forked from pymc-devs/pymc
-
Notifications
You must be signed in to change notification settings - Fork 0
NormalFit
fonnesbeck edited this page Mar 30, 2013
·
3 revisions
Put the following into simple.py
:
import pymc
import numpy
numpy.random.seed(15)
true_mu = 1.5
true_tau = 50.0
N_samples = 500
mu = pymc.Uniform('mu', lower=-100.0, upper=100.0)
tau = pymc.Gamma('tau', alpha=0.1, beta=0.001)
data = pymc.rnormal( true_mu, true_tau, size=(N_samples,) )
y = pymc.Normal('y',mu,tau,value=data,observed=True)
Then execute the following:
import pymc
import simple
from numpy import mean
model=pymc.MCMC(simple)
model.sample(iter=1000, burn=500, thin=2)
print 'mu',mean(model.trace('mu')[:])
print 'tau',mean(model.trace('tau')[:])