Browse free open source Data Science tools and projects for Mac and Linux below. Use the toggles on the left to filter open source Data Science tools by OS, license, language, programming language, and project status.

  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • 1
    ggplot2

    ggplot2

    An implementation of the Grammar of Graphics in R

    ggplot2 is a system written in R for declaratively creating graphics. It is based on The Grammar of Graphics, which focuses on following a layered approach to describe and construct visualizations or graphics in a structured manner. With ggplot2 you simply provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it will take care of the rest. ggplot2 is over 10 years old and is used by hundreds of thousands of people all over the world for plotting. In most cases using ggplot2 starts with supplying a dataset and aesthetic mapping (with aes()); adding on layers (like geom_point() or geom_histogram()), scales (like scale_colour_brewer()), and faceting specifications (like facet_wrap()); and finally, coordinating systems. ggplot2 has a rich ecosystem of community-maintained extensions for those looking for more innovation. ggplot2 is a part of the tidyverse, an ecosystem of R packages designed for data science.
    Downloads: 40 This Week
    Last Update:
    See Project
  • 2
    DearPyGui

    DearPyGui

    Graphical User Interface Toolkit for Python with minimal dependencies

    Dear PyGui is an easy-to-use, dynamic, GPU-Accelerated, cross-platform graphical user interface toolkit(GUI) for Python. It is “built with” Dear ImGui. Features include traditional GUI elements such as buttons, radio buttons, menus, and various methods to create a functional layout. Additionally, DPG has an incredible assortment of dynamic plots, tables, drawings, debuggers, and multiple resource viewers. DPG is well suited for creating simple user interfaces as well as developing complex and demanding graphical interfaces. DPG offers a solid framework for developing scientific, engineering, gaming, data science and other applications that require fast and interactive interfaces. The Tutorials will provide a great overview and links to each topic in the API Reference for more detailed reading. Complete theme and style control. GPU-based rendering and efficient C/C++ code.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 3
    marimo

    marimo

    A reactive notebook for Python

    marimo is an open-source reactive notebook for Python, reproducible, git-friendly, executable as a script, and shareable as an app. marimo notebooks are reproducible, extremely interactive, designed for collaboration (git-friendly!), deployable as scripts or apps, and fit for modern Pythonista. Run one cell and marimo reacts by automatically running affected cells, eliminating the error-prone chore of managing the notebook state. marimo's reactive UI elements, like data frame GUIs and plots, make working with data feel refreshingly fast, futuristic, and intuitive. Version with git, run as Python scripts, import symbols from a notebook into other notebooks or Python files, and lint or format with your favorite tools. You'll always be able to reproduce your collaborators' results. Notebooks are executed in a deterministic order, with no hidden state, delete a cell and marimo deletes its variables while updating affected cells.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 4
    Rodeo

    Rodeo

    A data science IDE for Python

    A data science IDE for Python. RODEO, that is an open-source python IDE and has been brought up by the folks at yhat, is a development environment that is lightweight, intuitive and yet customizable to its very core and also contains all the features mentioned above that were searched for so long. It is just like your very own personal home base for exploration and interpretation of data that aims at Data Scientists and answers the main question, "Is there anything like RStudio for Python?" Rodeo makes it very easy for its users to explore what is created by them and also alongside allows the users to Inspect, interact, compare data frames, plots and even much more. It is an IDE that has been built especially for data science/Machine Learning in Python and you can also very simply think of it as a light weight alternative to the IPython Notebook.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    Milvus

    Milvus

    Vector database for scalable similarity search and AI applications

    Milvus is an open-source vector database built to power embedding similarity search and AI applications. Milvus makes unstructured data search more accessible, and provides a consistent user experience regardless of the deployment environment. Milvus 2.0 is a cloud-native vector database with storage and computation separated by design. All components in this refactored version of Milvus are stateless to enhance elasticity and flexibility. Average latency measured in milliseconds on trillion vector datasets. Rich APIs designed for data science workflows. Consistent user experience across laptop, local cluster, and cloud. Embed real-time search and analytics into virtually any application. Milvus’ built-in replication and failover/failback features ensure data and applications can maintain business continuity in the event of a disruption. Component-level scalability makes it possible to scale up and down on demand.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    XGBoost

