Skip to content

[rfc][mlir][gpu] Add operations to extract/insert/rotate within subgroup #139048

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

Hsiangkai
Copy link
Contributor

@Hsiangkai Hsiangkai commented May 8, 2025

Add gpu.rotate, gpu.subgroup_mma_extract, and gpu.subgroup_mma_insert operations.

RFC: https://discourse.llvm.org/t/rfc-add-gpu-operations-to-permute-data-in-2-loaded-mma-matrix/86148?u=hsiangkai

Add gpu.rotate, gpu.subgroup_mma_extract, and gpu.subgroup_mma_insert
operations.
@llvmbot
Copy link
Member

llvmbot commented May 8, 2025

@llvm/pr-subscribers-mlir-spirv

@llvm/pr-subscribers-mlir

Author: Hsiangkai Wang (Hsiangkai)

Changes

Add gpu.rotate, gpu.subgroup_mma_extract, and gpu.subgroup_mma_insert operations.


Full diff: https://github.com/llvm/llvm-project/pull/139048.diff

5 Files Affected:

  • (modified) mlir/include/mlir/Dialect/GPU/IR/GPUOps.td (+102)
  • (modified) mlir/lib/Conversion/GPUToSPIRV/GPUToSPIRV.cpp (+40-1)
  • (modified) mlir/lib/Conversion/GPUToSPIRV/WmmaOpsToSPIRV.cpp (+63)
  • (added) mlir/test/Conversion/GPUToSPIRV/rotate.mlir (+25)
  • (modified) mlir/test/Conversion/GPUToSPIRV/wmma-ops-to-spirv-khr-coop-matrix.mlir (+27)
diff --git a/mlir/include/mlir/Dialect/GPU/IR/GPUOps.td b/mlir/include/mlir/Dialect/GPU/IR/GPUOps.td
index 68095b7bf5c59..612ae3fac2d77 100644
--- a/mlir/include/mlir/Dialect/GPU/IR/GPUOps.td
+++ b/mlir/include/mlir/Dialect/GPU/IR/GPUOps.td
@@ -1364,6 +1364,35 @@ def GPU_ShuffleOp : GPU_Op<
   ];
 }
 
+def GPU_RotateOp : GPU_Op<
+    "rotate", [Pure, AllTypesMatch<["value", "rotateResult"]>]>,
+    Arguments<(ins AnyIntegerOrFloatOr1DVector:$value, I32:$offset, I32:$width)>,
+    Results<(outs AnyIntegerOrFloatOr1DVector:$rotateResult)> {
+  let summary = "Rotate values within a subgroup.";
+  let description = [{
+    The "rotate" op moves values to a across lanes circularly (a.k.a.,
+    invocations, work items) within the same subgroup. The `width` argument
+    specifies the number of lanes that participate in the rotation, and must
+    be uniform across all lanes. Further, the first `width` lanes of the
+    subgroup must be active.
+
+    Example:
+
+    ```mlir
+    %cst1 = arith.constant 1 : i32
+    %width = arith.constant 16 : i32
+    %1 = gpu.rotate %0, %cst1, %width : f32
+    ```
+
+    For lane 0 < `k` < 16, return the value from lane `(k - 1) % width`.
+    For lane k == 0, return the value from lane 15.
+  }];
+
+  let assemblyFormat = [{
+    $value `,` $offset `,` $width attr-dict `:` type($value)
+  }];
+}
+
 def GPU_BarrierOp : GPU_Op<"barrier"> {
   let summary = "Synchronizes all work items of a workgroup.";
   let description = [{
@@ -1919,6 +1948,79 @@ def GPU_SubgroupMmaConstantMatrixOp : GPU_Op<"subgroup_mma_constant_matrix",
   }];
 }
 
