Skip to content

[MLIR][Linalg][Python] Improve bindings for linalg.elementwise #139462

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
May 12, 2025
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
[MLIR][Linalg][Python] Improve bindings for linalg.elementwise
Adds wrappers for ElementWiseOp, in particular to ensure appropriate default
indexing maps are derived.
  • Loading branch information
rolfmorel committed May 11, 2025
commit 87f389d430faff510af710118cf502c722ffafc9
62 changes: 62 additions & 0 deletions mlir/python/mlir/dialects/linalg/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,6 +216,68 @@ def contract(
)


# Extend and shadow the TableGen-derived version to make sure correct default
# indexing_maps are derived (as there is no mechanism for doing so given the
# Python API bypasses the C++-builders).
class ElementwiseOp_(ElementwiseOp):
def __init__(
self,
result_tensors,
inputs,
outputs,
kind,
indexing_maps=None,
*,
loc=None,
ip=None,
):
if indexing_maps is None:
inputs = [_get_op_result_or_value(in_) for in_ in inputs]
num_args = len(inputs)
for in0, in1 in zip(inputs[:-1], inputs[1:]):
assert in0.type == in1.type
if outputs:
outputs = [_get_op_result_or_value(out) for out in outputs]
num_args += 1
assert inputs[0].type == outputs[0].type
indexing_maps = [ir.AffineMap.get_identity(inputs[0].type.rank)] * num_args
super().__init__(
result_tensors=result_tensors,
inputs=inputs,
outputs=outputs,
kind=kind,
indexing_maps=indexing_maps,
loc=loc,
ip=ip,
)


ElementwiseOp = ElementwiseOp_


def elementwise(
*ins: Union[Operation, OpView, Value],
outs: Sequence[Union[Operation, OpView, Value]],
kind: Union[ElementwiseKind, Attribute],
indexing_maps: Optional[Sequence[AffineMapAttr]] = None,
):
ins = [_get_op_result_or_value(input) for input in ins]
if len(outs) > 1:
raise ValueError(f"{outs=} must have length at most 1.")
init = _get_op_result_or_value(outs[0])
result_types = [init.type] if isinstance(init.type, RankedTensorType) else []

op = ElementwiseOp(
result_tensors=result_types,
inputs=ins,
outputs=[init],
kind=kind,
indexing_maps=indexing_maps,
)
fill_builtin_region(op.operation)
return _get_op_result_or_op_results(op)


def pack(
source,
dest,
Expand Down
186 changes: 186 additions & 0 deletions mlir/test/python/dialects/linalg/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -606,3 +606,189 @@ def tensor_pack(src, dst):
# CHECK: return %[[VAL_4]] : tensor<128x128xf32>
# CHECK: }
print(module)


# CHECK-LABEL: TEST: testElementwiseOp
@run
def testElementwiseOp():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
rect_shape = (8, 16)
vert_line_shape = (8,)
hor_line_shape = (16,)
transposed_rect_shape = (16, 8)

# CHECK-DAG: #[[$IdentMap2D:.*]] = affine_map<(d0, d1) -> (d0, d1)>
# CHECK-DAG: #[[$TransMap2D:.*]] = affine_map<(d0, d1) -> (d1, d0)>
# CHECK-DAG: #[[$VertLineBCastMap:.*]] = affine_map<(d0, d1) -> (d0)>
# CHECK-DAG: #[[$HorLineBCastMap:.*]] = affine_map<(d0, d1) -> (d1)>

ident_map_2d = AffineMap.get_identity(2)
transposed_map_2d = AffineMap.get_permutation((1, 0))
vert_line_bcast_map = AffineMap.get(2, 0, [AffineDimExpr.get(0)])
hor_line_bcast_map = AffineMap.get(2, 0, [AffineDimExpr.get(1)])

# CHECK: func.func @elementwise_op(
@func.FuncOp.from_py_func(
# CHECK-SAME: %[[Rect:.*]]: tensor<8x16xf32>,
RankedTensorType.get(rect_shape, f32),
# CHECK-SAME: %[[RectMem:.*]]: memref<8x16xf32>,
MemRefType.get(rect_shape, f32),
# CHECK-SAME: %[[VertLine:.*]]: tensor<8xf32>,
RankedTensorType.get(vert_line_shape, f32),
# CHECK-SAME: %[[VertLineMem:.*]]: memref<8xf32>,
MemRefType.get(vert_line_shape, f32),
# CHECK-SAME: %[[HorLine:.*]]: tensor<16xf32>,
RankedTensorType.get(hor_line_shape, f32),
# CHECK-SAME: %[[HorLineMem:.*]]: memref<16xf32>,
MemRefType.get(hor_line_shape, f32),
# CHECK-SAME: %[[TransRect:.*]]: tensor<16x8xf32>,
RankedTensorType.get(transposed_rect_shape, f32),
# CHECK-SAME: %[[TransRectMem:.*]]: memref<16x8xf32>)
MemRefType.get(transposed_rect_shape, f32),
)
def elementwise_op(
rect,
rect_mem,
vert_line,
vert_line_mem,
hor_line,
hor_line_mem,
trans_rect,
trans_rect_mem,
):
# CHECK: %[[OutRect:.*]] = tensor.empty() : tensor<8x16xf32>
out_rect = tensor.EmptyOp(rect_shape, f32)
# CHECK: %[[OutRectMem:.*]] = memref.alloca() : memref<8x16xf32>
out_rect_mem = memref.alloca(MemRefType.get(rect_shape, f32), [], [])

if _inferred_affine_maps := True:
# CHECK: linalg.elementwise
# CHECK-SAME: kind=#linalg.elementwise_kind<exp>
# CHECK-SAME: ins(%[[Rect]] : tensor<8x16xf32>)
# CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
op1 = linalg.ElementwiseOp(
result_tensors=(out_rect.result.type,),
inputs=(rect,),
outputs=(out_rect,),
kind=linalg.ElementwiseKind.exp,
)
linalg.fill_builtin_region(op1.operation)

