-
Notifications
You must be signed in to change notification settings - Fork 13.5k
[mlir][xegpu] Handle scalar uniform ops in SIMT distribution. #138593
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[mlir][xegpu] Handle scalar uniform ops in SIMT distribution. #138593
Conversation
@Garra1980 Can you take a look? |
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-gpu Author: Charitha Saumya (charithaintc) ChangesThis PR adds support for moving scalar uniform (gpu index ops, constants etc) outside the Example:
To:
Full diff: https://github.com/llvm/llvm-project/pull/138593.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp
index 019032f7743bf..d4e57cfb4b4a5 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp
@@ -1008,6 +1008,11 @@ struct MoveFuncBodyToWarpExecuteOnLane0
rewriter.setInsertionPointAfter(warpOp);
rewriter.create<gpu::ReturnOp>(newGpuFunc.getLoc(), warpOp.getResults());
rewriter.replaceOp(gpuFuncOp, newGpuFunc);
+ // At this point, we have moved the entire function body inside the warpOp.
+ // Now move any scalar uniform code outside of the warpOp (like GPU index
+ // ops, scalar constants, etc.). This will simplify the later lowering and
+ // avoid custom patterns for these ops.
+ vector::moveScalarUniformCode(warpOp);
return success();
}
};
diff --git a/mlir/test/Dialect/XeGPU/subgroup-distribution.mlir b/mlir/test/Dialect/XeGPU/subgroup-distribution.mlir
index f8f2cd55c28d0..4e50771c26283 100644
--- a/mlir/test/Dialect/XeGPU/subgroup-distribution.mlir
+++ b/mlir/test/Dialect/XeGPU/subgroup-distribution.mlir
@@ -1,4 +1,4 @@
-// RUN: mlir-opt -xegpu-subgroup-distribute -split-input-file %s | FileCheck %s
+// RUN: mlir-opt -xegpu-subgroup-distribute -cse -split-input-file %s | FileCheck %s
// CHECK-LABEL: gpu.func @store_nd_1d
// CHECK: (%[[ARG0:[0-9a-zA-Z]+]]: memref<16xf32>) {
@@ -160,3 +160,50 @@ gpu.func @create_nd_tdesc_non_memref(%arg0: ui64, %arg1: ui64,
gpu.return
}
}
+
+// -----
+// CHECK-LABEL: gpu.func @gemm_loop
+// CHECK: (%[[ARG0:[0-9a-zA-Z]+]]: memref<1024x1024xbf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<1024x1024xbf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<1024x1024xf32>) {
+// CHECK: %[[BLOCK_ID_X:.*]] = gpu.block_id x
+// CHECK: %[[BLOCK_ID_Y:.*]] = gpu.block_id y
+// CHECK: %[[Y_COORD:.*]] = arith.muli %[[BLOCK_ID_Y]], %c16 : index
+// CHECK: %[[X_COORD:.*]] = arith.muli %[[BLOCK_ID_X]], %c8 : index
+// CHECK: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG2]][%[[X_COORD]], %[[Y_COORD]]] : memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32>
+// CHECK: %[[T3:.*]] = xegpu.load_nd %[[T2]] : !xegpu.tensor_desc<8x16xf32> -> vector<8xf32>
+// CHECK: %[[T4:.*]] = vector.shape_cast %[[T3]] : vector<8xf32> to vector<8x1xf32>
+// CHECK: %[[T5:.*]] = scf.for %[[K:.*]] = %{{.*}} to %{{.*}} step %{{.*}} iter_args(%[[ARG4:.*]] = %[[T4]]) -> (vector<8x1xf32>) {
+// CHECK: %[[T10:.*]] = xegpu.create_nd_tdesc %[[ARG1]][%[[K]], %[[Y_COORD]]] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<16x16xbf16>
+// CHECK: %[[T11:.*]] = xegpu.load_nd %[[T10]] <{packed}> : !xegpu.tensor_desc<16x16xbf16> -> vector<16xbf16>
+// CHECK: %[[T12:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%[[X_COORD]], %[[K]]] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<8x16xbf16>
+// CHECK: %[[T13:.*]] = xegpu.load_nd %[[T12]] : !xegpu.tensor_desc<8x16xbf16> -> vector<8xbf16>
+// CHECK: %[[T14:.*]] = vector.shape_cast %[[ARG4]] : vector<8x1xf32> to vector<8xf32>