+def GPU_SubgroupMmaExtractOp : GPU_Op<"subgroup_mma_extract",
+    [Pure,
+     TypesMatchWith<"value type matches element type of mma_matrix",
+                    "matrix", "res",
+                    "::llvm::cast<gpu::MMAMatrixType>($_self).getElementType()">]>{
+
+  let summary = "Extract a value from GPU warp by invocation and indices";
+
+  let description = [{
+    The `gpu.subgroup_mma_extract` operation extracts a value from `!gpu.mma_matrix`
+    by the invocation in a subgroup.
+
+    This operation takes `!gpu.mma_matrix` as its first operand. It is the source
+    matrix across a subgroup. The op returns a scalar value stored in the invocation
+    in the subgroup. If there are multiple values packed in an invocation, use
+    `indices` to specify the element to extract.
+
+    Example:
+
+    ```mlir
+    %c0 = arith.constant 0 : index
+    %val = gpu.subgroup_mma_extract %m[%c0] : !gpu.mma_matrix<16x16xf32, "AOp"> -> f32
+    ```
+  }];
+
+  let arguments = (ins GPU_MMAMatrix:$matrix, Variadic<Index>:$indices);
+
+  let results = (outs AnyIntegerOrFloat:$res);
+
+  let assemblyFormat = [{
+    $matrix`[`$indices`]` attr-dict `:` type($matrix) `->` type($res)
+  }];
+}
+
+def GPU_SubgroupMmaInsertOp : GPU_Op<"subgroup_mma_insert",
+    [Pure,
+     TypesMatchWith<"value type matches element type of mma_matrix",
+                    "matrix", "value",
+                    "::llvm::cast<gpu::MMAMatrixType>($_self).getElementType()"> ]>{
+
+  let summary = "Insert a value into GPU warp by invocation and indices";
+
+  let description = [{
+    The `gpu.subgroup_mma_insert` operation inserts a value to `!gpu.mma_matrix`
+    by the invocation in a subgroup.
+
+    This operation takes scalar value as its first operand and `!gpu.mma_matrix`
+    as its second operand. It is the matrix across a subgroup. The op inserts the
+    scalar value stored in the invocation in the subgroup to the matrix. If there
+    are multiple values packed in an invocation, use `indices` to specify the
+    location to insert in the packing.
+
+    The op returns `!gpu.mma_matrix` with the updated value.
+
+    Example:
+
+    ```mlir
+    %c0 = arith.constant 0 : index
+    %s0 = gpu.subgroup_mma_insert %val, %m[%c0] : f16, !gpu.mma_matrix<16x16xf16, "COp">
+            -> !gpu.mma_matrix<16x16xf16, "COp">
+    ```
+  }];
+
+  let arguments = (ins AnyIntegerOrFloat:$value, GPU_MMAMatrix:$matrix,
+                       Variadic<Index>:$indices);
+
+  let results = (outs GPU_MMAMatrix:$res);
+
+  let assemblyFormat = [{
+    $value`,` $matrix`[`$indices`]` attr-dict `:` type($value)`,` type($matrix) `->` type($res)
+  }];
+}
+
 def GPU_ElementwiseOpAddF  : I32EnumAttrCase<"ADDF", 0, "addf">;
 def GPU_ElementwiseOpMulF  : I32EnumAttrCase<"MULF", 1, "mulf">;
 def GPU_ElementwiseOpSUBF  : I32EnumAttrCase<"SUBF", 2, "subf">;
diff --git a/mlir/lib/Conversion/GPUToSPIRV/GPUToSPIRV.cpp b/mlir/lib/Conversion/GPUToSPIRV/GPUToSPIRV.cpp
index 3cc64b82950b5..e96709e4b4a35 100644
--- a/mlir/lib/Conversion/GPUToSPIRV/GPUToSPIRV.cpp
+++ b/mlir/lib/Conversion/GPUToSPIRV/GPUToSPIRV.cpp
@@ -122,6 +122,16 @@ class GPUShuffleConversion final : public OpConversionPattern<gpu::ShuffleOp> {
                   ConversionPatternRewriter &rewriter) const override;
 };
 
+/// Pattern to convert a gpu.rotate op into a spirv.GroupNonUniformRotateKHR op.
+class GPURotateConversion final : public OpConversionPattern<gpu::RotateOp> {
+public:
+  using OpConversionPattern::OpConversionPattern;
+
+  LogicalResult
+  matchAndRewrite(gpu::RotateOp rotateOp, OpAdaptor adaptor,
+                  ConversionPatternRewriter &rewriter) const override;
+};
+
 class GPUPrintfConversion final : public OpConversionPattern<gpu::PrintfOp> {
 public:
   using OpConversionPattern::OpConversionPattern;
@@ -458,6 +468,35 @@ LogicalResult GPUShuffleConversion::matchAndRewrite(
   return success();
 }
 
