Skip to content
/ MKR Public
forked from xuezhizeng/MKR

A tensorflow implementation of Multi-task learning for Knowledge graph enhanced Recommender systems

Notifications You must be signed in to change notification settings

techstone/MKR

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

MKR

This repository is the implementation of MKR.

Files in the folder

  • data/
    • book/
      • BX-Book-Ratings.csv: raw rating file of Book-Crossing dataset;
      • item_index2entity_id.txt: the mapping from item indices in the raw rating file to entity IDs in the KG;
      • kg.txt: knowledge graph file;
    • movie/
      • item_index2entity_id.txt: the mapping from item indices in the raw rating file to entity IDs in the KG;
      • kg.txt: knowledge graph file;
      • ratrings.dat: raw rating file of MovieLens-1M;
    • music/
      • item_index2entity_id.txt: the mapping from item indices in the raw rating file to entity IDs in the KG;
      • kg.txt: knowledge graph file;
      • user_artists.dat: raw rating file of Last.FM;
  • src/: implementations of MKR.

Running the code

  • Movie
    $ cd src
    $ python preprocess.py --dataset movie
    $ python main.py
    
  • Book
    • $ cd src
      $ python preprocess.py --dataset book
      
    • open main.py file;

    • comment the code blocks of parameter settings for MovieLens-1M;

    • uncomment the code blocks of parameter settings for Book-Crossing;

    • $ python main.py
      
  • Music
    • $ cd src
      $ python preprocess.py --dataset music
      
    • open main.py file;

    • comment the code blocks of parameter settings for MovieLens-1M;

    • uncomment the code blocks of parameter settings for Last.FM;

    • $ python main.py
      

About

A tensorflow implementation of Multi-task learning for Knowledge graph enhanced Recommender systems

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%