Skip to content

Added a decode+resize benchmark and cuda decoder #378

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Nov 19, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -185,7 +185,8 @@ format you want. Refer to Nvidia's GPU support matrix for more details

## Benchmark Results

The following was generated by running [our benchmark script](./benchmarks/decoders/generate_readme_data.py) on a lightly loaded 56-core machine.
The following was generated by running [our benchmark script](./benchmarks/decoders/generate_readme_data.py) on a lightly loaded 22-core machine with an Nvidia A100 with
5 [NVDEC decoders](https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvdec-application-note/index.html#).

![benchmark_results](./benchmarks/decoders/benchmark_readme_chart.png)

99 changes: 97 additions & 2 deletions benchmarks/decoders/benchmark_decoders_library.py
Original file line number Diff line number Diff line change
@@ -38,6 +38,14 @@ def __init__(self):
def get_frames_from_video(self, video_file, pts_list):
pass

@abc.abstractmethod
def get_consecutive_frames_from_video(self, video_file, numFramesToDecode):
pass

@abc.abstractmethod
def decode_and_transform(self, video_file, pts_list, height, width, device):
pass


class DecordAccurate(AbstractDecoder):
def __init__(self):
@@ -89,8 +97,10 @@ def __init__(self, backend):
self._backend = backend
self._print_each_iteration_time = False
import torchvision # noqa: F401
from torchvision.transforms import v2 as transforms_v2

self.torchvision = torchvision
self.transforms_v2 = transforms_v2

def get_frames_from_video(self, video_file, pts_list):
self.torchvision.set_video_backend(self._backend)
@@ -111,6 +121,20 @@ def get_consecutive_frames_from_video(self, video_file, numFramesToDecode):
frames.append(frame["data"].permute(1, 2, 0))
return frames

def decode_and_transform(self, video_file, pts_list, height, width, device):
self.torchvision.set_video_backend(self._backend)
reader = self.torchvision.io.VideoReader(video_file, "video")
frames = []
for pts in pts_list:
reader.seek(pts)
frame = next(reader)
frames.append(frame["data"].permute(1, 2, 0))
frames = [
self.transforms_v2.functional.resize(frame.to(device), (height, width))
for frame in frames
]
return frames


class TorchCodecCore(AbstractDecoder):
def __init__(self, num_threads=None, color_conversion_library=None, device="cpu"):
@@ -239,6 +263,10 @@ def __init__(self, num_ffmpeg_threads=None, device="cpu"):
)
self._device = device

from torchvision.transforms import v2 as transforms_v2

self.transforms_v2 = transforms_v2

def get_frames_from_video(self, video_file, pts_list):
decoder = VideoDecoder(
video_file, num_ffmpeg_threads=self._num_ffmpeg_threads, device=self._device
@@ -258,6 +286,14 @@ def get_consecutive_frames_from_video(self, video_file, numFramesToDecode):
break
return frames

def decode_and_transform(self, video_file, pts_list, height, width, device):
decoder = VideoDecoder(
video_file, num_ffmpeg_threads=self._num_ffmpeg_threads, device=self._device
)
frames = decoder.get_frames_played_at(pts_list)
frames = self.transforms_v2.functional.resize(frames.data, (height, width))
return frames


@torch.compile(fullgraph=True, backend="eager")
def compiled_seek_and_next(decoder, pts):
@@ -299,7 +335,9 @@ def __init__(self):

self.torchaudio = torchaudio

pass
from torchvision.transforms import v2 as transforms_v2

self.transforms_v2 = transforms_v2

def get_frames_from_video(self, video_file, pts_list):
stream_reader = self.torchaudio.io.StreamReader(src=video_file)
@@ -325,6 +363,21 @@ def get_consecutive_frames_from_video(self, video_file, numFramesToDecode):

return frames

def decode_and_transform(self, video_file, pts_list, height, width, device):
stream_reader = self.torchaudio.io.StreamReader(src=video_file)
stream_reader.add_basic_video_stream(frames_per_chunk=1)
frames = []
for pts in pts_list:
stream_reader.seek(pts)
stream_reader.fill_buffer()
clip = stream_reader.pop_chunks()
frames.append(clip[0][0])
frames = [
self.transforms_v2.functional.resize(frame.to(device), (height, width))
for frame in frames
]
return frames


def create_torchcodec_decoder_from_file(video_file):
video_decoder = create_from_file(video_file)
@@ -443,7 +496,7 @@ def plot_data(df_data, plot_path):

# Set the title for the subplot
base_video = Path(video).name.removesuffix(".mp4")
ax.set_title(f"{base_video}\n{vcount} x {vtype}", fontsize=11)
ax.set_title(f"{base_video}\n{vtype}", fontsize=11)

# Plot bars with error bars
ax.barh(
@@ -486,6 +539,14 @@ class BatchParameters:
batch_size: int


@dataclass
class DataLoaderInspiredWorkloadParameters:
batch_parameters: BatchParameters
resize_height: int
resize_width: int
resize_device: str


def run_batch_using_threads(
function,
*args,
@@ -525,6 +586,7 @@ def run_benchmarks(
num_sequential_frames_from_start: list[int],
min_runtime_seconds: float,
benchmark_video_creation: bool,
dataloader_parameters: DataLoaderInspiredWorkloadParameters = None,
batch_parameters: BatchParameters = None,
) -> list[dict[str, str | float | int]]:
# Ensure that we have the same seed across benchmark runs.
@@ -550,6 +612,39 @@ def run_benchmarks(
for decoder_name, decoder in decoder_dict.items():
print(f"video={video_file_path}, decoder={decoder_name}")

if dataloader_parameters:
bp = dataloader_parameters.batch_parameters
dataloader_result = benchmark.Timer(
stmt="run_batch_using_threads(decoder.decode_and_transform, video_file, pts_list, height, width, device, batch_parameters=batch_parameters)",
globals={
"video_file": str(video_file_path),
"pts_list": uniform_pts_list,
"decoder": decoder,
"run_batch_using_threads": run_batch_using_threads,
"batch_parameters": dataloader_parameters.batch_parameters,
"height": dataloader_parameters.resize_height,
"width": dataloader_parameters.resize_width,
"device": dataloader_parameters.resize_device,
},
label=f"video={video_file_path} {metadata_label}",
sub_label=decoder_name,
description=f"dataloader[threads={bp.num_threads} batch_size={bp.batch_size}] {num_samples} decode_and_transform()",
)
results.append(
dataloader_result.blocked_autorange(
min_run_time=min_runtime_seconds
)
)
df_data.append(
convert_result_to_df_item(
results[-1],
decoder_name,
video_file_path,
num_samples * dataloader_parameters.batch_parameters.batch_size,
f"dataloader[threads={bp.num_threads} batch_size={bp.batch_size}] {num_samples} x decode_and_transform()",
)
)

for kind, pts_list in [
("uniform", uniform_pts_list),
("random", random_pts_list),
Binary file modified benchmarks/decoders/benchmark_readme_chart.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Loading