Implement a streaming pipeline using Kafka, Spark Structured Streaming, Redis and Cassandra.
JDK: 1.8.0_211 Scala: 2.12.8 Spark: 2.3.3 Kafka: 1.1.0 Redis: 5.0.5 Cassandra: 3.11.4 (CQLSH: 5.0.1) spark-redis-connector: spark-redis-2.3.1 spark-cassandra-connector: 2.3.0
cd ./projects/moneysmart/producer/msProducerApis
mvn clean install
java -cp ./target/uber-producerApis-0.0.1.jar com.driver.App MSS1
cd ./projects/moneysmart/producer/msConsumerApis
mvn clean install
spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.3.3,datastax:spark-cassandra-connector:2.3.0-s_2.11 --class com.consumer.StructuredStreaming /home/kr_stevejobs/projects/moneysmart/consumer/msConsumerApis/target/uber-consumerApis-0.0.1.jar MSS1
$ cqlsh
DROP TABLE IF EXISTS moneysmartprocessed; CREATE TABLE moneysmartprocessed( ts TEXT, user_id TEXT, message_date TEXT, user_agent TEXT, partner_id TEXT, partner_name TEXT, init_session BOOLEAN, session_id TEXT, page_type TEXT, category TEXT, cart_amount TEXT, platform TEXT, last_visited TEXT, user_device TEXT, PRIMARY KEY(ts, user_id) );