+//===----------------------------------------------------------------------===//
+// Rotate
+//===----------------------------------------------------------------------===//
+
+LogicalResult GPURotateConversion::matchAndRewrite(
+    gpu::RotateOp rotateOp, OpAdaptor adaptor,
+    ConversionPatternRewriter &rewriter) const {
+  // Require the rotate width to be the same as the target's subgroup size,
+  // given that for SPIR-V non-uniform subgroup ops, we cannot select
+  // participating invocations.
+  auto targetEnv = getTypeConverter<SPIRVTypeConverter>()->getTargetEnv();
+  unsigned subgroupSize =
+      targetEnv.getAttr().getResourceLimits().getSubgroupSize();
+  IntegerAttr widthAttr;
+  if (!matchPattern(rotateOp.getWidth(), m_Constant(&widthAttr)) ||
+      widthAttr.getValue().getZExtValue() != subgroupSize)
+    return rewriter.notifyMatchFailure(
+        rotateOp, "rotate width and target subgroup size mismatch");
+
+  Location loc = rotateOp.getLoc();
+  auto scope = rewriter.getAttr<spirv::ScopeAttr>(spirv::Scope::Subgroup);
+
+  Value result = rewriter.create<spirv::GroupNonUniformRotateKHROp>(
+      loc, scope, adaptor.getValue(), adaptor.getOffset(), rotateOp.getWidth());
+
+  rewriter.replaceOp(rotateOp, result);
+  return success();
+}
+
 //===----------------------------------------------------------------------===//
 // Group ops
 //===----------------------------------------------------------------------===//
@@ -733,7 +772,7 @@ void mlir::populateGPUToSPIRVPatterns(const SPIRVTypeConverter &typeConverter,
                                       RewritePatternSet &patterns) {
   patterns.add<
       GPUBarrierConversion, GPUFuncOpConversion, GPUModuleConversion,
-      GPUReturnOpConversion, GPUShuffleConversion,
+      GPUReturnOpConversion, GPUShuffleConversion, GPURotateConversion,
       LaunchConfigConversion<gpu::BlockIdOp, spirv::BuiltIn::WorkgroupId>,
       LaunchConfigConversion<gpu::GridDimOp, spirv::BuiltIn::NumWorkgroups>,
       LaunchConfigConversion<gpu::BlockDimOp, spirv::BuiltIn::WorkgroupSize>,
diff --git a/mlir/lib/Conversion/GPUToSPIRV/WmmaOpsToSPIRV.cpp b/mlir/lib/Conversion/GPUToSPIRV/WmmaOpsToSPIRV.cpp
index df2da138d3b52..78d266693fc2a 100644
--- a/mlir/lib/Conversion/GPUToSPIRV/WmmaOpsToSPIRV.cpp
+++ b/mlir/lib/Conversion/GPUToSPIRV/WmmaOpsToSPIRV.cpp
@@ -111,6 +111,68 @@ struct WmmaConstantOpToSPIRVLowering final
   }
 };
 