+// CHECK: %[[T15:.*]] = xegpu.dpas %[[T13]], %[[T11]], %[[T14]] : vector<8xbf16>, vector<16xbf16>, vector<8xf32> -> vector<8xf32>
+// CHECK: %[[T16:.*]] = vector.shape_cast %[[T15]] : vector<8xf32> to vector<8x1xf32>
+// CHECK: scf.yield %[[T16]] : vector<8x1xf32>
+// CHECK: }
+// CHECK: %[[T9:.*]] = vector.shape_cast %[[T5]] : vector<8x1xf32> to vector<8xf32>
+// CHECK: xegpu.store_nd %[[T9]], %[[T2]] : vector<8xf32>, !xegpu.tensor_desc<8x16xf32>
+gpu.module @test {
+gpu.func @gemm_loop(%arg0: memref<1024x1024xbf16>, %arg1: memref<1024x1024xbf16>, %arg2: memref<1024x1024xf32>){
+ %c0 = arith.constant 0 : index
+ %c16 = arith.constant 16 : index
+ %c8 = arith.constant 8 : index
+ %c1024 = arith.constant 1024 : index
+ %0 = gpu.block_id x
+ %1 = gpu.block_id y
+ %2 = arith.muli %0, %c8 : index
+ %3 = arith.muli %1, %c16 : index
+ %4 = xegpu.create_nd_tdesc %arg2[%2, %3] : memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32>
+ %5 = xegpu.load_nd %4 : !xegpu.tensor_desc<8x16xf32> -> vector<8x16xf32>
+ %6 = scf.for %arg3 = %c0 to %c1024 step %c16 iter_args(%arg4 = %5) -> (vector<8x16xf32>) {
+ %7 = xegpu.create_nd_tdesc %arg0[%2, %arg3] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<8x16xbf16>
+ %8 = xegpu.create_nd_tdesc %arg1[%arg3, %3] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<16x16xbf16>
+ %9 = xegpu.load_nd %7 : !xegpu.tensor_desc<8x16xbf16> -> vector<8x16xbf16>
+ %10 = xegpu.load_nd %8 : !xegpu.tensor_desc<16x16xbf16> -> vector<16x16xbf16>
+ %11 = xegpu.dpas %9, %10, %arg4 : vector<8x16xbf16>, vector<16x16xbf16>, vector<8x16xf32> -> vector<8x16xf32>
+ scf.yield %11 : vector<8x16xf32>
+ }
+ xegpu.store_nd %6, %4 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
+ gpu.return
+}
+}
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
Thanks, this looks great |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM.
* main: (420 commits) [AArch64] Merge scaled and unscaled narrow zero stores (llvm#136705) [RISCV] One last migration to getInsertSubvector [nfc] [flang][OpenMP] Update `do concurrent` mapping pass to use `fir.do_concurrent` op (llvm#138489) [MLIR][LLVM] Fix llvm.mlir.global mismatching print and parser order (llvm#138986) [lld][NFC] Fix minor typo in docs (llvm#138898) [RISCV] Migrate getConstant indexed insert/extract subvector to new API (llvm#139111) GlobalISel: Translate minimumnum and maximumnum (llvm#139106) [MemProf] Simplify unittest save and restore of options (llvm#139117) [BOLT][AArch64] Patch functions targeted by optional relocs (llvm#138750) [Coverage] Support -fprofile-list for cold function coverage (llvm#136333) Remove unused forward decl (llvm#139108) [AMDGPU][NFC] Get rid of OPW constants. (llvm#139074) [CIR] Upstream extract op for VectorType (llvm#138413) [mlir][xegpu] Handle scalar uniform ops in SIMT distribution. (llvm#138593) [GlobalISel][AMDGPU] Fix handling of v2i128 type for AND, OR, XOR (llvm#138574) AMDGPU][True16][CodeGen] FP_Round f64 to f16 in true16 (llvm#128911) Reland [Clang] Deprecate `__is_trivially_relocatable` (llvm#139061) [HLSL][NFC] Stricter Overload Tests (clamp,max,min,pow) (llvm#138993) [MLIR] Fixing the memref linearization size computation for non-packed memref (llvm#138922) [TableGen][NFC] Use early exit to simplify large block in emitAction. (llvm#138220) ...
This PR adds support for moving scalar uniform (gpu index ops, constants etc) outside the
gpu.warp_execute_on_lane0
op. These kinds of ops do not require distribution and are safe to move out of the warp op. This also avoid adding separate distribution patterns for these ops.Example:
To: