Skip to content

zhanghanlin1121/nn_from_scratch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Neural Network from scratch

IPython notebook illustrates experiments with a 4 layer network.

Notebook setup-

# Create and activate new virtual environment (optional)
virtualenv venv
source venv/bin/activate
# Run notebook
jupyter notebook mlnn.ipynb

  Please refer mlnn.py for model code.

Methods

  • fprop(train_data_X) : Forward propagation using train_data_X.
  • bprop(train_data_X, train_data_y, regularization_lambda, epsilon) : Backward propagation using (train_data_X, train_data_y).
  • predict(train_data_X) : Make predictions using train_data_X.
  • train(train_data_X, train_data_y, regularization_lambda, epsilon, num_pass, print_loss) : Train network using (train_data_X, train_data_y).
  • visualize_preds(train_data_X, train_data_y) : Plot classification graph.
  • animate_preds(train_data_X, train_data_y, regularization_lambda, epsilon, num_pass=35000) : Animate training process.

  nn_animate

Requirements:

  • numpy
  • sklearn
  • matplolib

Please feel free to contact me at ishank269[at]gmail[dot]com to report any issues or you can open an issue here. Fork or clone for your use :)

About

Multilayer Neural Network using numpy.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.9%
  • Python 1.1%