+/// Converts GPU MMA ExtractOp to CompositeExtract SPIR-V KHR/NV cooperative
+/// matrix ops.
+struct WmmaExtractOpToSPIRVLowering final
+    : OpConversionPattern<gpu::SubgroupMmaExtractOp> {
+  using OpConversionPattern::OpConversionPattern;
+
+  LogicalResult
+  matchAndRewrite(gpu::SubgroupMmaExtractOp op, OpAdaptor adaptor,
+                  ConversionPatternRewriter &rewriter) const override {
+    Value matrix = adaptor.getMatrix();
+    auto coopType =
+        getTypeConverter()->convertType<spirv::CooperativeMatrixType>(
+            matrix.getType());
+    if (!coopType)
+      return rewriter.notifyMatchFailure(op, "type conversion failed");
+
+    SmallVector<int32_t> intValues;
+    for (Value val : op.getIndices()) {
+      if (auto constOp = val.getDefiningOp<arith::ConstantIndexOp>()) {
+        intValues.push_back(static_cast<int32_t>(constOp.value()));
+      } else {
+        return rewriter.notifyMatchFailure(op, "Indices must be constants");
+      }
+    }
+
+    Type elementType = coopType.getElementType();
+    rewriter.replaceOpWithNewOp<spirv::CompositeExtractOp>(
+        op, elementType, matrix, rewriter.getI32ArrayAttr(intValues));
+    return success();
+  }
+};
+
+/// Converts GPU MMA InsertOp to CompositeInsert SPIR-V KHR/NV cooperative
+/// matrix ops.
+struct WmmaInsertOpToSPIRVLowering final
+    : OpConversionPattern<gpu::SubgroupMmaInsertOp> {
+  using OpConversionPattern::OpConversionPattern;
+
+  LogicalResult
+  matchAndRewrite(gpu::SubgroupMmaInsertOp op, OpAdaptor adaptor,
+                  ConversionPatternRewriter &rewriter) const override {
+    Value value = adaptor.getValue();
+    Value matrix = adaptor.getMatrix();
+    auto coopType = getTypeConverter()->convertType(matrix.getType());
+    if (!coopType)
+      return rewriter.notifyMatchFailure(op, "type conversion failed");
+
+    SmallVector<int32_t> intValues;
+    for (Value val : op.getIndices()) {
+      if (auto constOp = val.getDefiningOp<arith::ConstantIndexOp>()) {
+        intValues.push_back(static_cast<int32_t>(constOp.value()));
+      } else {
+        return rewriter.notifyMatchFailure(op, "Indices must be constants");
+      }
+    }
+
+    rewriter.replaceOpWithNewOp<spirv::CompositeInsertOp>(
+        op, coopType, value, matrix, rewriter.getI32ArrayAttr(intValues));
+    return success();
+  }
+};
+
 /// Converts elementwise ops to SPIR-V cooperative matrix elementwise ops for
 /// the default case.
 struct WmmaElementwiseOpToSPIRVDefaultLowering final
@@ -296,6 +358,7 @@ void mlir::populateGpuWMMAToSPIRVCoopMatrixKHRConversionPatterns(
   MLIRContext *context = patterns.getContext();
   patterns.add<khr::WmmaLoadOpToSPIRVLowering, khr::WmmaMmaOpToSPIRVLowering,
                khr::WmmaStoreOpToSPIRVLowering, WmmaConstantOpToSPIRVLowering,
+               WmmaExtractOpToSPIRVLowering, WmmaInsertOpToSPIRVLowering,
                WmmaElementwiseOpToSPIRVDefaultLowering>(converter, context);
   // Give the following patterns higher benefit to prevail over the default one.
   patterns.add<WmmaElementwiseOpToSPIRVScalarMulLowering>(converter, context,
diff --git a/mlir/test/Conversion/GPUToSPIRV/rotate.mlir b/mlir/test/Conversion/GPUToSPIRV/rotate.mlir
new file mode 100644
index 0000000000000..102c2fb01edb6
--- /dev/null
+++ b/mlir/test/Conversion/GPUToSPIRV/rotate.mlir
@@ -0,0 +1,25 @@
+// RUN: mlir-opt -split-input-file -convert-gpu-to-spirv -verify-diagnostics %s -o - | FileCheck %s
+
+module attributes {
+  gpu.container_module,
+  spirv.target_env = #spirv.target_env<#spirv.vce<v1.4, [Shader, GroupNonUniformRotateKHR], []>, #spirv.resource_limits<subgroup_size = 16>>
+} {
+
+gpu.module @kernels {
+  // CHECK-LABEL:  spirv.func @rotate()
+  gpu.func @rotate() kernel
+    attributes {spirv.entry_point_abi = #spirv.entry_point_abi<workgroup_size = [4, 4, 1]>} {
+    // CHECK: %[[CST8_I32:.*]] = spirv.Constant 8 : i32
+    // CHECK: %[[CST16_I32:.*]] = spirv.Constant 16 : i32
+    // CHECK: %[[CST_F32:.*]] = spirv.Constant 4.200000e+01 : f32
+    %offset = arith.constant 8 : i32
+    %width = arith.constant 16 : i32
+    %val = arith.constant 42.0 : f32
+
+    // CHECK: spirv.GroupNonUniformRotateKHR <Subgroup>, %[[CST_F32]], %[[CST8_I32]], cluster_size(%[[CST16_I32]])
+    %result = gpu.rotate %val, %offset, %width : f32
+    gpu.return
+  }
+}
+
+}
diff --git a/mlir/test/Conversion/GPUToSPIRV/wmma-ops-to-spirv-khr-coop-matrix.mlir b/mlir/test/Conversion/GPUToSPIRV/wmma-ops-to-spirv-khr-coop-matrix.mlir
index 477f344b1ae5f..3e8a3b21e7e94 100644
--- a/mlir/test/Conversion/GPUToSPIRV/wmma-ops-to-spirv-khr-coop-matrix.mlir
+++ b/mlir/test/Conversion/GPUToSPIRV/wmma-ops-to-spirv-khr-coop-matrix.mlir
@@ -93,6 +93,33 @@ module attributes {
       gpu.return
     }
 
