Skip to content

This program may be the simplest method to get the COVID-19 key features of Japan. From the pandemic beginning to the latest.

License

Notifications You must be signed in to change notification settings

oudeng/COVID-19_Dateset_Japan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

COVID-19_Dateset_Japan

This program may be the simplest method to get the COVID-19 key features of Japan. From the pandemic beginning to the latest.

As a famous public TV station, NHK made a very good open data website to press the COVID-19 situation, especially the Japan information with daily updating.

This dataset focus on : 'Daily_Confirmed_Cases', 'Daily_Confirmed_Cases_Total', 'Daily_Death' and 'Death_Total' and 'Death_Ratio_of_Population(100k)' in each prefecture of Japan. The data is from the COVID-19 beginning in Japan to the latest.

Q: How it works?

A: It gets the NHK COVID-19 dataset automatically. According to your input parameters, the program will save the filtering results to the results subfolder by a csv file and png.

Q: How to use this file?

A: Just input preferred parameters of Col_Dict and Prefecture_Dict. The input place is between "INPUTs START" and "INPUTs END".

Choose one in Col_Dict.

Col_Dict = {'0':'Prefecture_ID', '1':'Name', '2':'Daily_Confirmed_Cases', '3':'Daily_Confirmed_Cases_Total', '4':'Daily_Death', '5':'Death_Total', '6':'Death_Ratio_of_Population(100k)'}

Choose three in Col_Dict. The three is default, of couse you can easily change matplotlib code to show less or more.

Prefecture_Dict = {'1': 'Hokkaido','2': 'Aomori','3': 'Iwate','4': 'Miyagi','5': 'Akita','6': 'Yamagata','7': 'Fukushima', '8': 'Ibaraki','9': 'Tochigi','10': 'Gunma','11': 'Saitama','12': 'Chiba','13': 'Tokyo','14': 'Kanagawa', '15': 'Niggata','16': 'Toyama','17': 'Ishikawa','18': 'Fukui','19': 'Yamanashi','20': 'Nagano', '21': 'Gifu','22': 'Shizuoka','23': 'Aichi','24': 'Mie','25': 'Shiga','26': 'Kyoto','27': 'Osaka', '28': 'Hyogo','29': 'Nara','30': 'Wakayama','31': 'Totori','32': 'Shimane','33': 'Okayama','34': 'Hiroshima', '35': 'Yamaguchi','36':'Tokushima','37': 'Kagawa','38': 'Ehime','39': 'Kochi','40': 'Fukuoka', '41': 'Saga','42': 'Nagasaki','43': 'Kumamoto','44': 'Oita','45': 'Miyazaki','46': 'Kagoshima','47': 'Okinawa'}

Q: Except for the above, how is this code beneficial to me?

A: You can get the points of Pandas data dealing of dataframe and csv, and how to plot a time series beautifully.

About

This program may be the simplest method to get the COVID-19 key features of Japan. From the pandemic beginning to the latest.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published