Browse free open source Data Science tools and projects for Linux below. Use the toggles on the left to filter open source Data Science tools by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Rodeo

    Rodeo

    A data science IDE for Python

    A data science IDE for Python. RODEO, that is an open-source python IDE and has been brought up by the folks at yhat, is a development environment that is lightweight, intuitive and yet customizable to its very core and also contains all the features mentioned above that were searched for so long. It is just like your very own personal home base for exploration and interpretation of data that aims at Data Scientists and answers the main question, "Is there anything like RStudio for Python?" Rodeo makes it very easy for its users to explore what is created by them and also alongside allows the users to Inspect, interact, compare data frames, plots and even much more. It is an IDE that has been built especially for data science/Machine Learning in Python and you can also very simply think of it as a light weight alternative to the IPython Notebook.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 2
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit, and OpenCV. These tools enable powerful and highly-scalable predictive and analytical models for a variety of data sources. SynapseML also brings new networking capabilities to the Spark Ecosystem. With the HTTP on Spark project, users can embed any web service into their SparkML models. For production-grade deployment, the Spark Serving project enables high throughput, sub-millisecond latency web services, backed by your Spark cluster.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 3
    DearPyGui

    DearPyGui

    Graphical User Interface Toolkit for Python with minimal dependencies

    Dear PyGui is an easy-to-use, dynamic, GPU-Accelerated, cross-platform graphical user interface toolkit(GUI) for Python. It is “built with” Dear ImGui. Features include traditional GUI elements such as buttons, radio buttons, menus, and various methods to create a functional layout. Additionally, DPG has an incredible assortment of dynamic plots, tables, drawings, debuggers, and multiple resource viewers. DPG is well suited for creating simple user interfaces as well as developing complex and demanding graphical interfaces. DPG offers a solid framework for developing scientific, engineering, gaming, data science and other applications that require fast and interactive interfaces. The Tutorials will provide a great overview and links to each topic in the API Reference for more detailed reading. Complete theme and style control. GPU-based rendering and efficient C/C++ code.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    Nuclio

    Nuclio

    High-Performance Serverless event and data processing platform

    Nuclio is an open source and managed serverless platform used to minimize development and maintenance overhead and automate the deployment of data-science-based applications. Real-time performance running up to 400,000 function invocations per second. Portable across low laptops, edge, on-prem and multi-cloud deployments. The first serverless platform supporting GPUs for optimized utilization and sharing. Automated deployment to production in a few clicks from Jupyter notebook. Deploy one of the example serverless functions or write your own. The dashboard, when running outside an orchestration platform (e.g. Kubernetes or Swarm), will simply be deployed to the local docker daemon. The Getting Started With Nuclio On Kubernetes guide has a complete step-by-step guide to using Nuclio serverless functions over Kubernetes.
    Downloads: 4 This Week
    Last Update:
    See Project
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 5
    XGBoost

    XGBoost

    Scalable and Flexible Gradient Boosting

    XGBoost is an optimized distributed gradient boosting library, designed to be scalable, flexible, portable and highly efficient. It supports regression, classification, ranking and user defined objectives, and runs on all major operating systems and cloud platforms. XGBoost works by implementing machine learning algorithms under the Gradient Boosting framework. It also offers parallel tree boosting (GBDT, GBRT or GBM) that can quickly and accurately solve many data science problems. XGBoost can be used for Python, Java, Scala, R, C++ and more. It can run on a single machine, Hadoop, Spark, Dask, Flink and most other distributed environments, and is capable of solving problems beyond billions of examples.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    cuDF

    cuDF

    GPU DataFrame Library

    Built based on the Apache Arrow columnar memory format, cuDF is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data. cuDF provides a pandas-like API that will be familiar to data engineers & data scientists, so they can use it to easily accelerate their workflows without going into the details of CUDA programming. For additional examples, browse our complete API documentation, or check out our more detailed notebooks. cuDF can be installed with conda (miniconda, or the full Anaconda distribution) from the rapidsai channel. cuDF is supported only on Linux, and with Python versions 3.7 and later. The RAPIDS suite of open-source software libraries aims to enable the execution of end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level compute optimization but exposing that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. The SageMaker Training Toolkit can be easily added to any Docker container, making it compatible with SageMaker for training models. If you use a prebuilt SageMaker Docker image for training, this library may already be included. Write a training script (eg. train.py). Define a container with a Dockerfile that includes the training script and any dependencies.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Secure remote access solution to your private network, in the cloud or on-prem. Icon
    Secure remote access solution to your private network, in the cloud or on-prem.

    Deliver secure remote access with OpenVPN.

    OpenVPN is here to bring simple, flexible, and cost-effective secure remote access to companies of all sizes, regardless of where their resources are located.
    Get started — no credit card required.
  • 10
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. Usable as remote kernel (Jupyter) or remote machine (VS Code) via SSH. Easy to deploy on Mac, Linux, and Windows via Docker. Jupyter, JupyterLab, and Visual Studio Code web-based IDEs.By default, the workspace container has no resource constraints and can use as much of a given resource as the host’s kernel scheduler allows.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    gophernotes

    gophernotes

    The Go kernel for Jupyter notebooks and nteract

    gophernotes is a Go kernel for Jupyter notebooks and nteract. It lets you use Go interactively in a browser-based notebook or desktop app. Use gophernotes to create and share documents that contain live Go code, equations, visualizations and explanatory text. These notebooks, with the live Go code, can then be shared with others via email, Dropbox, GitHub and the Jupyter Notebook Viewer. Go forth and do data science, or anything else interesting, with Go notebooks! This project utilizes a Go interpreter called gomacro under the hood to evaluate Go code interactively. The gophernotes logo was designed by the brilliant Marcus Olsson and was inspired by Renee French's original Go Gopher design. If you have the JUPYTER_PATH environmental variable set or if you are using an older version of Jupyter, you may need to copy this kernel config to another directory.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    tsfresh

    tsfresh

    Automatic extraction of relevant features from time series

    tsfresh is a python package. It automatically calculates a large number of time series characteristics, the so called features. tsfresh is used to to extract characteristics from time series. Without tsfresh, you would have to calculate all characteristics by hand. With tsfresh this process is automated and all your features can be calculated automatically. Further tsfresh is compatible with pythons pandas and scikit-learn APIs, two important packages for Data Science endeavours in python. The extracted features can be used to describe or cluster time series based on the extracted characteristics. Further, they can be used to build models that perform classification/regression tasks on the time series. Often the features give new insights into time series and their dynamics.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    xsv

    xsv

    A fast CSV command line toolkit written in Rust

    xsv is a command line program for indexing, slicing, analyzing, splitting and joining CSV files. Commands should be simple, fast and composable. Simple tasks should be easy. Performance trade offs should be exposed in the CLI interface. Composition should not come at the expense of performance. Let's say you're playing with some of the data from the Data Science Toolkit, which contains several CSV files. Maybe you're interested in the population counts of each city in the world. So grab the data and start examining it. The next thing you might want to do is get an overview of the kind of data that appears in each column. The stats command will do this for you. The xsv table command takes any CSV data and formats it into aligned columns using elastic tabstops. These commands are instantaneous because they run in time and memory proportional to the size of the slice (which means they will scale to arbitrarily large CSV data).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example notebooks. These notebooks provide code and descriptions for creating and running workflows in AWS Step Functions Using the AWS Step Functions Data Science SDK. In Amazon SageMaker, example Jupyter notebooks are available in the example notebooks portion of a notebook instance. To run the AWS Step Functions Data Science SDK example notebooks locally, download the sample notebooks and open them in a working Jupyter instance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Amazon SageMaker Examples

    Amazon SageMaker Examples

    Jupyter notebooks that demonstrate how to build models using SageMaker

    Welcome to Amazon SageMaker. This projects highlights example Jupyter notebooks for a variety of machine learning use cases that you can run in SageMaker. If you’re new to SageMaker we recommend starting with more feature-rich SageMaker Studio. It uses the familiar JupyterLab interface and has seamless integration with a variety of deep learning and data science environments and scalable compute resources for training, inference, and other ML operations. Studio offers teams and companies easy on-boarding for their team members, freeing them up from complex systems admin and security processes. Administrators control data access and resource provisioning for their users. Notebook Instances are another option. They have the familiar Jupyter and JuypterLab interfaces that work well for single users, or small teams where users are also administrators. Advanced users also use SageMaker solely with the AWS CLI and Python scripts using boto3 and/or the SageMaker Python SDK.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    FlexiList.

    FlexiList.

    FlexiList is a Java data structure that combines the benefits of array

    FlexiList is a Java data structure that combines the benefits of arrays and linked lists. Like an array, it allows for efficient access to elements by index. Like a linked list, it allows for efficient insertion and deletion of elements at any position in the list. Benefits Over Arrays and ArrayList ->Efficient Insertion and Deletion: FlexiList can insert or delete nodes at any position in the list in O(1) time, whereas arrays require shifting all elements after the insertion or deletion point. ->Dynamic Size: FlexiList can grow or shrink dynamically as elements are added or removed, whereas arrays have a fixed size. ->Good Memory Locality: FlexiList nodes are stored in a contiguous block of memory, making it more cache-friendly than arrays. ->Faster Insertion and Deletion: FlexiList can insert or delete nodes at any position in the list in O(1) time, whereas ArrayList requires shifting all elements after the insertion or deletion point.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than creating implementations from scratch, we draw from existing state-of-the-art libraries and build additional utilities around processing and featuring the data, optimizing and evaluating models, and scaling up to the cloud. The examples and best practices are provided as Python Jupyter notebooks and R markdown files and a library of utility functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Orchest

    Orchest

    Build data pipelines, the easy way

    Code, run and monitor your data pipelines all from your browser! From idea to scheduled pipeline in hours, not days. Interactively build your data science pipelines in our visual pipeline editor. Versioned as a JSON file. Run scripts or Jupyter notebooks as steps in a pipeline. Python, R, Julia, JavaScript, and Bash are supported. Parameterize your pipelines and run them periodically on a cron schedule. Easily install language or system packages. Built on top of regular Docker container images. Creation of multiple instances with up to 8 vCPU & 32 GiB memory. A free Orchest instance with 2 vCPU & 8 GiB memory. Simple data pipelines with Orchest. Each step runs a file in a container. It's that simple! Spin up services whose lifetime spans across the entire pipeline run. Easily define your dependencies to run on any machine. Run any subset of the pipeline directly or periodically.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    SageMaker Containers

    SageMaker Containers

    Create SageMaker-compatible Docker containers

    Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. The SageMaker Training Toolkit can be easily added to any Docker container, making it compatible with SageMaker for training models. If you use a prebuilt SageMaker Docker image for training, this library may already be included. Very often, an entry point needs additional information from the container that is not available in hyperparameters. SageMaker Containers writes this information as environment variables that are available inside the script.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.