Search Results for "em clustering algorithm"

Showing 69 open source projects for "em clustering algorithm"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    Clustering.jl

    Clustering.jl

    A Julia package for data clustering

    Methods for data clustering and evaluation of clustering quality.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    sktime

    sktime

    A unified framework for machine learning with time series

    sktime is a library for time series analysis in Python. It provides a unified interface for multiple time series learning tasks. Currently, this includes time series classification, regression, clustering, annotation, and forecasting. It comes with time series algorithms and scikit-learn compatible tools to build, tune and validate time series models. Our objective is to enhance the interoperability and usability of the time series analysis ecosystem in its entirety. sktime provides a unified...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    Alink

    Alink

    Alink is the Machine Learning algorithm platform based on Flink

    Alink is Alibaba’s scalable machine learning algorithm platform built on Apache Flink, designed for batch and stream data processing. It provides a wide variety of ready-to-use ML algorithms for tasks like classification, regression, clustering, recommendation, and more. Written in Java and Scala, Alink is suitable for enterprise-grade big data applications where performance and scalability are crucial. It supports model training, evaluation, and deployment in real-time environments...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon. This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter selection. In practice this means that HDBSCAN returns a good clustering straight away with little or no parameter tuning -- and the primary parameter, minimum cluster size...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    ML for Beginners

    ML for Beginners

    12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all

    ML-For-Beginners is a structured, project-driven curriculum that teaches foundational machine learning concepts with approachable math and lots of code. Organized as a multi-week course, it mixes short lectures with labs in notebooks so learners practice regression, classification, clustering, and recommendation techniques on real datasets. Each lesson aims to connect the algorithm to a relatable scenario, reinforcing intuition before diving into parameters, metrics, and trade-offs...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is pedagogical...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    AngClust

    AngClust: Angle-based feature clustering for time series

    Citation: Aimin Li, Siqi Xiong, Junhuai Li, Saurav Mallik, Yajun Liu, Rong Fei, Hongfang Zhou, Guangming Liu. AngClust: Angle Feature-Based Clustering for Short Time Series Gene Expression Profiles. January 2022. IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM. DOI: 10.1109/TCBB.2022.3192306 Full text: https://ieeexplore.ieee.org/document/9833353/ https://pubmed.ncbi.nlm.nih.gov/35853049/ Highlights * We proposed a novel clustering algorithm based...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    imgp

    imgp

    Multi-core image resizer and rotator. Go crunch 'em!

    imgp is a command line image resizer and rotator for JPEG and PNG images. If you have tons of images you want to resize adaptively to a screen resolution or rotate by an angle using a single command, imgp is the utility for you. It can save a lot on storage too. Powered by multiprocessing, an intelligent adaptive algorithm, recursive operations, shell completion scripts, EXIF preservation (and more), imgp is a very flexible utility with well-documented easy to use options. imgp intends...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 10

    MScDB

    A Mass Spectrometry Centric Protein Sequence Database for Proteomics

    ... theoretical and empirical information from large-scale proteomic data to generate a mass spectrometry centric protein sequence database (MScDB). The core modules of MScDB are an in-silico proteolytic digest and a peptide centric clustering algorithm that groups protein sequences that are indistinguishable by mass spectrometry.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DeepCluster

    DeepCluster

    Deep Clustering for Unsupervised Learning of Visual Features

    DeepCluster is a classic self-supervised clustering-based representation learning algorithm that iteratively groups image features and uses the cluster assignments as pseudo-labels to train the network. In each round, features produced by the network are clustered (e.g. k-means), and the cluster IDs become supervision targets in the next epoch, encouraging the model to refine its representation to better separate semantic groups. This alternating “cluster & train” scheme helps the model...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Machine Learning Octave

    Machine Learning Octave

    MatLab/Octave examples of popular machine learning algorithms

    This repository contains MATLAB / Octave implementations of popular machine learning algorithms, along with explanatory code and mathematical derivations, intended as educational material rather than production code. Implementations of supervised learning algorithms (linear regression, logistic regression, neural nets). The author’s goal is to help users understand how each algorithm works “from scratch,” avoiding black-box library calls. Code written so as to expose and comment on mathematical...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13

    weka-MTreeClusterer

    Flat clustering algorithm based on MTrees implemented for weka.

    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Clustering by Shared Subspaces

    Clustering by Shared Subspaces

    Grouping Points by Shared Subspaces for Effective Subspace Clustering

    These functions implement a subspace clustering algorithm, proposed by Ye Zhu, Kai Ming Ting, and Mark J. Carman: "Grouping Points by Shared Subspaces for Effective Subspace Clustering", Published in Pattern Recognition Journal at https://doi.org/10.1016/j.patcog.2018.05.027
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    rem

    REM - Regression models based on expectation maximization algorithm

    This project implements regression models based on expectation maximization (EM) algorithms in case of missing data
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16

    Point Symmetry Clustering

    Point Symmetry Clustering Approach Using Differential Evolution

    Implementation of Point Symmetry-based Automatic Clustering Approach Using Differential Evolution Using bug fixed KD tree nearest neighbor search from https://github.com/CristianDallos/kmeansclustering. (It is also modified to search for multiple nearest points instead only for one.) Used those academic works for algorithm implementation: http://cs.cug.edu.cn/teacherweb/gwy/Publication/ISICA-09.pdf http://www.isical.ac.in/~sanghami/ieeetkde_cameraready.pdf http...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    NNC

    Nuclear Norm Clustering

    We present Nuclear Norm Clustering (NNC), an algorithm that can be used in different fields as a promising alternative to the k-means clustering method, and that is less sensitive to outliers. The NNC algorithm requires users to provide a data matrix M and a desired number of cluster K. We employed simulate annealing techniques to choose an optimal L that minimizes NN(L). To evaluate the advantages of our newly developed algorithm, we compared the performance of both 16 public datasets and 2...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18

    spark-msna

    Algorithm on Spark for aligning multiple similar DNA/RNA sequences

    The algorithm uses suffix tree for identifying common substrings and uses a modified Needleman-Wunsch algorithm for pairwise alignments. In order to improve the efficiency of pairwise alignments, an unsupervised learning based on clustering technique is used to create a knowledge base to guide them.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    popt4jlib

    Parallel Optimization Library for Java

    popt4jlib is an open-source parallel optimization library for the Java programming language supporting both shared memory and distributed message passing models. Implements a number of meta-heuristic algorithms for Non-Linear Programming, including Genetic Algorithms, Differential Evolution, Evolutionary Algorithms, Simulated Annealing, Particle Swarm Optimization, Firefly Algorithm, Monte-Carlo Search, Local Search algorithms, Gradient-Descent-based algorithms, as well as some well-known...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    DGRLVQ

    Dynamic Generalized Relevance Learning Vector Quantization

    Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    node2vec
    The node2vec project provides an implementation of the node2vec algorithm, a scalable feature learning method for networks. The algorithm is designed to learn continuous vector representations of nodes in a graph by simulating biased random walks and applying skip-gram models from natural language processing. These embeddings capture community structure as well as structural equivalence, enabling machine learning on graphs for tasks such as classification, clustering, and link prediction...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22

    QSdpR

    Viral Quasispecies Reconstruction software based on QSdpR algorithm

    This is a viral quasispecies reconstruction software for quasispecies assembly problem on mRNA viruses, which is based on a correlation clustering approach and uses semidefinite optimization framework. The software accepts a reference genome, a NGS read set aligned to this reference and set of SNP locations in the form of a vcf file and outputs an optimal set of reconstructed species genomes which describes the underlying viral population.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    BISD

    Batch incremental SNN-DBSCAN clustering algorithm

    Incremental data mining algorithms process frequent up- dates to dynamic datasets efficiently by avoiding redundant computa- tion. Existing incremental extension to shared nearest neighbor density based clustering (SNND) algorithm cannot handle deletions to dataset and handles insertions only one point at a time. We present an incremen- tal algorithm to overcome both these bottlenecks by efficiently identify- ing affected parts of clusters while processing updates to dataset in batch...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    MCODER, an R Implementation Of MCODE Network Clustering Algorithm.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Density-ratio based clustering

    Density-ratio based clustering

    Discovering clusters with varying densities

    This site provides the source code of two approaches for density-ratio based clustering, used for discovering clusters with varying densities. One approach is to modify a density-based clustering algorithm to do density-ratio based clustering by using its density estimator to compute density-ratio. The other approach involves rescaling the given dataset only. An existing density-based clustering algorithm, which is applied to the rescaled dataset, can find all clusters with varying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.