    XGBoost

    Scalable and Flexible Gradient Boosting

    XGBoost is an optimized distributed gradient boosting library, designed to be scalable, flexible, portable and highly efficient. It supports regression, classification, ranking and user defined objectives, and runs on all major operating systems and cloud platforms. XGBoost works by implementing machine learning algorithms under the Gradient Boosting framework. It also offers parallel tree boosting (GBDT, GBRT or GBM) that can quickly and accurately solve many data science problems. XGBoost can be used for Python, Java, Scala, R, C++ and more. It can run on a single machine, Hadoop, Spark, Dask, Flink and most other distributed environments, and is capable of solving problems beyond billions of examples.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Data Science Specialization

    Data Science Specialization

    Course materials for the Data Science Specialization on Coursera

    The Data Science Specialization Courses repository is a collection of materials that support the Johns Hopkins University Data Science Specialization on Coursera. It contains the source code and resources used throughout the specialization’s courses, covering a broad range of data science concepts and techniques. The repository is designed as a shared space for code examples, datasets, and instructional materials, helping learners follow along with lectures and assignments. It spans essential topics such as R programming, data cleaning, exploratory data analysis, statistical inference, regression models, machine learning, and practical data science projects. By providing centralized resources, the repo makes it easier for students to practice concepts and replicate examples from the curriculum. It also offers a structured view of how multiple disciplines—programming, statistics, and applied data analysis—come together in a professional workflow.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Quadratic

    Quadratic

    Data science spreadsheet with Python & SQL

    Quadratic enables your team to work together on data analysis to deliver better results, faster. You already know how to use a spreadsheet, but you’ve never had this much power before. Quadratic is a Web-based spreadsheet application that runs in the browser and as a native app (via Electron). Our goal is to build a spreadsheet that enables you to pull your data from its source (SaaS, Database, CSV, API, etc) and then work with that data using the most popular data science tools today (Python, Pandas, SQL, JS, Excel Formulas, etc). Quadratic has no environment to configure. The grid runs entirely in the browser with no backend service. This makes our grids completely portable and very easy to share. Quadratic has Python library support built-in. Bring the latest open-source tools directly to your spreadsheet. Quickly write code and see the output in full detail. No more squinting into a tiny terminal to see your data output.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Data Science Notes

    Data Science Notes

    Curated collection of data science learning materials

    Data Science Notes is a large, curated collection of data science learning materials, with explanations, code snippets, and structured notes across the typical end-to-end workflow. It spans foundational math and statistics through data wrangling, visualization, machine learning, and practical project organization. The content emphasizes hands-on understanding by pairing narrative notes with runnable examples, making it useful for both self-study and classroom settings. Because it aggregates topics in one place, learners can move linearly or jump into specific areas as needed during projects. The notes also highlight common pitfalls and good practices, which helps beginners adopt professional habits early. It’s a living resource that many students consult when revising fundamentals or exploring adjacent tools in the ecosystem.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 10
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments and other workflows with ClearML powerful and versatile set of classes and methods. The ClearML Server storing experiment, model, and workflow data, and supports the Web UI experiment manager, and ML-Ops automation for reproducibility and tuning. It is available as a hosted service and open source for you to deploy your own ClearML Server. The ClearML Agent for ML-Ops orchestration, experiment and workflow reproducibility, and scalability.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    AWS SDK for pandas

    AWS SDK for pandas

    Easy integration with Athena, Glue, Redshift, Timestream, Neptune

    aws-sdk-pandas (formerly AWS Data Wrangler) bridges pandas with the AWS analytics stack so DataFrames flow seamlessly to and from cloud services. With a few lines of code, you can read from and write to Amazon S3 in Parquet/CSV/JSON/ORC, register tables in the AWS Glue Data Catalog, and query with Amazon Athena directly into pandas. The library abstracts efficient patterns like partitioning, compression, and vectorized I/O so you get performant data lake operations without hand-rolling boilerplate. It also supports Redshift, OpenSearch, and other services, enabling ETL tasks that blend SQL engines and Python transformations. Operational helpers handle IAM, sessions, and concurrency while exposing knobs for encryption, versioning, and catalog consistency. The result is a productive workflow that keeps your analytics in Python while leveraging AWS-native storage and query engines at scale.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    NannyML is an open-source python library that allows you to estimate post-deployment model performance (without access to targets), detect data drift, and intelligently link data drift alerts back to changes in model performance. Built for data scientists, NannyML has an easy-to-use interface, and interactive visualizations, is completely model-agnostic, and currently supports all tabular classification use cases. NannyML closes the loop with performance monitoring and post deployment data science, empowering data scientist to quickly understand and automatically detect silent model failure. By using NannyML, data scientists can finally maintain complete visibility and trust in their deployed machine learning models. When the actual outcome of your deployed prediction models is delayed, or even when post-deployment target labels are completely absent, you can use NannyML's CBPE-algorithm to estimate model performance.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Self-learning-Computer-Science

    Self-learning-Computer-Science

    Resources to learn computer science in your spare time

    Self-learning Computer Science is a curated, open-source guide repository designed to help learners independently study computer science topics using high-quality university-level resources. The author (an undergraduate CS student) assembled links to courses from institutions like MIT, UC Berkeley, Stanford, etc., covering mathematics, programming, data structures/algorithms, computer architecture, machine learning, software engineering and more. It’s aimed at learners who find traditional course structures restrictive and want a flexible, self-paced path through CS, with a focus on building depth and breadth rather than shortcut exam skills. The repository provides a roadmap, references, teaching materials, and sometimes the author’s own project examples, offering both guidance and community support. Because the CS field is broad, the structure helps learners allocate study time, avoid duplication, and benefit from “best in class” resources instead of randomly browsing.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    xsv

    xsv

    A fast CSV command line toolkit written in Rust

    xsv is a command line program for indexing, slicing, analyzing, splitting and joining CSV files. Commands should be simple, fast and composable. Simple tasks should be easy. Performance trade offs should be exposed in the CLI interface. Composition should not come at the expense of performance. Let's say you're playing with some of the data from the Data Science Toolkit, which contains several CSV files. Maybe you're interested in the population counts of each city in the world. So grab the data and start examining it. The next thing you might want to do is get an overview of the kind of data that appears in each column. The stats command will do this for you. The xsv table command takes any CSV data and formats it into aligned columns using elastic tabstops. These commands are instantaneous because they run in time and memory proportional to the size of the slice (which means they will scale to arbitrarily large CSV data).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    sadsa

    sadsa

    SADSA (Software Application for Data Science and Analytics)

    SADSA (Software Application for Data Science and Analytics) is a Python-based desktop application designed to simplify statistical analysis, machine learning, and data visualization for students, researchers, and data professionals. Built using Python for the GUI, SADSA provides a menu-driven interface for handling datasets, applying transformations, running advanced statistical tests, machine learning algorithms, and generating insightful plots — all without writing code.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example notebooks. These notebooks provide code and descriptions for creating and running workflows in AWS Step Functions Using the AWS Step Functions Data Science SDK. In Amazon SageMaker, example Jupyter notebooks are available in the example notebooks portion of a notebook instance. To run the AWS Step Functions Data Science SDK example notebooks locally, download the sample notebooks and open them in a working Jupyter instance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18

    Adele

    Adhoc Data Exploration - Live & Easy

    Adele was developed to simplify the daily work with data. Use it as a swiss knife to fill the gap between your work with spreadsheet application like MS Excel and enterprise servers like SAP ERP. Specialized tools like Rapid Miner, KNIME or similiary stuff should not be replaced. But Adele is designed for business people working with spreadsheet applications to analyse their data. There are many technical concepts in an easier way included. For example realtime OLAP, transformations, charts, analysis tools,... Connectors (e.g. JDBC, SAP ABAP, OData) can be used to pre-analyse the data and extract it without saving the data as text files. A plugin concept for enhancements are available. Enjoy! Its free for commercial use too. Adele runs without installation from USB stick for Windows, Linux and MacOSX. Last added changes: - data science tools (V1, IQR) - export to remote and desktop databases (mysql,sqlite, ms access) - internet features for emails and domains
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Amazon SageMaker Examples

    Amazon SageMaker Examples

    Jupyter notebooks that demonstrate how to build models using SageMaker

    Welcome to Amazon SageMaker. This projects highlights example Jupyter notebooks for a variety of machine learning use cases that you can run in SageMaker. If you’re new to SageMaker we recommend starting with more feature-rich SageMaker Studio. It uses the familiar JupyterLab interface and has seamless integration with a variety of deep learning and data science environments and scalable compute resources for training, inference, and other ML operations. Studio offers teams and companies easy on-boarding for their team members, freeing them up from complex systems admin and security processes. Administrators control data access and resource provisioning for their users. Notebook Instances are another option. They have the familiar Jupyter and JuypterLab interfaces that work well for single users, or small teams where users are also administrators. Advanced users also use SageMaker solely with the AWS CLI and Python scripts using boto3 and/or the SageMaker Python SDK.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Cookiecutter Data Science

    Cookiecutter Data Science

    Project structure for doing and sharing data science work

    A logical, reasonably standardized, but flexible project structure for doing and sharing data science work. When we think about data analysis, we often think just about the resulting reports, insights, or visualizations. While these end products are generally the main event, it's easy to focus on making the products look nice and ignore the quality of the code that generates them. Because these end products are created programmatically, code quality is still important! And we're not talking about bikeshedding the indentation aesthetics or pedantic formatting standards, ultimately, data science code quality is about correctness and reproducibility. It's no secret that good analyses are often the result of very scattershot and serendipitous explorations. Tentative experiments and rapidly testing approaches that might not work out are all part of the process for getting to the good stuff, and there is no magic bullet to turn data exploration into a simple, linear progression.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    DEPRECATED - KVFinder

    Cavity Detection PyMOL plugin

    The KVFinder software, originally published in 2014, is deprecated. We published more recent software: parKVFinder and pyKVFinder. [parKVFinder] A Linux/macOS version is available in this GitHub repository, https://github.com/LBC-LNBio/parKVFinder, while a Windows version is in this GitHub repository, https://github.com/LBC-LNBio/parKVFinder-win. Please read and cite the original paper ParKVFinder: A thread-level parallel approach in biomolecular cavity detection (10.1016/j.softx.2020.100606). [pyKVFinder] pyKVFinder is available in this Python Package Index (PyPI) repository, https://pypi.org/project/pyKVFinder and this GitHub repository, https://github.com/LBC-LNBio/pyKVFinder. Please read and cite the original paper pyKVFinder: an efficient and integrable Python package for biomolecular cavity detection and characterization in data science (10.1186/s12859-021-04519-4).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Dask

    Dask

    Parallel computing with task scheduling

    Dask is a Python library for parallel and distributed computing, designed to scale analytics workloads from single machines to large clusters. It integrates with familiar tools like NumPy, Pandas, and scikit-learn while enabling execution across cores or nodes with minimal code changes. Dask excels at handling large datasets that don’t fit into memory and is widely used in data science, machine learning, and big data pipelines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Data Science at the Command Line

    Data Science at the Command Line

    Data science at the command line

    Command Line by Jeroen Janssens, published by O’Reilly Media in October 2021. Obtain, scrub, explore, and model data with Unix Power Tools. This repository contains the full text, data, and scripts used in the second edition of the book Data Science at the Command Line by Jeroen Janssens. This thoroughly revised guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small yet powerful command-line tools to quickly obtain, scrub, explore, and model your data. To get you started, author Jeroen Janssens provides a Docker image packed with over 100 Unix power tools, useful whether you work with Windows, macOS, or Linux. You’ll quickly discover why the command line is an agile, scalable, and extensible technology. Even if you’re comfortable processing data with Python or R, you’ll learn how to greatly improve your data science workflow by leveraging the command line’s power.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Deep Learning course

    Deep Learning course

    Slides and Jupyter notebooks for the Deep Learning lectures

    Slides and Jupyter notebooks for the Deep Learning lectures at Master Year 2 Data Science from Institut Polytechnique de Paris. This course is being taught at as part of Master Year 2 Data Science IP-Paris. Note: press "P" to display the presenter's notes that include some comments and additional references. This lecture is built and maintained by Olivier Grisel and Charles Ollion.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.