+    // CHECK-LABEL: spirv.func @gpu_wmma_extract_op
+    // CHECK-SAME: %[[ARG0:.+]]: !spirv.coopmatrix<16x16xf32, Subgroup, MatrixA>
+    gpu.func @gpu_wmma_extract_op(%m: !gpu.mma_matrix<16x16xf32, "AOp">,
+                                  %ptr: memref<16x16xf32, #spirv.storage_class<StorageBuffer>>) kernel
+      attributes {spirv.entry_point_abi = #spirv.entry_point_abi<workgroup_size = [32, 4, 1]>} {
+      // CHECK: spirv.CompositeExtract %[[ARG0]][0 : i32] : !spirv.coopmatrix<16x16xf32, Subgroup, MatrixA>
+      %c0 = arith.constant 0 : index
+      %val = gpu.subgroup_mma_extract %m[%c0] : !gpu.mma_matrix<16x16xf32, "AOp"> -> f32
+      memref.store %val, %ptr[%c0, %c0] : memref<16x16xf32, #spirv.storage_class<StorageBuffer>>
+      gpu.return
+    }
+
+    // CHECK-LABEL: spirv.func @gpu_wmma_insert_op
+    // CHECK-SAME: %[[ARG0:.+]]: f16
+    // CHECK-SAME: %[[ARG1:.+]]: !spirv.coopmatrix<16x16xf16, Subgroup, MatrixAcc>
+    gpu.func @gpu_wmma_insert_op(%val: f16,
+                                 %m: !gpu.mma_matrix<16x16xf16, "COp">,
+                                 %ptr: memref<16x16xf16, #spirv.storage_class<StorageBuffer>>) kernel
+      attributes {spirv.entry_point_abi = #spirv.entry_point_abi<workgroup_size = [32, 4, 1]>} {
+      // CHECK: spirv.CompositeInsert %[[ARG0]], %[[ARG1]][0 : i32] : f16 into !spirv.coopmatrix<16x16xf16, Subgroup, MatrixAcc>
+      %c0 = arith.constant 0 : index
+      %s0 = gpu.subgroup_mma_insert %val, %m[%c0] : f16, !gpu.mma_matrix<16x16xf16, "COp"> -> !gpu.mma_matrix<16x16xf16, "COp">
+      gpu.subgroup_mma_store_matrix %s0, %ptr[%c0,%c0] {leadDimension = 16 : index} :
+        !gpu.mma_matrix<16x16xf16, "COp">, memref<16x16xf16, #spirv.storage_class<StorageBuffer>>
+      gpu.return
+    }
+
     // CHECK-LABEL: spirv.func @gpu_wmma_elementwise_op_default
     // CHECK-SAME:    !spirv.coopmatrix<16x16xf16, Subgroup, MatrixAcc>
     // CHECK-SAME:    !spirv.coopmatrix<16x16xf16, Subgroup, MatrixAcc>

@joker-eph
Copy link
Collaborator

How do these lower to NVVM?

@Hsiangkai
Copy link
Contributor Author

How do these lower to NVVM?

I'm not familiar with NVVM. I have a quick scan of NVVM IR. I cannot find one corresponding to these operations.

Copy link

@SoftwareBoi SoftwareBoi left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sorry if this is pedantic - it's my first review. Just a few nits.

Results<(outs AnyIntegerOrFloatOr1DVector:$rotateResult)> {
let summary = "Rotate values within a subgroup.";
let description = [{
The "rotate" op moves values to a across lanes circularly (a.k.a.,

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
The "rotate" op moves values to a across lanes circularly (a.k.a.,
The "rotate" op moves values across lanes circularly (a.k.a.,

?

The "rotate" op moves values to a across lanes circularly (a.k.a.,
invocations, work items) within the same subgroup. The `width` argument
specifies the number of lanes that participate in the rotation, and must
be uniform across all lanes. Further, the first `width` lanes of the

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
be uniform across all lanes. Further, the first `width` lanes of the
be uniform across all lanes. Furthermore, the first `width` lanes of the

Or just remove Further?

Comment on lines +1387 to +1388
For lane 0 < `k` < 16, return the value from lane `(k - 1) % width`.
For lane k == 0, return the value from lane 15.

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
For lane 0 < `k` < 16, return the value from lane `(k - 1) % width`.
For lane k == 0, return the value from lane 15.
For lane `0 < k < 16`, return the value from lane `(k - 1) % width`.
For lane `k == 0`, return the value from lane 15.

if (auto constOp = val.getDefiningOp<arith::ConstantIndexOp>()) {
intValues.push_back(static_cast<int32_t>(constOp.value()));
} else {
return rewriter.notifyMatchFailure(op, "Indices must be constants");

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
return rewriter.notifyMatchFailure(op, "Indices must be constants");
return rewriter.notifyMatchFailure(op, "indices must be constants");

@Hsiangkai
Copy link
Contributor Author

How do these lower to NVVM?

Do you have a way to lower them to NVVM? How do you extract a value from cooperative matrix?

@Hsiangkai
Copy link
Contributor Author

Sorry if this is pedantic - it's my first review. Just a few nits.

Thanks for your review. I will update them later.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants