable schema validation
--options apply_annotation # Include bounding boxes
--options mlx --options mlx-community/Mistral-Small-3.1-24B-Instruct-2503-8bit
# Multi-page PDF with page classification
./sparrow.sh "*" \
--page-type invoice \
--page-type table \
--pipeline "sparrow-parse" \
--file-path "multi_page.pdf"
# Handle missing fields with null values
./sparrow.sh '[{"required_field":"str", "optional_field":"str or null"}]' \
--pipeline "sparrow-parse" \
--file-path "document.png"
# Table extraction with cropping
./sparrow.sh '*' \
--options mlx \
--options mlx-community/Qwen2.5-VL-72B-Instruct-4bit \
--options tables_only \
--crop-size 100 \
--file-path "scan.pdf"
# Default port (8002)
python api.py
# Custom port
python api.py --port 8001
# Multiple instances
python api.py --port 8002 & # Sparrow Parse
python api.py --port 8003 & # Instructor
curl -X POST 'http://localhost:8002/api/v1/sparrow-llm/inference' \
-H 'Content-Type: multipart/form-data' \
-F 'query=[{"field_name":"str", "amount":0}]' \
-F 'pipeline=sparrow-parse' \
-F 'options=mlx,mlx-community/Qwen2.5-VL-72B-Instruct-4bit' \
-F '[email protected]'
curl -X POST 'http://localhost:8002/api/v1/sparrow-llm/instruction-inference' \
-H 'Content-Type: application/x-www-form-urlencoded' \
-d 'query=instruction: analyze data, payload: {...}' \
-d 'pipeline=sparrow-instructor' \
-d 'options=mlx,model-name'
Visit http://localhost:8002/api/v1/sparrow-llm/docs
for interactive Swagger documentation.
Orchestrate complex document processing workflows with visual monitoring powered by Prefect.
- Multi-step Workflows: Chain classification, extraction, and validation
- Visual Monitoring: Real-time pipeline tracking
- Error Handling: Robust failure recovery
- Extensible: Custom agents for specific use cases
# Start agent server
cd sparrow-ml/agents
python api.py --port 8001
# Process medical prescriptions
curl -X POST 'http://localhost:8001/api/v1/sparrow-agents/execute/file' \
-F 'agent_name=medical_prescriptions' \
-F 'extraction_params={"sparrow_key":"123456"}' \
-F '[email protected]'
Built-in analytics and monitoring dashboard at sparrow.katanaml.io
- Usage Analytics: Track API calls, success rates, performance
- Geographic Distribution: See usage by country
- Model Performance: Compare different model performance
- Real-time Monitoring: Live processing statistics
Feature | Sparrow Parse | Sparrow Instructor | Sparrow Agents |
---|---|---|---|
Input | Documents + JSON schema | Text instructions | Complex workflows |
Output | Structured JSON | Free-form text | Multi-step results |
Use Cases | Data extraction, forms | Summarization, analysis | Enterprise workflows |
Validation | Schema-based | Manual | Custom rules |
Complexity | Simple | Medium | High |
Best For | Invoices, tables, forms | Text processing | Multi-document flows |
Sparrow Parse: Use for structured data extraction from documents
Sparrow Instructor: Use for text analysis, summarization, Q&A
Sparrow Agents: Use for complex multi-step document processing workflows
Apple Silicon (MLX)
- ✅ Best performance with unified memory
- ✅ Models: Qwen2.5-VL-72B, Mistral-Small-3.1-24B
⚠️ Requires macOS with Apple Silicon
NVIDIA GPU
- ✅ Use local_gpu backend for best performance
- ✅ Recommended: RTX 3080+ with 12GB+ VRAM
⚠️ Requires CUDA setup
CPU Only
⚠️ Significantly slower- ✅ Use smaller models (7B parameters max)
- ✅ Consider Hugging Face cloud backend
# Reduce memory usage
--crop-size 100 # Crop large images
--options tables_only # Process only tables
# For large PDFs
--debug-dir ./temp # Monitor processing
# Split large PDFs manually if needed
Use Case | Recommended Model | Memory | Speed |
---|---|---|---|
Forms/Invoices | Mistral-Small-3.1-24B | 16GB | Fast |
Complex Tables | Qwen2.5-VL-72B | 32GB+ | Slower |
Quick Testing | Qwen2.5-VL-7B | 8GB | Fastest |
🚫 Installation Problems
Python Version Issues:
# Verify Python version
python --version # Should be 3.10.4+
# Fix with pyenv
pyenv install 3.10.4
pyenv global 3.10.4
MLX Installation (Apple Silicon):
# If MLX fails to install
pip install --upgrade pip
pip install mlx-vlm --no-cache-dir
Poppler Missing:
# macOS
brew install poppler
# Ubuntu/Debian
sudo apt-get install poppler-utils
# Verify installation
pdftoppm -h
🔧 Runtime Issues
Memory Errors:
- Use smaller models (7B instead of 72B)
- Enable image cropping:
--crop-size 100
- Process single pages instead of entire PDFs
Model Loading Fails:
# Clear model cache
rm -rf ~/.cache/huggingface/
rm -rf ~/.mlx/
# Redownload models
python -c "from mlx_vlm import load; load('model-name')"
API Connection Issues:
# Check if server is running
curl http://localhost:8002/health
# Check logs
python api.py --debug
📄 Document Processing Issues
Poor Extraction Quality:
- Try image cropping:
--crop-size 60
- Use
--options tables_only
for table documents - Ensure image resolution is adequate (300+ DPI)
- Use schema validation: avoid
--options validation_off
PDF Processing Fails:
# Test PDF manually
pdftoppm -png input.pdf output
# Check page count
python -c "
import pypdf
with open('file.pdf', 'rb') as f:
reader = pypdf.PdfReader(f)
print(f'Pages: {len(reader.pages)}')
"
JSON Schema Errors:
- Validate JSON syntax: Use jsonlint.com
- Use proper field types:
"str"
,0
,0.0
,"str or null"
- Test with simple schema first
- 📖 Check Documentation: Review this README and component docs
- 🐛 Search Issues: GitHub Issues
- 💬 Create Issue: Provide logs, system info, minimal example
- 📧 Commercial Support: [email protected]
Interactive web interface for document processing:
- Drag & Drop: Upload documents directly
- Real-time Processing: See results instantly
- Schema Builder: Visual JSON schema creation
- Result Annotation: View bounding boxes
- Batch Processing: Handle multiple documents
Visit sparrow.katanaml.io for a live demo running on Mac Mini M4 Pro.
Open Source: Licensed under GPL 3.0. Free for open source projects and organizations under $5M revenue.
Commercial: Dual licensing available for proprietary use, enterprise features, and dedicated support.
Contact: [email protected] for commercial licensing and consulting.
- Katana ML - AI/ML consulting and solutions
- Andrej Baranovskij - Lead developer
⭐ Star us on GitHub if Sparrow is useful for your projects!
github.com/katanaml/sparrow