This README provides instructions for setting up the Python environment for this project using VSCode.
- VSCode installed on your system
- Python 3.9 installed
uv
package manager installed, visit this for more information: click here
-
Clone the repository
git clone https://github.com/tcstrength/item-identification.git cd item-identification
-
Set up Python environment with uv
Create and activate a virtual environment:
uv venv
On Windows, activate the environment:
.venv\Scripts\activate
On macOS/Linux, activate the environment:
source .venv/bin/activate
-
Install dependencies
uv pip install -r requirements.txt
-
Configure environment variables
Create a
.env
file in the root directory of the project:touch .env
Add the following environment variables to the
.env
file:LABEL_STUDIO_URL=<your-label-studio-url> LABEL_STUDIO_API_KEY=<your-api-key> LABEL_STUDIO_TEMP_DIR=local/temp LABEL_STUDIO_PROJECT_MAPPING={"train":1,"validation":7,"test":3}
-
Configure VSCode
- Open the project in VSCode
- Install recommended extensions (Python, Python Environment Manager)
- Select the Python interpreter:
- Press
Ctrl+Shift+P
(Windows/Linux) orCmd+Shift+P
(macOS) - Type "Python: Select Interpreter"
- Choose the interpreter from your
.venv
directory
- Press
- Make sure to never commit your
.env
file to version control - If you update dependencies, update requirements.txt with:
uv pip freeze > requirements.txt
- Selective Search for Object Detection: https://www.geeksforgeeks.org/selective-search-for-object-detection-r-cnn/
- YOLOv12: https://docs.ultralytics.com/models/yolo12/#citations-and-acknowledgements
- Low Object Count: https://chatgpt.com/share/6804ca08-de5c-8001-9be8-402becd967b8
- Contour-based Approach: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=16b4468ae7e0e0193aa8593f8b3d4475b80c87e5