# CHECK: linalg.elementwise
# CHECK-SAME: kind=#linalg.elementwise_kind<exp>
# CHECK-SAME: ins(%[[Rect]] : tensor<8x16xf32>)
# CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
linalg.elementwise(
rect,
outs=(out_rect,),
kind=linalg.ElementwiseKind.exp,
)

# CHECK: linalg.elementwise
# CHECK-SAME: kind=#linalg.elementwise_kind<exp>
# CHECK-SAME: ins(%[[RectMem]] : memref<8x16xf32>)
# CHECK-SAME: outs(%[[OutRectMem]] : memref<8x16xf32>)
linalg.elementwise(
rect_mem,
outs=(out_rect_mem,),
kind=linalg.ElementwiseKind.exp,
)

if _explicit_ident_affine_maps := True:
# Same as above but with default identity indexing_maps explicitly provided.
# CHECK: linalg.elementwise
# CHECK-SAME: kind=#linalg.elementwise_kind<exp>
# CHECK-SAME: ins(%[[Rect]] : tensor<8x16xf32>)
# CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
op3 = linalg.ElementwiseOp(
result_tensors=(out_rect.result.type,),
inputs=(rect,),
outputs=(out_rect,),
kind=linalg.ElementwiseKind.exp,
indexing_maps=[ident_map_2d, ident_map_2d],
)
linalg.fill_builtin_region(op3.operation)

# CHECK: linalg.elementwise
# CHECK-SAME: kind=#linalg.elementwise_kind<exp>
# CHECK-SAME: ins(%[[RectMem]] : memref<8x16xf32>)
# CHECK-SAME: outs(%[[OutRectMem]] : memref<8x16xf32>)
linalg.elementwise(
rect_mem,
outs=(out_rect_mem,),
kind=linalg.ElementwiseKind.exp,
indexing_maps=[ident_map_2d, ident_map_2d],
)

if _ops_with_non_ident_input_maps := True:
# CHECK: linalg.elementwise kind=#linalg.elementwise_kind<exp>
# CHECK-SAME: indexing_maps = [#[[$VertLineBCastMap]], #[[$IdentMap2D]]]
# CHECK-SAME: ins(%[[VertLine]] : tensor<8xf32>)
# CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
op4 = linalg.ElementwiseOp(
result_tensors=(out_rect.result.type,),
inputs=(vert_line,),
outputs=(out_rect,),
kind=linalg.ElementwiseKind.exp,
indexing_maps=[vert_line_bcast_map, ident_map_2d],
)
linalg.fill_builtin_region(op4.operation)

# CHECK: linalg.elementwise kind=#linalg.elementwise_kind<add>
# CHECK-SAME: indexing_maps = [#[[$IdentMap2D]], #[[$VertLineBCastMap]], #[[$IdentMap2D]]]
# CHECK-SAME: ins(%[[Rect]], %[[VertLine]] : tensor<8x16xf32>, tensor<8xf32>)
# CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
op4 = linalg.ElementwiseOp(
result_tensors=(out_rect.result.type,),
inputs=(rect, vert_line),
outputs=(out_rect,),
kind=linalg.ElementwiseKind.add,
indexing_maps=[ident_map_2d, vert_line_bcast_map, ident_map_2d],
)
linalg.fill_builtin_region(op4.operation)

# CHECK: linalg.elementwise kind=#linalg.elementwise_kind<div>
# CHECK-SAME: indexing_maps = [#[[$VertLineBCastMap]], #[[$HorLineBCastMap]], #[[$IdentMap2D]]]
# CHECK-SAME: ins(%[[VertLine]], %[[HorLine]] : tensor<8xf32>, tensor<16xf32>)
# CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
linalg.elementwise(
vert_line,
hor_line,
outs=(out_rect,),
kind=linalg.ElementwiseKind.div,
indexing_maps=[
vert_line_bcast_map,
hor_line_bcast_map,
ident_map_2d,
],
)

if _ops_with_non_ident_and_transposed_input_maps := True:
# CHECK: %[[VertLineBoolsMem:.*]] = memref.alloca() : memref<8xi1>
vert_line_bools_mem = memref.alloca(
MemRefType.get(vert_line_shape, IntegerType.get_signless(1)),
[],
[],
)
# CHECK: linalg.elementwise kind=#linalg.elementwise_kind<select>
# CHECK-SAME: indexing_maps = [#[[$VertLineBCastMap]], #[[$HorLineBCastMap]], #[[$TransMap2D]], #[[$IdentMap2D]]]
# CHECK-SAME: ins(%[[VertLineBoolsMem]], %[[HorLineMem]], %[[TransRectMem]] : memref<8xi1>, memref<16xf32>, memref<16x8xf32>)
# CHECK-SAME: outs(%[[OutRectMem]] : memref<8x16xf32>)
linalg.elementwise(
vert_line_bools_mem,
hor_line_mem,
trans_rect_mem,
outs=(out_rect_mem,),
kind=linalg.ElementwiseKind.select,
indexing_maps=[
vert_line_bcast_map,
hor_line_bcast_map,
transposed_map_2d,
ident_map_2d,
],
)

print(module)